
Package ‘multiApply’
February 5, 2018

Title Apply Functions to Multiple Multidimensional Arguments

Version 1.0.0

Description The base apply function and its variants, as well as the related functions in the 'plyr' pack-
age, typically apply user-defined functions to a single argument (or a list of vectorized argu-
ments in the case of mapply). The 'multiApply' package extends this paradigm to functions tak-
ing a list of multiple unidimensional or multidimensional arguments (or combina-
tions thereof) as input, which can have different numbers of dimensions as well as different di-
mension lengths.

Depends R (>= 3.2.0)

Imports abind, doParallel, foreach, plyr

License LGPL-3

URL https://earth.bsc.es/gitlab/ces/multiApply

BugReports https://earth.bsc.es/gitlab/ces/multiApply/issues

Encoding UTF-8

LazyData true

RoxygenNote 5.0.0

NeedsCompilation no

Author BSC-CNS [aut, cph],
Alasdair Hunter [aut, cre],
Nicolau Manubens [aut]

Maintainer Alasdair Hunter <alasdair.hunter@bsc.es>

R topics documented:

Apply . 1

Index 4

1

https://earth.bsc.es/gitlab/ces/multiApply
https://earth.bsc.es/gitlab/ces/multiApply/issues

2 Apply

Apply Wrapper for Applying Atomic Functions to Arrays.

Description

This wrapper applies a given function, which takes N [multi-dimensional] arrays as inputs (which
may have different numbers of dimensions and dimension lengths), and applies it to a list of N
[multi-dimensional] arrays with at least as many dimensions as expected by the given function. The
user can specify which dimensions of each array (or matrix) the function is to be applied over with
the margins or target_dims option. A user can apply a function that receives (in addition
to other helper parameters) 1 or more arrays as input, each with a different number of dimensions,
and returns any number of multidimensional arrays. The target dimensions can be specified by
their names. It is recommended to use this wrapper with multidimensional arrays with named
dimensions.

Usage

Apply(data, target_dims = NULL, AtomicFun, ..., output_dims = NULL,
margins = NULL, ncores = NULL)

Arguments

data A single object (vector, matrix or array) or a list of objects. They must be in the
same order as expected by AtomicFun.

target_dims List of vectors containing the dimensions to be input into AtomicFun for each
of the objects in the data. These vectors can contain either integers specifying
the dimension position, or characters corresponding to the dimension names.
This parameter is mandatory if margins is not specified. If both margins and
target_dims are specified, margins takes priority over target_dims.

AtomicFun Function to be applied to the arrays.

... Additional arguments to be used in the AtomicFun.

output_dims Optional list of vectors containing the names of the dimensions to be output
from the AtomicFun for each of the objects it returns (or a single vector if the
function has only one output).

margins List of vectors containing the margins for the input objects to be split by. Or, if
there is a single vector of margins specified and a list of objects in data, then the
single set of margins is applied over all objects. These vectors can contain either
integers specifying the dimension position, or characters corresponding to the
dimension names. If both margins and target_dims are specified, margins takes
priority over target_dims.

ncores The number of multicore threads to use for parallel computation.

Details

When using a single object as input, Apply is almost identical to the apply function. For multiple
input objects, the output array will have dimensions equal to the dimensions specified in ’margins’.

Value

List of arrays or matrices or vectors resulting from applying AtomicFun to data.

Apply 3

References

Wickham, H (2011), The Split-Apply-Combine Strategy for Data Analysis, Journal of Statistical
Software.

Examples

#Change in the rate of exceedance for two arrays, with different
#dimensions, for some matrix of exceedances.
data = list(array(rnorm(2000), c(10,10,20)), array(rnorm(1000), c(10,10,10)),

array(rnorm(100), c(10, 10)))
test_fun <- function(x, y, z) {((sum(x > z) / (length(x))) /

(sum(y > z) / (length(y)))) * 100}
margins = list(c(1, 2), c(1, 2), c(1,2))
test <- Apply(data, margins = margins, AtomicFun = "test_fun")

Index

Apply, 1

4

	Apply
	Index

