Package ‘easyNCDF’

April 8, 2017

Title Tools to Easily Read/Write NetCDF Files into/from
Multidimensional R Arrays

Version 0.0.2

Description Set of wrappers for the 'ncdf4' package to simplify and extend its reading/writing capabil-
ities into/from multidimensional R arrays.

Depends R (>=2.14.1)
Imports ncdf4, abind
License LGPL-3

URL https://earth.bsc.es/gitlab/es/easyNCDF/wikis/home

BugReports https://earth.bsc.es/gitlab/es/easyNCDF/issues
LazyData true

SystemRequirements netcdf development libraries
NeedsCompilation no

Author BSC-CNS [aut, cph],
Nicolau Manubens [aut, cre]

Maintainer Nicolau Manubens <nicolau.manubens@bsc.es>

R topics documented:

ArrayTONC e e e 2
NcClose o e e e e 6
NcOpen o e 7
NcReadDims e 8
NcReadVarNames e 9
NCTOAITAY o o i e e e 10
Subset e e e e e 12
Index 13

https://earth.bsc.es/gitlab/es/easyNCDF/wikis/home
https://earth.bsc.es/gitlab/es/easyNCDF/issues

2 ArrayToNc

ArrayToNc Save multidimensional R arrays into NetCDF files

Description

This function takes as input one or a list of multidimensional R arrays and stores them in a NetCDF
file, using the ncdf4 package. The full path and name of the resulting file must be specified. Meta-
data can be attached to the arrays and propagated into the NetCDF file in 3 possible ways:

* Via the list names if a list of arrays is provided:Each name in the input list, corresponding to
one multidimensional array, will be interpreted as the name of the variable it contains.
E.g:
ArrayToNc(arrays = list(temperature = array(1:9, c(3, 3))), file_path = 'example.nc')

* Via the dimension names of each provided array:The dimension names of each of the provided
arrays will be interpreted as names for the dimensions of the NetCDF files. Read further for
special dimension names that will trigger special behaviours, such as ’time’ and ’var’.

E.g:
temperature <- array(rnorm(100 * 50 * 10), dim = c(100, 50, 10)) names(dim(temperature)) <- c('lor
ArrayToNc(list(temperature = temperature), file_path = 'example.nc')

* Via the attribute 'variables’ of each provided array:The arrays can be provided with metadata
in an attribute named ’variables’, which is expected to be a named list of named lists, where
the names of the container list are the names of the variables present in the provided array,
and where each sub-list contains metadata for each of the variables. The attribute names and
values supported in the sub-lists must follow the same format the package ncdf4 uses to rep-
resent the NetCDF file headers.
E.g:
a <- array(1:400, dim = c(5, 10, 4, 2)) metadata <- list(tos = list(addOffset = 100,
) attr(a, 'variables') <- metadata names(dim(a)) <- c('lat', 'lon', 'time', 'var')
ArrayToNc(a, 'tmp.nc')

The special dimension names are ’var’/’variable’ and ’time’.

If a dimension is named ’var’ or ’variable’, ArrayToNc will interpret each array entry along such di-
mension corresponds to a separate new variable, hence will create a new variable inside the NetCDF
file and will use it to store all the data in the provided array for the corresponding entry along the
’var’/’variable’ dimension.

If a dimension is named ’time’, by default it will be interpreted and built as an unlimited dimension.
The ’time’ dimension must be the last dimension of the array (the right-most). If a ’var’/’variable’
dimension is present, the time’ dimension can be also placed on its left (i.e. the one before the last
dimension). The default behaviour of creating the "time’ as unlimited dimension can be disabled by
setting manually the attribute unlim = FALSE, as shown in the previous example.

a2nc is an alias of ArrayToNc.

ArrayToNc

Usage

ArrayToNc(arrays, file_path)
a2nc(arrays, file_path)

Arguments

arrays

file_path

Value

One or a list of multidimensional data arrays. The list can be provided with
names, which will be interpreted as variable names. The arrays can be provided
with dimension names. The arrays can be provided with metadata in the attribute
’variables’ (read section Description for details).

Path and name of the NetCDF file to be created.

This function returns NULL

Author(s)

History:

0.0 - 2017-01 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code.

Examples

Not run:

Minimal use case
ArrayToNc(array(1:9, c(3, 3)), 'tmp.nc')

Works with arrays of any number of dimensions
ArrayToNc(array(1:27, c(3, 3, 3)), 'tmp.nc')

Arrays can also be provided in [named] lists
ArrayToNc(list(tos = array(1:27, c(3, 3, 3))), 'tmp.nc')

Or with dimension names

'var' dimension name will generate multiple variables in the
resulting NetCDF file

a <- array(1:27, dim = c(3, 3, 3))

names(dim(a)) <- c('lon', 'lat', 'var')

ArrayToNc(a,

'variable'

"tmp.nc')

as dimension name will do the same

a <- array(1:27, dim = c(3, 3, 3))
names(dim(a)) <- c('lon', 'lat', 'variable')

ArrayToNc(a,

"tmp.nc')

The 'time' dimension will be built as unlimited dimension, by default
a <- array(1:1600, dim = c(10, 20, 4, 2))
names(dim(a)) <- c('lat', 'lon', 'time', 'var')

ArrayToNc(a,

"tmp.nc')

Putting the 'time' dimension in a position which is not the last, or the one

ArrayToNc

right before 'var'/'variable' will crash. Unlimited dimension must be in the
last position

a <- array(1:1600, dim = c(10, 20, 4, 2))

names(dim(a)) <- c('time', 'lat', 'lon', 'var')

ArrayToNc(a, 'tmp.nc')

a <- array(1:1600, dim = c(10, 20, 4, 2))

names(dim(a)) <- c('lat', 'time', 'lon', 'var')

ArrayToNc(a, 'tmp.nc')

The dimension 'var'/'variable' can be in any position and can have any length
a <- array(1:1600, dim = c(10, 20, 4, 2))

names(dim(a)) <- c('lat', 'var', 'lon', 'time')
ArrayToNc(a, 'tmp.nc')

Multiple arrays can be provided in a list

a <- array(1:400, dim = c(5, 10, 4, 2))
names(dim(a)) <- c('lat', 'lon', 'time', 'var')
ArrayToNc(list(a, a), 'tmp.nc')

If no dimension names are given to an array, new names will be automatically
generated

a <- array(1:400, dim = c(5, 10, 4, 2))

b <- array(1:400, dim = c(5, 11, 4, 2))

names(dim(a)) <- c('lat', 'lon', 'time', 'var')

ArrayToNc(list(a, b), 'tmp.nc')

If two arrays use a same dimension but their lengths differ, the function
will crash

a <- array(1:400, dim = c(5, 10, 4, 2))

b <- array(1:400, dim = c(5, 11, 4, 2))

names(dim(a)) <- c('lat', 'lon', 'time', 'var')

names(dim(b)) <- c('lat', 'lon', 'time', 'var')

ArrayToNc(list(a, b), 'tmp.nc')

Metadata can be provided for each variable in each array, via the
attribute 'variables'. In this example the metadata is empty.

a <- array(1:400, dim = c(5, 10, 4, 2))

metadata <- list(

tos = list(),
tas = list()
)
attr(a, 'variables') <- metadata
names(dim(a)) <- c('lat', 'lon', 'time', 'var')

ArrayToNc(a, 'tmp.nc')

Variable names can be manually specified
a <- array(1:400, dim = c(5, 10, 4, 2))
metadata <- list(
tos
tas
)
attr(a, 'variables') <- metadata
names(dim(a)) <- c('lat', 'lon', 'time', 'var')

list(name = 'namel'),
list(name = 'name2')

ArrayToNc

ArrayToNc(a, 'tmp.nc')

Units can be specified
a <- array(1:400, dim = c(5, 10, 4, 2))
metadata <- list(

tos = list(units = 'K'),
tas = list(units = 'K')
)
attr(a, 'variables') <- metadata
names(dim(a)) <- c('lat', 'lon', 'time', 'var')

ArrayToNc(a, 'tmp.nc')

addOffset and scaleFactor can be specified
a <- array(1:400, dim = c(5, 10, 4, 2))
metadata <- list(

tos = list(addOffset = 100,
scaleFact = 10),
tas = list(addOffset = 100,
scaleFact = 10)
)
attr(a, 'variables') <- metadata
names(dim(a)) <- c('lat', 'lon', 'time', 'var')

ArrayToNc(a, 'tmp.nc')

Unlimited dimensions can be manually created
a <- array(1:400, dim = c(5, 10, 4, 2))
metadata <- list(
tos = list(addOffset = 100,
scaleFact = 10,
dim = list(list(name = 'unlimited',
unlim = TRUE))),

tas = list(addOffset = 100,
scaleFact = 10,
dim = list(list(name = 'unlimited',
unlim = TRUE)))
)
attr(a, 'variables') <- metadata
names(dim(a)) <- c('lat', 'lon', 'unlimited', 'var')

ArrayToNc(a, 'tmp.nc')

A 'time' dimension can be built without it necessarily being unlimited
a <- array(1:400, dim = c(5, 10, 4, 2))
metadata <- list(

tos = list(addOffset = 100,
scaleFact = 10,
dim = list(list(name = 'time',
unlim = FALSE))),
tas = list(addOffset = 100,

scaleFact = 10,
dim = list(list(name = 'time',
unlim = FALSE)))
)

attr(a, 'variables') <- metadata

6 NcClose

names(dim(a)) <- c('lat', 'lon', 'time', 'var')
ArrayToNc(a, 'tmp.nc')

Multiple arrays with data for multiple variables can be saved into a
NetCDF file at once.

tos <- array(1:400, dim = c(5, 10, 4))

metadata <- list(tos = list(units = 'K"))

attr(tos, 'variables') <- metadata

names(dim(tos)) <- c('lat', 'lon', 'time')

lon <- seq(@, 360 - 360 / 10, length.out = 10)
dim(lon) <- length(lon)

metadata <- list(lon = list(units = 'degrees_east'))
attr(lon, 'variables') <- metadata

names(dim(lon)) <- 'lon'

lat <- seq(-90, 90, length.out = 5)

dim(lat) <- length(lat)

metadata <- list(lat = list(units = 'degrees_north'))
attr(lat, 'variables') <- metadata

names(dim(lat)) <- 'lat'

ArrayToNc(list(tos, lon, lat), 'tmp.nc')

End(Not run)

NcClose Close a NEtCDF File

Description

Close a ncdf4 open connection to a file.

Usage

NcClose(file_object)

Arguments

file_object NetCDF object as returned by ncdf4: :nc_open.

Value

The result of ncdf4: :nc_close.

Author(s)

History:
0.0 - 2017-03 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code

NcOpen

Examples

Create an array from R

file_path <- tempfile(fileext = '.nc')

a <- array(1:9, dim = c(member = 3, time = 3))

Store into a NetCDF twice, as two different variables
ArrayToNc(list(var_1 = a, var_2 = a + 1), file_path)

Read the dimensions and variables in the created file
fnc <- NcOpen(file_path)

fnc_dims <- NcReadDims(fnc)

var_names <- NcReadVarNames(fnc)

Read the two variables from the file into an R array
a_from_file <- NcToArray(fnc, vars_to_read = var_names)
NcClose(fnc)

Check the obtained array matches the original array
print(a)

print(a_from_file[1, , 1)

NcOpen Open a NetCDF File

Description

Silently opens a NetCDF file with ncdf4: :nc_open. Returns NULL on failure.

Usage
NcOpen(file_path)

Arguments

file_path Character string with the path to the file to be opened.

Value

A NetCDF object as returned by ncdf4: :nc_open or NULL on failure.

Author(s)

History:
0.0 - 2017-03 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code

Examples

Create an array from R

file_path <- tempfile(fileext = '.nc')

a <- array(1:9, dim = c(member = 3, time = 3))

Store into a NetCDF twice, as two different variables
ArrayToNc(list(var_1 = a, var_2 = a + 1), file_path)

Read the dimensions and variables in the created file

8 NcReadDims

fnc <- NcOpen(file_path)

fnc_dims <- NcReadDims(fnc)

var_names <- NcReadVarNames(fnc)

Read the two variables from the file into an R array
a_from_file <- NcToArray(fnc, vars_to_read = var_names)
NcClose(fnc)

Check the obtained array matches the original array
print(a)

print(a_from_file[1, , 1)

NcReadDims Read Dimensions of a NetCDF File

Description

Reads the dimension names and sizes of a set of variables in a NetCDF file, using the package
ncdf4. The different variables in the file are considered to be stored along a dimension called "var’,
so reading the dimensions of a variable *foo’ with dimensions ’lat’ and ’lon’ would result in a vector
with the format c("var’ = 1, ’lat’ = n_lats, ’lon’ = n_lons).

Usage

NcReadDims(file_to_read, var_names = NULL)

Arguments

file_to_read Path to the file to be read or a NetCDF object as returned by easyNCDF : : NcOpen
or ncdf4: :nc_open.

var_names Vector of character strings with the names of the variables which to read the
dimensions for. If multiple variables are requested, their dimensions will be
merged and returned in a single vector.

Value

Named numeric vector with the names and sizes of the dimensions for the requested variables.

Author(s)

History:
0.0 - 2017-03 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code

Examples

Create an array from R

file_path <- tempfile(fileext = '.nc')

a <- array(1:9, dim = c(member = 3, time = 3))

Store into a NetCDF twice, as two different variables
ArrayToNc(list(var_1 = a, var_2 = a + 1), file_path)

Read the dimensions and variables in the created file

NcReadVarNames 9

fnc <- NcOpen(file_path)

fnc_dims <- NcReadDims(fnc)

var_names <- NcReadVarNames(fnc)

Read the two variables from the file into an R array
a_from_file <- NcToArray(fnc, vars_to_read = var_names)
NcClose(fnc)

Check the obtained array matches the original array
print(a)

print(a_from_file[1, , 1)

NcReadVarNames Read Names of Variables in a NetCDF File

Description

Reads the names of the variables in a NetCDF file and returns them as a vector of character strings.

Usage

NcReadVarNames(file_to_read)

Arguments

file_to_read Path to the file to be read or a NetCDF object as returned by easyNCDF : :NcOpen
or ncdf4: :nc_open.

Value

Vector of character strings with the names of the variables in the NetCDF file.

Author(s)

History:
0.0 - 2017-03 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code

Examples

Create an array from R

file_path <- tempfile(fileext = '.nc')

a <- array(1:9, dim = c(member = 3, time = 3))

Store into a NetCDF twice, as two different variables
ArrayToNc(list(var_1 = a, var_2 = a + 1), file_path)

Read the dimensions and variables in the created file
fnc <- NcOpen(file_path)

fnc_dims <- NcReadDims(fnc)

var_names <- NcReadVarNames(fnc)

Read the two variables from the file into an R array
a_from_file <- NcToArray(fnc, vars_to_read = var_names)
NcClose(fnc)

Check the obtained array matches the original array

10 NcToArray

print(a)
print(a_from_file[1, , 1)

NcToArray Read a NetCDF File Into an R Array

Description

Reads one or a set of variables together with metadata items from a NetCDF file into an R array.
Indices to retrieve (not necessarily consecutive) can be specified for each of the dimensions. De-
pending on the format of the request, the variables will be merged in into a single extended array or
returned in a list with an array for each variable. The different variables in the file are considered to
be stored along a dimension called ’var’, so reading a variable *foo’ with dimensions ’lat” and "lon’
would result in an array with the dimensions c(’var’ = 1, ’lat’ = n_lats, ’lon’ = n_lons).

Usage

NcToArray(file_to_read, dim_indices = NULL, vars_to_read = NULL,
drop_var_dim = FALSE, unlist = TRUE,
expect_all_indices = FALSE, allow_out_of_range = TRUE)

nc2a(file_to_read, dim_indices = NULL, vars_to_read = NULL,

drop_var_dim = FALSE, unlist = TRUE,
expect_all_indices = FALSE, allow_out_of_range = TRUE)

Arguments

file_to_read Path to the file to be read or a NetCDF object as returned by easyNCDF : : NcOpen
or ncdf4: :nc_open.

dim_indices Named list with numeric vectors of indices to take for each dimension. The
names should correspond to the dimension names which to take the indices for.
Non-consecutive indices can be specified. If expect_all_indices = FALSE
(default), it is not mandatory to specify the indices for all (or even any of) the
dimensions. In that case all the indices along such dimensions will be read in.
If expect_all_indices = TRUE, then indices for all the dimensions have to be
specified for the function to return a data array. In that case, NA can be used to
request all indices for a dimension if desired.

Since this function considers the variables in a NetCDF file are stored along

a 'var’ dimension, indices for the (actually non-existing) ’var’/’variable’ dimen-

sion can be specified. They can be specified in 3 ways:

- A vector of numeric indices: e.g. list(var = c(1, 3, 5)) to take the 1st,

3rd and 5th found variables.

- A vector of character strings with variable names: e.g. list(var = c('foo', 'bar')).
- A list of vectors with numeric indices or character strings: e.g. list(var = list(c(1, 3, 'foo'), c(
Vectors with combined numeric indices and character strings are accepted.

Whereas the first two options will return a single extended array with the merged
variables, the second option will return a list with an array for each requested
variable.

NcToArray

vars_to_read

drop_var_dim

unlist

11

This parameter is a shortcut to (and has less priority than) specifying the re-
quested variable names via dim_indices = list(var = ...). Itis useful
when all the indices for all the requested variables have to be taken, so the
parameter dim_indices can be skipped, but still only a specific variable or
set of variables have to be taken. Check the documentation for the parameter
dim_indices to see the three possible ways to specify this parameter.

Whether to drop the *var’ dimension this function assumes (read description). If
multiple variables are requested in a vector and unlist = TRUE, the drop won’t
be performed (not possible).

Whether to merge the resulting array variables into a single array if possible
(default) or not. Otherwise a list with as many arrays as requested variables is
returned.

expect_all_indices

Whether the function should stop if indices are not provided for all the dimen-
sions of any of the requested variables rather than assuming that all the indices
are requested for the unspecified dimensions. By default the later is done.

allow_out_of_range

Value

Whether to allow indices out of range (simply disregard them) or to stop if in-
dices out of range are found.

Array or list of arrays with the data for one or more than one of the requested variables (depending
on the parameters). The dimensions are named. The arrays contain the attribute ’variables’ with the
metadata items found in the NetCDF file.

Author(s)

History:

0.0 - 2017-03 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code

Examples

Create an array from R

file_path <- tempfile(fileext = '.nc')

a <- array(1:9, dim = c(member = 3, time = 3))

Store into a NetCDF twice, as two different variables
ArrayToNc(list(var_1 = a, var_2 = a + 1), file_path)

Read the dimensions and variables in the created file
fnc <- NcOpen(file_path)

fnc_dims <- NcReadDims(fnc)

var_names <- NcReadVarNames(fnc)

Read the two variables from the file into an R array
a_from_file <- NcToArray(fnc, vars_to_read = var_names)

NcClose(fnc)

Check the obtained array matches the original array

print(a)

print(a_from_file[1, , 1)

12 Subset

Subset Subset a Data Array

Description

This function allows to subset (i.e. slice, take a chunk of) an array, in a similar way as done in the
function take() in the package plyr. There are two main inprovements:

The input array can have dimension names, either in names(dim(x)) or in the attribute ’dimen-
sions’, and the dimensions to subset along can be specified via the parameter along either with
integer indices or either by their name.

There are additional ways to adjust which dimensions are dropped in the resulting array: either
to drop all, to drop none, to drop only the ones that have been sliced or to drop only the ones that
have not been sliced.

If an array is provided without dimension names, dimension names taken from the parameter
dim_names will be added to the array.

Usage
Subset(x, along, indices, drop = FALSE)

Arguments
X A multidimensional array to be sliced. It can have dimension names either in
names(dim(x)) or either in the attribute ’dimensions’.
along Vector with references to the dimensions to take the subset from: either integers
or dimension names.
indices List of indices to take from each dimension specified in ’along’. If a single
dimension is specified in "along’ the indices can be directly provided as a single
integer or as a vector.
drop Whether to drop all the dimensions of length 1 in the resulting array, none,
only those that are specified in ’along’, or only those that are not specified in
“along’. The possible values are, respectively: ’all’ or TRUE, 'none’ or FALSE,
’selected’, and 'non-selected’.
Examples

Create an array from R with data for 3 'var', 3 'member' and 3 'time'
a <- array(1:27, dim = c(var = 3, member = 3, time = 3))
Take a subset with all 'member' and 'time' for the 1st
b <- Subset(a, 'var', 1)

var

Index

xTopic datagen
ArrayToNc, 2
NcClose, 6
NcOpen, 7
NcReadDims, 8
NcReadVarNames, 9
NcToArray, 10

xTopic dplot
Subset, 12

a2nc (ArrayToNc), 2
ArrayToNc, 2

nc2a (NcToArray), 10
NcClose, 6
NcOpen, 7
NcReadDims, 8
NcReadVarNames, 9
NcToArray, 10

Subset, 12

13

	ArrayToNc
	NcClose
	NcOpen
	NcReadDims
	NcReadVarNames
	NcToArray
	Subset
	Index

