Multi-model agreement

Multi-model agreement performs a comparison of climate model projections anomalies. This vignette illus-
trates step-by-step how to perform a multi-model agreement assessment using ClimProjDiags package
functionalities. The following example simulates the case of summer projections temperature anomalies for
different models.

1- Load dependencies

This example requires the following system libraries:

e libssl-dev
e libnecdf-dev
e cdo

The ClimProjDiags R package should be loaded by running the following lines in R, onces it is integrated
into CRAN mirror.

library(ClimProjDiags)

All the other R packages involved can be installed directly from CRAN and loaded as follows:

library(abind)
library(s2dverification)
library(ggplot2)

2- Define the problem and the correspondent data and parameters

The aim is to know, compared with a reference period: - what is the sign of the future anomaly for a certain
climate variable, and - what is the percentage of models projecting this anomaly

The ilustrative problem is to compare the monthly mean air temperature at 2 m in summer between four
different models. The reference period used from the historical simulations to perform the anomalies is 1961
- 1990. While, the future scenario chosen is the rcp2.6 during the period 2006 - 2100. Finally, the region
selected in the northern hemisphere is between -40 - 20 °E and 25 - 60 °N.

The parameters are defined by running the next lines in R:

var <- 'tas'

start_climatology <- '1961'
end_climatology <- '1990'

start_projection <- '2006'
end_projection <- '2100'

lat <- seq(25, 60, 5)
lon <- seq(-35, 20 ,5)

A synthetic sample of data for the reference period is built by adding random perturbation to a sinusoidal
function. The latitudinal behavior of the temperature is considered by subtracting randomly a value propor-
tional to the latitude. Furthermore, attributes of time and dimensions are added.

multimodel historical <- NULL
for (k in 1 : 4) {
gridl <- 293 - 10 * cos(2 * pi / 12 * (1 : 360)) + rnorm(360)
gridlon <- NULL
for (i in 1 : 12) {
gridlon <- cbind(gridlon,
gridl + rnorm(360, sd = 5) * cos(2 * pi / 12 * (1 : 360)))
}
gridpoint <- NULL
for (j in 1 : 8) {
gridnew <- apply(gridlon, 2, function(x) {x - rnorm(360, mean = j * 0.5,
sd = 3)})
gridpoint <- abind(gridpoint, gridnew, along = 3)
}
multimodel_historical <- abind(multimodel_historical, gridpoint, along = 4)
}
multimodel_historical <- InsertDim(multimodel_historical, posdim = 5, lendim = 1)
multimodel_historical <- aperm(multimodel_historical, c(4, 5, 1, 2, 3))
names (dim(multimodel_historical)) <- c("model", "var", "time", "lon", "lat")

time <- seq(ISOdate(1961, 1, 15), ISOdate(1990, 12, 15), "month")
metadata <- list(time = list(standard_name = 'time', long_name = 'time',
calendar = 'proleptic_gregorian',
units = 'days since 1970-01-01 00:00:00', prec = 'double',
dim = list(list(name = 'time', unlim = FALSE))))
attr(time, "variables") <- metadata
attr(multimodel_historical, 'Variables')$dati$time <- time

A similar procedure is considered to build the synthetic data for the future projections. However, a small
trend is added in order to make the data partially more realistic.

multimodel_projection <- NULL
for (k in 1 : 4) {
gridl <- 293 - 10 * cos(2 * pi / 12 * (1 : 1140)) + rnorm(1140) +
(1 : 1140) * rnorm(1, mean = 1.5) / 1140
gridlon <- NULL
for (i in 1 : 12) {
gridlon <- cbind(gridlon,
gridl + rnorm(1140, sd = 5) * cos(2 * pi / 12 * (1 : 1140)))
3
gridpoint <- NULL
for (j in 1 : 8) {
gridnew <- apply(gridlon, 2, function(x) {x - rnorm(1140, mean = j * 0.5,
sd = 3)})
gridpoint <- abind(gridpoint, gridnew, along = 3)
X
multimodel_projection <- abind(multimodel_projection, gridpoint, along = 4)
}
multimodel_projection <- InsertDim(multimodel_projection, posdim = 5, lendim = 1)
multimodel_projection <- aperm(multimodel_projection, c(4, 5, 1, 2, 3))
names (dim(multimodel_projection)) <- c("model", "var", "time", "lon", "lat")

time <- seq(ISOdate(2006, 1, 15), ISOdate(2100, 12, 15), "month")

metadata <- list(time = list(standard_name = 'time', long_name = 'time',
calendar = 'proleptic_gregorian',
units = 'days since 1970-01-01 00:00:00', prec = 'double',
dim = list(list(name = 'time', unlim = FALSE))))
attr(time, "variables") <- metadata
attr (multimodel_projection, 'Variables')$datli$time <- time

Now, two objects called multimodel_historical and multimodel_projection are available in the R en-
vironment. A check can be done to the loaded data by comparing with the next lines (due to the random
functions the results may differ between each execution):

> dim(multimodel_historical)
model var time lon lat
4 1 360 12 8

> summary(multimodel_historical)
Min. 1st Qu. Median Mean 3rd Qu. Max.
251.2 281.7 287.9 287.8 294.0 321.6

> dim(multimodel_projection)
model var time lon 1lat
4 1 1140 12 8

> summary(multimodel_projection)
Min. 1st Qu. Median Mean 3rd Qu. Max.
254.8 282.8 288.8 288.8 294.9 322.6

3- Multi-model agreement based on seasonal analysis

The multi-model agreement is a comparison based on seasonal anomalies, which are computed by following
the next steps:

e First, the desired season is selected for the reference data with the SeasonSelect function from
ClimProjDiags package. In this case, the boreal summer is chosen by defining the parameter season
= '"JJA'.

summer_historical <- SeasonSelect(multimodel_historical, season = 'JJA')

The new subsets are lists of two elements. The first element is the selected data and the second element
contains the corresponding dates.

> str(summer_historical)
List of 2
$ data : num [1:4, 1:90, 1:12, 1:8] 314 293 305 300 300 ...
$ dates: chr [1:90] "1961-06-15 12:00:00" "1961-07-15 12:00:00"

> dim(summer_historical$data)
model time lon lat
4 90 12 8

e Now, the mean climatology value for each grid point and model can be computed by using the
Mean1Dim() function belonging to the s2dverification package. The position of the temporal di-
mension should be specified in parameter posdim.

climatology <- MeanliDim(summer_historical$data, posdim = 2)

e Season() function from s2dverification package returns the mean annual time series for the selected
season by defining the parameters of the initial month of the data (monini = 1), the first month of
the season (moninf = 6) and the final month of the season (monsup = 8). The last two parameters,
moninf and monsup, have their origin with respect to the first one monini.

summer_projection <- Season(multimodel_projection, posdim = 3,
monini = 1, moninf = 6, monsup = 8)

By running the next lines, it is possible to check the dimensions of the data:

> dim(climatology)
model lon lat
4 12 8
> dim(summer_projection)
model var time lon lat
4 1 95 12 8

e A new dimension will be added by running the function InsertDim() in order to obtain the same
dimensions as the projections data. InsertDim() repeats the original data the required number of
times (21 years of future simulations) in the adequated position (the temporal dimension in the sum-
mer_projection data is in the third position).

climatology <- InsertDim(InsertDim(climatology, posdim = 2, lendim = 1),
posdim = 3, lendim = 95)

e The anomaly for each model is obtained by simply subtracting.

anomaly <- summer_projection - climatology

4- Multi-model agreement spatial visualitzation

In order to obtain a spatial visualitzation, the temporal mean is computed. So, the time average anomalies for
all models is saved in the average object. AnoAgree() function from ClimProjDiags package calculates
the percentages of models which agrees with a positive or negative mean in each grid point.

average <- MeanlDim(anomaly, which(names(dim(anomaly)) == "time"))
agreement <- AnoAgree(average, membersdim = which(names(dim(average)) == '"model"))

So, in a case when four models are being compared, the agreement object can take the following values: 100
(all models agree), 75 (only one model has opposite sign), 50 (only two models agree with the mean signal)
and 25 (one model agrees with the sign of the mean signal because its magnitude is higher that the other
three models). These values will change with the number of compared models.

The next question will be answered by the example plot: Where do 80 % or more models agree in the signal?
To obtain this plot, the next lines should be run in R. Notice you can modify the threshold by modifying
the parameter agreement_threshold. The colour map shows the mean temperature anomaly and the dots
the model agreement. The plot will be saved with the name “SpatialSummerAgreement.png”.

agreement_threshold <- 80
colorbar_lim <- ceiling(max(abs(max(average)), abs(min(average))))
brks <- seq(-colorbar_lim, colorbar_lim, length.out = 11)

PlotEquiMap(drop(MeaniDim(average, which(names(dim(average)) == "model"))),
lat = lat, lon = lon, units = "K", brks = brks,
toptitle = paste(var, "- climatology:", start_climatology, "to",

end_climatology, "and future simulation:",
start_projection, "to", end_projection),
filled.continents = FALSE, title_scale = 0.6,
dots = drop(agreement) >= agreement_threshold,
fileout = "SpatialSummerAgreement.png")

Spatial agreement between models

60N

40N
l

5- Multi-model agreement temporal visualization

To visualize the time evolution of multi-model agreement, the spatial average is performed by a grid pixel
size using the WeightedMean function from the ClimProjDiags package. Also, a smooth filter is applied
with the Smoothing () function from the s2dverifiction package. In this example, a 5-year moving window
filter is applied by defining the parameter runmeanlen = 5.

temporal <- drop(WeightedMean(anomaly, lon = lon, lat = lat, mask = NULL))
temporal <- Smoothing(temporal, runmeanlen = 5, numdimt = 2)

Before visualizing, a data frame with the proper format is created.

data_frame <- as.data.frame.table(t(temporal))

years <- rep(start_projection : end_projection, 4)

data_frame$Year <- c(years)

names (data_frame) [2] <- "Model"

for (i in 1 : length(levels(data_frame$Model))) {
levels(data_frame$Model) [i] <- pasteO("model", i)

}

A new png file will be saved in the working directory with the name “TemporalSummerAgreement.png”.

g <- ggplot(data_frame, aes(x = Year, y = Freq)) + theme_bw() +

ylab("tas") + xlab("Year") + theme(text=element_text(size

legend.text=element_text(size = 12),
axis.title=element_text(size = 12)) +
stat_summary(data = data_frame, fun.y= "mean",

mapping = aes(x = data_frame$Year, y = data_frame$Freq,

group = interaction(data_frame[2,3]),
color = data_frame$Model),

geom = "line", size = 0.8) +
stat_summary(data = data_frame, geom = "ribbon",
fun.ymin = "min", fun.ymax = "max",

mapping = aes(x = data_frame$Year, y = data_frame$Freq,

group = interaction(data_frame[2,3])),
alpha = 0.3, color = "red", fill = "red") +
ggtitle("Temporal Summer Agreement")

ggsave(filename = "TemporalSummerAgreement.png", g, device = NULL, width = 8,

height = 5, units = 'in', dpi = 100)

Note: if a warning appears when plotting the temporal time series, it might be due to the NA’s

introduced when smoothing the time series.

values

Temporal Summer Agreement

-1

2025 2050 2075 2100
Year

	Multi-model agreement
	1- Load dependencies
	2- Define the problem and the correspondent data and parameters
	3- Multi-model agreement based on seasonal analysis
	4- Multi-model agreement spatial visualitzation
	5- Multi-model agreement temporal visualization

