Skip to content
GitLab
Projects Groups Topics Snippets
  • /
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
  • Sign in
  • M MAPIES
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributor statistics
    • Graph
    • Compare revisions
  • Issues 25
    • Issues 25
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 2
    • Merge requests 2
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Packages and registries
    • Packages and registries
    • Package Registry
    • Terraform modules
  • Monitor
    • Monitor
    • Incidents
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • Atmospheric Composition
  • MAPIES
  • Wiki
  • run_tropomi.py

run_tropomi.py · Changes

Page history
Update run_tropomi.py authored Feb 21, 2025 by Calum Meikle's avatar Calum Meikle
Hide whitespace changes
Inline Side-by-side
run_tropomi.py.md
View page @ dd83e07a
......@@ -11,8 +11,18 @@ This line creates the object TROPOMI:
There are 6 methods available:
* `read_nc`, selects the filepaths.
* `process_data`, computes averages and the number of valid observations. If `monthly_avg=True` it performs monthly averages (data is split per month). If `monthly_avg=False` the data is averaged all together. Choose the first option if you are interested in averages per month and from `start_date` and `end_date` there are 1,2...12 months of data. If `save=True` the averaged data (obs, lat, lon) is saved in a netCDF file. If `apply_qa=True`, the quality assurance flags set in the satellite_config.yaml file are applied. If `geospatial_crop` settings are specified, it applies geospatial crop to the data. Default parameters are `monthly_avg=False`, `months=[0]`, `save=False`, `apply_qa=True` and `geospatial_crop: NDArray | None = None`.
* `process_lazy_data`, is very similar to `process_data`, but without averaging. Produces daily netCDF files of unprocessed data (no averaging techniques are applied). QA can also be implemented by setting `apply_qa=True`, as well as `geospatial_crop`. Default parameters are `monthly_avg=False`, `months=[0]`, `save=False`, `apply_qa=True` and `geospatial_crop: NDArray | None = None`.
* `yearly_average`, computes the yearly average from the averages of the single months. It runs only if `monthly_avg=True`.
* `plot_2D_observations`, generates the 2D plot of average observations. If `monthly_avg=True`, in the variable `months` you need to specify for which months you want to see results. If `monthly_avg=False`, set `months=[0]`. If `monthly_avg=True` and you called `yearly_average` set `months=None`.
* `plot_2D_num_obs`, plots the valid observations. The variable `months` follows the same rules of the one in `plot_2D_observations`.
\ No newline at end of file
Clone repository
  • Home
  • Releases
  • Running Mapies
  • TROPOMI
  • VIIRS
  • Working examples
  • run_tropomi.py
  • run_viirs.py