
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Accelerating Operational Earth System
Models using GPUs

Portability of NEMO diagnostics to GPUs

Sergi Palomas Martinez
June 2019

Resum– Els models de ciències de la terra són àmpliament utilitzats en institucions meteorològiques
i universitats per estudis de predicció climàtica. La complexitat de les equacions caòtiques i la quan-
titat de dades necessària per aconseguir una predicció acurada per les simulacions requereix una
potència de càlcul només assolible en clústers com per exemple el Marenostrum 4. Un d’aquests
models és NEMO, el framework per excel·lència a Europa utilitzat per estudis oceanogràfics. Un
aspecte prioritari en aquest context és el rendiment del model. Tant per reduir ”Time to solution” com
pels costos associats durant l’execució. Per a preparar les sortides de NEMO, s’executen diagnòstics
per a preparar les variables de sortida per als estudis de post processament, els quals fan el model
més lent.
En aquest projecte s’analitza el rendiment dels diagnòstics de NEMO per a, més tard, poder ser
implementats a noves arquitectures basades en GPUs mitjançant CUDA, al mateix temps que
s’elimina aquesta part del camı́ crı́tic. d’execució.

Paraules clau– BSC, HPC, NEMO, GPU, CUDA, MPI,

Abstract– Earth science models are widely used in meteorological institutions and universities
for weather and climate prediction studies. The complexity of the chaotic equations used and the
amount of data needed to achieve a good accuracy on the simulation demand a computational
power only found in clusters. One of these models is NEMO, which is the European framework for
excellence used for oceanic studies and running on Mare Nostrum 4. A prime focus in this context is
the computational performance of the model. So much to reduce ”Time to solution” as for the costs
associated during the execution. In NEMO, the execution time is extended due to the calculation of
some diagnostics, which are used to prepare the output variables for the post-processing study.
In this project, the performance of NEMO diagnostics is analyzed. Afterward, the portability of them
to new architectures based on GPUs through CUDA while removing this part from the critical path of
the execution is discussed.

Keywords– BSC, HPC, NEMO, GPU, CUDA, MPI

F

1 INTRODUCTION

This project has been developed in the Barcelona Super-
computing Center, with the Earth Science department. The

• E-mail de contacte: sergi.palomas@e-campus.uab.cat
• Menció realitzada: Enginyeria de Computadors
• Treball tutoritzat per: Mario Acosta (BSC) i Ramón Grau Sala

(CAOS)
• Curs 2018/19

target application is NEMO. A state of the art global cir-
culation model used in multiple European Institutions that
reaches over a billion of computing hours per year. Thus,
achieving a good performance is crucial to reduce the time
and space (that is, money) needed. The main objective is to
select and port one part of the code to GPU and study if this
new architecture can be of benefit for NEMO.

Much success has been achieved using GPUs to acceler-
ate existing applications in the fields of physics, data sci-

Juliol de 2019, Escola d’Enginyeria (UAB)

2 EE/UAB TFG INFORMÀTICA: Accelerating Operational Earth System Models using GPUs

ence and machine learning1. However, fewer attempts have
been made in large applications like NEMO and real Earth
science models in general. The difficulties of maintaining
two different versions of the same model and the cost of
developing an operational GPU version are high. Addi-
tionally, a hybrid implementation requires to load balance
GPU are CPU calculations, something which is not trivial
for complex models run in thousands of cores using tradi-
tional parallel paradigms (MPI and OpenMP).

Although there are successful examples such as The Con-
sortium for Small-scale Modeling (COSMO) and Weather
Research and Forecasting (WRF), in the case of NEMO the
difficulties have been bigger that the advantages of GPUs
use until now. In the past, Nvidia did achieve to imple-
ment a hybrid version2 in 2013. However, this version was
never used in operational configurations due to the difficul-
ties found by the scientists to adapt the Nvidia implementa-
tion to the real simulations and the extra effort to maintain
and develop the accelerator code. For this reason, newer
versions of NEMO are released every year and the hybrid
version was not maintained anymore.

In spite of the difficulties to implement a hybrid version
of NEMO, the community is opened to find new and simple
approaches to take advantage of GPU architectures and the
reason why the post-processing is studied now. The diag-
nostics are part of this post-processing, they are processed
on the CPU at the end of every time step for the configura-
tion studied, taking almost 14% of the total execution time
of NEMO, even though its results are not needed for the
model anymore (next time step calculation) but only as an
output.

In this project, only the diagnostics of the model are taken
into account and they do not affect the NEMO core engine.
Therefore, the costs associated with a hybrid version men-
tioned do not represent for the future maintaining and de-
veloping the load balance of between CPU and GPU should
be always easy, taking into account that the diagnostics cal-
culations are not in reality part of the critical path of NEMO
execution.

In this work, firstly, Section 2 describes the method-
ology, environment and model configuration used for the
project.Section 3 summarize the analysis done for NEMO,
descrive the diagnostics that have more impact to the model
and selects the target one to port to GPU. Then, in Sec-
tion 4the CUDA implementation for the diagnostic and for
a reduction procedure are discussed and different optimiza-
tions evaluated. Finally, in Section 5 the conclusions of the
work are presented and future implementations are consid-
ered.The CUDA code developed can be found in the Ap-
pendix section.

1.1 Context
Barcelona Supercomputing Center (BSC-CNS) is the na-
tional supercomputing center in Spain, specialized in high-
performance computing (HPC) and in charge of Mare Nos-
trum, one of the most powerful supercomputers in Europe.
This project arises from the necessity to increase the per-

1Nvidia research areas:https://www.nvidia.com/en-
us/research/research-areas

2M. Milakov (2013). Accelerating NEMO with OpenACC. NVIDIA
GTC 2013

formance and reduce the time-to-solution in a context in
which scientific models are required to run in parallel and
are growing in complexity and precision every year. It
has been proposed by the Earth model performance anal-
ysis team which is part of the Computational Earth Science
group.

1.2 NEMO

The Nucleus for European Modelling of the Ocean
(NEMO)[1] is a state-of-the-art modeling framework used
for oceanographic research, climate studies, seasonal fore-
casting and also for operational oceanography. It is main-
tained by a pan-European community and employed in mul-
tiple research centers in Europe and projects for the World
Climate as the Coupled Model Intercomparison Project
(CMIP3). It consists of 3 main components:

• NEMO-OCE: models the ocean thermodynamics and
solves the primitive equations.

• NEMO-ICE: models the sea-ice thermodynamics

• NEMO-TOP (Tracers in the Ocean Paradigm): mod-
els the on,offline oceanic tracers transport and biogeo-
chemical processes.

It includes a set of scripts and tools to use the model. CPP
keys (at compile time) and NAMELISTS I/O are used to
select and configure the experiment to run. An I/O server
(XIOS4) is implemented to allow easy and flexible control
of the output behavior and enabling parallel I/O operations.
At the end of every time-step, a set of diagnostics can be
executed to prepare and deliver results of interest for the
user. Different resolutions exist depending on the size of the
mesh used to map the Ocean named ORCA. For instance,
the lowest resolution is ORCA2 with a grid size of x = 182,
y = 149, z = 31. Very little compared with the super-high
resolution named ORCA0036 with a grid size of x = 12962,
y = 9173, z = 75 which has started to be used as an opera-
tional configuration in supercomputers like Mare Nostrum
4.

Fig. 1: Masked world ocean mesh

3CMIP. https://www.wcrp-climate.org/
4XIOS. https://forge.ipsl.jussieu.fr/ioserver

Sergi Palomas Martinez: Accelerating Operational Earth System Models using GPUs 3

The definitions for the longitude (x), the latitude (y) and
in deep (z) of the global mesh are outside the scope of this
project but can be found in the reference section [2].

The current parallel implementation of NEMO is using
MPI where the global grid is divided into multiple sub-
domains (domain decomposition) in the x and y coordinates.

1.3 Objectives
The main idea is to study and implement the portability of
the most computer-hungry diagnostics of NEMO to GPU.
Ideally, given that the model does not need the output of a
diagnostic to continue its execution and CUDA kernel calls
can be asynchronous (i. e. we can overlap CPU and GPU
computation), we could completely remove the overhead
that the execution of diagnostics adds to NEMO by using
the GPU as an extra H/W device.
First of all, a performance analysis of the model and for the
diagnostics will be mandatory to select the best target. Af-
terwards, an evaluation of each one to understand its behav-
ior and how can they fit into a GPU will be necessary. Once
the target diagnostic has been chosen, different GPU imple-
mentations will be done and optimizations for the CUDA
kernels and data transfers discussed. Finally, a comparison
between the CPU version will be provided. Summarizing,
the main tasks are:

• Analyze the impact of NEMO diagnostics

• Select a target diagnostic to improve

• Propose solutions based on GPU

• Evaluate and compare the new implementation

The future objective, outside the scope of this work, is to
adapt the implementations proposed and take the consider-
ations exposed here into account to successfully develop a
novel version of NEMO capable to run the core on the CPU
the diagnostics asynchronously on the GPU.

2 METHODOLOGY

2.1 Environment and configuration
The next tables summarize the model configuration and
contains an environment overview for MareNostrum 4,
CTE IBM Power95 clusters and for the Nvidia Tesla V100
used:

Table 1: MODEL CONFIGURATION

Configuration name ORCA025 NEMO standalone
Grid ORCA

Resolution 2 degrees (Low resolution)
x=1442 y=1050, z=75

Modules OCE OPA
Time step 900 seconds
Run length 1 week (672 time-steps)
No processes 144 Nemo 48 Xios (3+1 nodes)

5Power9 User guide: https://www.bsc.es/user-support/power.php

Table 2: MARENOSTRUM 4 ENVIRONMENT

Overview
3456 Nodes with 2 x Intel Xeon

Platinum 8160 CPU with 24 cores
(48 cores per node)

Compiler Intel 2017.4

Network
100 Gbit/s Intel Omni-Path

HFI Silicon 100 Series
PCI-E adapter

Table 3: POWER9 ENVIRONMENT

Overview
54 Nodes with 2 x IBM Power9

8335-GTH 2.4GHz (3.0 GHz on turbo,
20 cores and 4 threads/core) each

Compiler PGI/18.4

GPUs 216 (4 per node) NVIDIA
V100-SXM2-16GB

CUDA CUDA version 9.1 (driver 418.39)

Table 4: NVIDIA TESLA V100 OVERVIEW

Complete name NVIDIA Tesla
V100 SXM2 16GB

Compute capability 7.0
Memory BW (GB/s) 898.05
Global memory (GB) 16.91
Number of SM 80
Shared memory per SM (B) 98304
Shared memory per Block (KB) 49152
Max threads per block 1024
Mex threads 1024, 1024, 64
per block dimension (x, y, z)

Figure 2 represents the connection architecture between
Processors and GPUs within a single CTE IBM Power9
node [3].

Fig. 2: Power9 intra-node GPU connection

This illustrates that in a node, every socket is physically
connected to two GPUs through a network of 75 GB/s of
bandwidth. If the link is to a GPU attached to the other
Power9 processor of the node, the bandwidth is limited to
64 GB/s due to the connection between them.

2.2 Work
As in other related works[4], the first step will be to an-
alyze the application and record basic information about
its execution. The number of cores and configuration used

4 EE/UAB TFG INFORMÀTICA: Accelerating Operational Earth System Models using GPUs

for the study are fixed matching the definitions in Table 1.
Therefore, the same experiment and long runs will be used
to get consistency on the performance metrics. After com-
paring the time spent in each diagnostic with respect to the
total execution time of NEMO and performing a compu-
tational study, the best target diagnostic will be selected.
Afterwards, an example model will be created to mime the
original source code and a new implementation based on
CUDA will be developed. The next step will be to opti-
mize the new GPU implementation and ultimately test how
it performs and validate the results.

• Select a diagnostic comparing the time spent in each
one and with the model. Also, a behavior study of
them will be done to choose the best that can fit into
a GPU while being aware of the underlying architec-
ture and possible code re-utilization. Finally, a detailed
analysis of the selected target diagnostic using the BSC
TOOLS Extrae and Paraver will be done to get further
details on its execution (function profile).

• Due to the complexity of the model, it is hard to de-
velop code directly. Therefore, an example model will
be used. That is a very much simplified version where
the tasks of developing and testing are far easier. Ba-
sically, the data is generated randomly and conserv-
ing only the structures and computation to be ported to
GPUs. The CPU code is employed in order to compare
the performance and to validate the results.

• GPU version implementation: After the analysis,
once we have selected which diagnostic to work on,
we can take one stape ahead and port the CPU original
version to GPU using CUDA.

• Kernel optimization: Different approaches for the
kernel and for the data transfers will be discussed
along with architectural limitations comparisons.

• Test the GPU implementation: Verify that the results
after the optimization does not differ from the CPU
ones and compare the performance of both versions.

3 DIAGNOSTICS ANALYSIS

Up to 8 different diagnostics have been activated using keys
when compiling, modifying the NAMELISTS provided or
defining variables as outputs in the IO server (XIOS) con-
figuration files, to use the most typical diagnostics em-
ployed by scientists. Only the most time-consuming ones
are shown. The results illustrated in Fig.2 have been col-
lected using CPU timers and averaging the execution time
after 1-week simulation (672 time steps).

Fig. 3: Percentual time on diagnostics

We see that almost 14% of the total execution time is
spent in diagnostics.

• dia ptr: Meridional transports and zonal means

• dia hsb: Compute the ocean global heat content, salt
content and volume conservation

• dia ohc: Specific depth ocean heat content

• dia 25h: For the harmonic analysis of tidial con-
stituents. It outpus 25hr means for shelf seas

• dia harm: Compute the Courant numbers and output
to ascii file

Dia ptr and dia hsb are the diagnostics that more impact
have, taking more than 10% of the total NEMO execution
time. Therefore, in the following sections, we study more
in depth both.

3.1 Meridional transports and zonal means
This diagnostic is activated setting ’ln diaptr’ to ’true’ on
the NAMELIST and called twice every time step. It con-
trols its execution with an if-else statement depending on
whether it is called from the main step function or from
the transports procedure ’tra adv’. Consequently, different
code is executed according to the case.
It checks whether a set of variables are activated or not on
the I/O server. For each one, if defined on the XML files of
XIOS, it runs the respective code. Thus, if nothing is de-
fined on XIOS the diagnostic does nothing by itself. It also
defines three new functions:

• ptr sjk: ”zonal” mean computation of a field (global
MPI communication)

• ptr sj: ”zonal” and vertical sum computation of a
”meridional” flux array

• dia ptr hst: Wrapper for heat and salt transport calcu-
lations

Figure 4 shows the percentual time with respect to a com-
plete time step. It is pertinent to note that the aforemen-
tioned functions (ptr sjk, ptr sj and dia ptr hst) are called
inside the dia ptr routine. The same goes for the event
dia ptr sjk mpp mpi, that represents the time in a collec-
tive MPI called from dia sjk function. In both cases, the
time spent in the inner procedure is not taken into account
in the outer one. Therefore, the sum of all columns is equiv-
alent to the value of dia ptr shown in Figure 3.

Sergi Palomas Martinez: Accelerating Operational Earth System Models using GPUs 5

Fig. 4: Percentual time on dia ptr

Another important consideration is the number of
calls. We already mentioned that dia ptr is called twice
every time step. Furthermore, ptr sjk function (and
dia ptr sjk mpp mpi) is called 40 times and ptr sj up to 50
times per time step.

3.2 Heat and salt budgets
This diagnostic is activated when the key ’dia hsb’ is added
at compilation time. It is responsible for the calculation
of the ocean heat content, salt content and volume conser-
vation. Called every time step from the main routine and
composed by 3 subroutines: dia hsb for the computation it-
self, dia hsb rst to R/W in restart files and dia hsb init for
initialization purposes.

We focus on the dia hsb subroutine. It computes de devi-
ation of heat content, salt content and volume at the current
time step from their values at the beginning (nit000).

The variables involved are:

• surf (s): 2D array with the surface dimension. i and j
(m2)

• e3t n (m): 3D array for the vertical scale factor. (m)

• mask (binary): 3D array to filter the sea points

• hc ini = 3D array with the initial heat of the ocean

• sc ini = 3D array with the initial salinity of the ocean

• tsn: 4D array with the temperature or salinity (con-
trolled with the 4th dimension) of the ocean in the cur-
rent time step

The next pseudocode illustrates the control flow of the
diagnostic:

Heat & s a l t b u d g e t s (d i a h s b)
FOR each l o c a l v e r t i c a l p o i n t j k DO

vv = V olumeVar i a t i on (: , : , j k)
END FOR
G l o v a l v v = G lob a l r e d u c t i o n (vv)
FOR each l o c a l v e r t i c a l p o i n t j k DO

hv = H e a t V a r i a t i o n (: , : , j k)
END FOR
G l o v a l v v = G lob a l r e d u c t i o n (hv)
FOR each l o c a l v e r t i c a l p o i n t j k DO

sv = S a l i n i t y V a r i a t i o n (: , : , j k)
END FOR
G l o v a l v v = G lob a l r e d u c t i o n (sv)
FOR each l o c a l v e r t i c a l p o i n t j k DO

v = Volume (: , : , j k)
END FOR
G l o v a l v v = G lob a l r e d u c t i o n (v)

End Heat & s a l t b u d g e t s

Volume:
The product between the surface and its corresponding i and
j points of e3t n and the mask give the volume of every point
for the ocean.

V olume =

∫ jpi,jpj,jpk

i,j,k

m(i, j, k) · s(i, j) ·mask(i, j, k)

(1)

Volume variation:
For the volume variation, every point of 3D array is the by-
product of multiplying a mask by the result of the multipli-
cation of the corresponding point of the t-vertical scale fac-
tor by the surface (that is, the volume) in the current time
step subtracted by the initial value (initial t-vertical scale
factor x initial surface). Mathematically expressed as fol-
lows:

V olume variation =

∫ jpi,jpj,jpk

i,j,k

(
m(i, j, k) · s(i, j)

−m ini(i, j, k) · s ini(i, j)
)
·mask(i, j, k)

(2)

Heat/Salinity deviation: Almost the same goes for the
temperature and salinity content deviation. The only dif-
ference is that it multiplies the volume by another 3D array
with the values of the heat or salinity, depending on the case.
This applies for both the current time step and for the initial
state (init heat and init salinity) , used to compute the
deviation.

Heat content = m · s · heat− init heat
Salinity content = m · s · salinity − init salinity

(3)

Once each of the 3D array results (v, vv, hv and sv) have
been computed, a global reduction procedure (Global re-
duction) is needed to get the final result. Therefore, all
points of the four matrices (volume, volume variation, heat
and salt deviation) are added and given the corresponding
scalar (v, vv, hv and sv). As it has been mentioned, the
current implementation of NEMO employs an MPI domain
decomposition. Every MPI process computes the 3D result-
ing arrays and the reduction for its local domain. Finally, a
global reduction is done using the MPI All Reduce() col-
lective call.

For the reduction, a new problem arises. Floating point
operations are not totally precise, especially when adding
numbers with huge orders of magnitude of difference, as
when in a reduction procedure. Consequently, the Knuth’s
trick [5] is exploited to handle these operations as described
in Section 3.4 to ensure the bit to bit reproducibility of the
NEMO execution.

3.3 Selecting a diagnostic
As shown in Figure 1, Meridional transports and zonal
means (dia ptr) and heat and salt budgets (dia hsb) are the
diagnostics occupying more time. Therefore, we have an-
alyzed more in depth both. In this section, we evaluate

6 EE/UAB TFG INFORMÀTICA: Accelerating Operational Earth System Models using GPUs

which one can take more benefit of a GPU. Below there
are some general considerations to have in mind for GPU
implementations[6]:

• SIMD instructions are the ones that take more advan-
tage of this type of architecture

• Moving data from the main memory (Host) to the
GPGPU memory (Device) adds an overhead to the
computation

• Initialize the buffers for the data transfers and the ker-
nel launch has an overhead (latency)

• A kernel call is non-blocking from a CPU view. Thus,
it is possible to overlap CPU and GPU computation

• Moving more data between Host and Device at once
results in a better usage of the effective bandwidth
(Appendix A.2)

• Warp divergence serialize the execution of threads

• Memory coalescing [7](i.e. having adjacent threads
accessing consecutive memory addresses) helps
threads to perform read and write operations to
memory more effectively and reduce memory bank
conflicts[8]

At the beginning of this section, we have demonstrated
that the diagnostics taking more execution time are dia ptr
and dia hsb. In section 2.1 an introduction to dia ptr was
done and showed that despite of being called twice every
time step, its execution path is different (if-else statement).
What’s more, as shown in Figure 3, the time spent in this
diagnostic is divided mainly into 3 different functions:

• dia ptr out: Mainly to output variables

• ptr sjk: Function to compute the sum of a ”merid-
ional” flux array, called 40 times every time step giving
a total of 26880 calls at 672 time steps

• ptr sj 3d: Wrapper for heat and salt transport calcula-
tions. Called 50 times every time step giving a total of
33600 calls at 672 time steps

In section 2.2, the analysis for the diagnostic Heat and
salt budgets (dia hsb) illustrated that the computation for
the volume, the heat and the salinity are very close. More-
over, a global reduction across all the sub-domain is done
to produce a scalar output.

For this project, dia hsb have been selected. It consists
of SIMD instructions and a global reduction is needed.
Both have been proved to take advantage of a GPU
architecture[9] . What’s more, the kernel can reuse the data
for the reduction and imply fewer data transfers between the
Host and the Device.

On the other hand, for dia ptr, the shared functions
ptr sjk and ptr sj 3d are taking time because of the num-
ber of calls (26880 and 33600 respectively). Each one only
takes about 300µ per call. For the dia ptr out function, it
mainly consists of calls to the XIOS server to output mul-
tiple independent variables after some computation. Devel-
oping a kernel for each output require more effort than for
dia ptr. Nonetheless, it might be taken into consideration in
future works, especially since Figure 3 shows that it is also
taking an important part of the total execution time.

4 GPU IMPLEMENTATION

This section contains the GPU implementation for Heat and
salt budgets diagnostic in CUDA. Furthermore, optimiza-
tions for the CUDA kernels and data transmissions will
be commented. All results have been taken in CTE IBM
POWER9 machine with the configurations defined on Ta-
ble 1. For this first approach, we consider that every MPI
process is responsable to call a kernel with its data domain
(x = 87, y = 105 and z = 75) To get the performance
results of the original MPI version, the example model has
been used to run both, the CPU and the GPU equivalent
codes. CPU timers and The Nvidia profiler nvproof6 has
been used to get the performance metrics and compare the
execution of the equivalent CPU and GPU versions respec-
tively.

4.1 Heat and salt budgets

During the section 2.2 the mathematics procedures for each
calculation and the pseudo-code were exposed. In this sec-
tion, the implementation and results are presented.

The pseudo-code shows that the only dependence is be-
tween every local result and its global reduction. Thus, it
is possible to compute the local result for the volume, heat
and salinity at the beginning and, afterwards, call the global
reduction. In section 2.3 we listed a general set of consid-
erations to be aware to use a GPU properly and reordering
the control flow[10] leads to the next benefits:

• Reuse of data: For the Volume, Heat and Salinity Vari-
ation and for the total Volume calculation, the vari-
ables surf, e3t n, mask and tsn are needed. If every-
thing is computed in one single kernel, we can avoid
re-sending these data

• The result of the previous computations are not needed
for the reduction. Thus, the data can stay in the GPU

The variables needed for the conservation of the ocean
heat content, salt content and volume conservation are sent
as 1D arrays. Appendix A.1 explains the indexing conver-
sion. The block dimension is set to 512 threads (i.e. dim-
Block = dim3(512,1,1)). It is important to use a multiple
of the warp size (32 threads) to minimize the warp diver-
gence only on the edge of the data shape. The grid size
is calculated dividing the number of points of the grid by
the block dimension using the ceil function (i.e. gridDim =
dim3(ceil(x · y · z, dimBlock%x), 1, 1)).

Every point of the 1D resulting array is computed by one
thread. A shared array is used to save the multiplication
between the surface (surf(:,:) and the t-vertical scale fac-
tor (e3t n(:, :, :)) variables. This result is needed for every
calculation (heat, salinity and volume) so redundant work
is avoided and less memory and faster read operations are
achieved. Below, figure 5 illustrates the percentual time
comparison between the CPU and GPU version.

6Nvidia profiler tools (nvproof): https://docs.nvidia.com/cuda/profiler-
users-guide/index.html

Sergi Palomas Martinez: Accelerating Operational Earth System Models using GPUs 7

Fig. 5: dia hsb run GPU vs CPU time comparison

In addition, Figure 6 shows the time per procedure in the
CUDA code developed.

Fig. 6: Data transfers vs. kernel percentual time comparison

The total execution time (i.e. send data + kernel +
receive results) for this approach is 4,1 ms (2,58 ms
sending, 0,083ms for the kernel and 1,44 ms receiving the
result). It is clear that the data transfers are bottlenecking
the execution and despite of the speedup on the kernel
implementation (6,4/0,083 = 77x), the absolute speedup
is only 1,56x. The kernel only takes 2’02% of the total
time, which represents a little proportion compared to the
62’88% and 35,10% for the send and receive calls. The
total data managed per MPI procces (and for this kernel),
considering a single MPI process with an ORCA025
configuration divided in 3 nodes (Table 1) using double
precision floating-points(REAL(kind=8)) is:

INPUT:
2 x 2D arrays = (2 · 8B · 87 · 105) = 147KB
5 x 3D arrays = (5 · 8B · 87 · 105 · 75) = 27, 4MB
1 x 4D array = (1 · 8B · 87 · 105 · 75 · 2) = 11MB

Giving a total of 38,5 MB and achieving a through-
put of 0, 038/0, 00258 = 14, 62GB/s.

OUTPUT:
4 x 3D arrays = (4 · 8B · 87 · 105 · 75) = 22MB

Getting the result back shows the same problem. Four 3D
arrays with a total size of 1,2 GB achieving a throughput of
0, 022/0, 000144 = 15, 3GB/s.

The throughput achieved in both cases is really far from
the 75 GB/s of theoretical bandwidth illustrated in Figure
2. To increase it, it is possible to tell the compiler that a
variable will always reside on the main memory using the

PINNED[11] definition. Using locked memory allows the
device to fetch the data without the help of the CPU (DMA,
the device only needs the physical pages). In the other hand,
not-locked memory can generate a page fault on access, and
it is stored not only in memory (e.g. it can be in the swap
partition), so the driver needs to access every page of non-
locked memory, copy it into pinned buffer and pass it to
DMA (Synchronous, page-by-page copy).

Figure 7 demonstrates the improves on data transfers
achieved when using locked memory (Pinned) respect the
original (Pageable). Having in mind the architecture shown
in Figure 2, two different cases exist:

• Directly Attached (DA), that is, when a process is com-
municating to a physically connected GPU (75 GB/s)

• Not Directly Attached (!DA), thus, the data goes thru
the connection between Power9 process. (64 GB/s)

Fig. 7: Pageable vs. pinned memory data transfer time

The mean throughput, including Host to Device and De-
vice to Host transfers, is 63 GB/s and 37 GB/s for DA and
!DA cases respectively. It is clear that the connection be-
tween sockets (!DA) not only is slower but also adds an im-
portant overhead since it is only using 37/64·100 = 58% of
the bandwidth. However, the H2D transfers are 3,16 times
faster and 3,83x when the connections are D2H compared
to the pageable version. For the Directly Attached (DA)
connection, it almost reaches the theoretical bandwidth (
63/75 · 100 = 84%), achieving a 5’07 faster connection
from H2D and 4,8x for the D2H. This difference must be
taken into consideration, especially since the CUDA imple-
mentation bottleneck are still the data transfers. Appendix
A.2 shows the differences between Pageable and Pinned
memory depending on the size of the data in CTE IBM
Power9 machine.

Even with the best configuration (i.e. Pinned and using
a Directly Attached GPU), the percentual time spent on the
kernel represents not more than 11%, still far from the 78%
and 11% for the H2D and D2H transfers (Figure 7) respec-
tively. Nonetheless, Figure 8 shows how the data transfer
improvements impact on the GPU vs. CPU time compari-
son.

8 EE/UAB TFG INFORMÀTICA: Accelerating Operational Earth System Models using GPUs

Fig. 8: GPU dia hsb kernel pinned vs. CPU time compari-
son using pinned memory

Again, although the improvements in the throughput
achieved are huge, data transfers are bottlenecking the GPU
implementation even that the computation speedup (CPU-
kernel) is above 77x. However, this modification is 5 times
faster than the previous one and the total speedup achieved
(kernel + data transfers) is now 8x (6, 4/0, 8).

4.2 Reduction
Once the result is stored in the corresponding array, a re-
duction implying all the data is needed. The Knuth’s trick is
used to improve the numerical reproducibility and stability
on parallel applications and the implementation is shown in
Appendix A.4. Up to 6 different versions have been imple-
mented for the reduction kernel [13, ?] itself and reducing
the amount of data to transfer. Figure 9 shows the speedup
achieved in different CUDA reduction implementations re-
spect the first (v1) The size of the input array to reduce is
equivalent to the data in a single MPI process. Thus, the
number of elements per node is (87 · 105 · 75) ≈ 69K.
Only the total time spent on the reduction kernel is consid-
ered (i.e. data transfer times are omitted).

Fig. 9: CUDA reduction speedup per optimization version

Where speedup respect the previous version is the
performance gain at every version and Total speedup is
comparing to the first implementation (v1).

For versions v1 and v2, interleaved access to shared mem-
ory are done. The difference is that the control loop to re-
duce every CUDA block in v1 produces a high warp diver-
gence. This is solved in v2 creating an index and redefining
the loop. However, in both cases bank conflicts are occur-
ring since multiple addresses of a memory requests map to
the same memory bank.

Figure 10 shows how threads access memory in v1:

Fig. 10: CUDA reduction v1

And Figure 11 shows how after the warp divergence is
solved in v2:

Fig. 11: CUDA reduction v2

Figure 12 illustrates the sequential addressing (i.e coa-
lesced access) achieved in v3 and v4 when the loop is re-
versed and threadID-based indexing is used. It also solves
the memory bank conflicts.

Fig. 12: CUDA reduction v3-v4

The v4 implementation solves the problem that at the
first iteration, half of the threads are IDLE. The number of
blocks created is divided by 2 and stores the sum of two
global values before entering the loop.

Figure 9 shows that after v4, there is no improvement.
Both, v5 and v6 optimizations are by unrolling loops. We
can infer that the compiler is already improving them.

Figure 13 illustrates the time per procedure (ms) for the
CUDA reduction version v4. The time to send the data to re-
duce is not taken into account since after the dia hsb CUDA
kernel developed in Section 4.1, the data is already in the
GPU.

Fig. 13: CUDA reduction time per event

Finally, Figure 14 shows a comparison between the se-
lected GPU reduction version v4 (including the CUDA

Sergi Palomas Martinez: Accelerating Operational Earth System Models using GPUs 9

Fig. 14: GPU vs. CPU time comparison for 385K elements
reduction

memsets and data transfers) and the original MPI imple-
mentation (40 processors) for 38M double floating point el-
ements and using the Knuth’s trick for both. Note that the
reduction for the volume, volume variation and heat and salt
content deviation are computed.

The speedup achieved with the GPU reduction with re-
spect to the original CPU version is 43, 9/0, 214 = 205x.

4.3 Final implementation
The final step is to gather the two kernels developed above
into one single GPU implementation for dia hsb diagnostic.
Figure 15 shows the resulting control flow of the CUDA
version.

Fig. 15: control flow for the CUDA dia hsb diagnostic im-
plementation

Finally, Figure 16 shows a time comparison between the
CUDA implementation for the diagnostic dia hsb, with the
reduction and Knuth’s trick included, with respect to the
same execution based on a single MPI process with the con-
figuration described in Table 1.

Fig. 16: dia hsb diagnostic GPU vs. CPU time comparison

It demonstrates that the GPU implementation is 50
(50, 3/1, 01) times faster than a single MPI process version.

5 CONCLUSIONS

This project has shown how big the impact of diagnostics
can have on Nemo. Only some of them have been proved to
take more than 10% of the total NEMO execution time. The
most computing-hungry part of the Heat and Salt Budgets
has been successfully ported to GPUs using CUDA. The
calculation for the heat and salt conservation, volume and
volume variation using CUDA is evaluated and different
versions for the reduction procedure are explored. An ex-
ample model has been created to compare the performance
and validate the results of the GPU version while having in
mind a future implementation on NEMO.

The results show that the data transfers were penalizing
the dia hsb kernel GPU implementation. But allocating the
memory as PINNED and selecting a GPU Directly Attached
to the Power9 socket improved the new version (Figure 8),
achieving a speedup of 8x compared the CPU version. Af-
terward, several CUDA reduction optimizations have been
discussed and the best one does achieve a speedup of 205x
for 385K double floating point elements. For the final im-
plementation (Section 4.3), it has been demonstrated that
since the data is already in the GPU after the dia hsb kernel,
the CUDA reduction implementation does not require any
data transfer from the Host to the Device. What’s more,
the output after the reduction are 4 scalars with the total
volume, volume variation and heat and salt content devia-
tion. Thus, D2H data transfers overhead is completely hid-
den. The final implementation does achieve a total speedup
of 50,5x compared to a single MPI processes computing a
diagnostic that takes almost 4% of NEMO total execution
time.

5.1 Future
The implementation of this optimization to the model is
still pending and it is the next step of this work. As ar-
gued, the first goal remains to develop a stable version of
NEMO where the dia hsb CUDA diagnostic could run in
any given experiment on the CTE IBM Power9 machine.
However,this project is the first one on this direction (for
NEMO at least) and can be as an example for any future
similar works. Also, the results demonstrate that the imple-
mentation can be worth the effort. For now, only dia hsb
CUDA implementation has been studied in depth, although
other diagnostics have also been mentioned (e.g., dia ptr in
Figure 3) and can also benefit from a GPU accelerator opti-
mization while reducing the overall NEMO execution time.
Especially since we can overlap the execution of the model
(CPU) and the diagnostics (GPU). All diagnostics also im-
ply I/O operations through XIOS. With the current MPI im-
plementation, NEMO processes send the data to a XIOS
process and then it is written. For now, Device variables
are unique for every MPI process (as any other variable in
a distributed memory environment). If it was possible that
two processes had access to the same Device variables, it
would be feasible to send the result of a CUDA kernel di-
rectly to the IO server (D2H copy). This would not only
allow overlapping CPU and GPU code (NEMO would not

10 EE/UAB TFG INFORMÀTICA: Accelerating Operational Earth System Models using GPUs

need to wait for the end of the kernel execution to get the re-
sult), but also reduce the number of MPI messages (NEMO
would not need to send an MPI message to XIOS to write
the diagnostics), resulting in less network usage.

In this project, only the diagnostics that run during
NEMO execution have been considered. However, once
NEMO has finalized, other diagnostics are computed as
post-processing. Thus, other diagnostics exist and could
be done ’online’, reducing the post-processing amount of
work. Nevertheless, as it is shown during the optimization,
data transfers can become the main bottleneck on GPU im-
plementations easily. Thus, it is crucial to evaluate how data
needed for a diagnostic that is already in the GPU can be
reused to compute other diagnostics (’online’ or as post-
processing’) compensating the overhead of CUDA mem-
ory copies. Furthermore, this could also lead to more GPU
computation time and make overlapping of data transfers
with kernel execution7worth.

Finally, in this project, only diagnostics have been dis-
cussed. In future implementations, other parts of the model
could be taken into account. Lots of work still exist in this
direction having in mind how technology advance and that
MareNostrum 5 will come with GPU accelerators.

ACKNOWLEDGMENTS

I wish to express my sincere thanks to Mario Acosta, Post-
doctoral researcher in the Computational Earth Sciences
Group (BSC), for providing me with all the necessary fa-
cilities for the research.

I place on record my sincere gratitude to Ramon Grau,
UAB teacher (CAOS), for his consistent encouragement
and his monitoring of the project.

I take this opportunity to express gratitude to all of the
Earth model performance analysis team members for their
help and support.

REFERENCES

[1] ”Nucleus for the European Modeling of the Ocean”.
https://www.cmcc.it/models/nemo

[2] ”A global ocean mesh to overcome the North Pole sin-
gularity”. Gurvan Madec and Maurice Imbard.

[3] ”IBM Power System AC922. Technical overview and
Introduction”. Ritesh Nohria and Gustavo Santos.

[4] ”Optimization of an Ocean model using performance
tools”. Oriol Tintó Prims, Miguel Castrillo, Kim Ser-
radell, Oriol Mula-Valls, Francisco J. Doblas-Reyes

[5] ”Using Accurate Arithmetics to Improve Numeri-
cal Reproducibility and Stability in Parallel Applica-
tions”. Yun He and Chris H. Q. Ding

[6] ”Parallel programming: Concepts and practice”.
Bertil Schmidt, Jorge Gonzalez-Dominguez, Moritz
Schlarb. ISBN: 978-0-12-849890-3

7How to Overlap Data Transfers in CUDA Fortran. Greg Ruetsch.
https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-fortran/

[7] ”MCS 572: Introduction to Supercomputing. Lecture
35, Memory Coalescing Techniques”. Jan Verschelde,
11 November 2016.

[8] ”CUDA Fortran for Scientists and Engineers, Best
Practices for Efficient CUDA Fortran Programming”.
Gregory Ruetsch Massimiliano Fatica. 1st Edition.
ISBN: 9780124169708

[9] ”Efficient Implementation of Reductions on GPU Ar-
chitectures”. Stephen W. Timcheck. The University of
Akron

[10] ”Writing Fast Programs: A Practical Guide for Scien-
tists and Engineers”. John Rile

[11] ”How to Optimize Data Transfers in CUDA For-
tran” Greg Ruetsch. https://devblogs.nvidia.com/how-
optimize-data-transfers-cuda-fortran/

[12] ”Implementations of Parallel Reduction in CUDA
Fortran”. Degawa, Tomohiro. (2016). The Proceed-
ings of The Computational Mechanics Conference.

[13] ”Optimizing parallel reduc-
tion in CUDA”. Mark Harris.
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Sergi Palomas Martinez: Accelerating Operational Earth System Models using GPUs 11

APPENDIX

A.1 Appendix 1
The indexing conversion to 1D depends on the input array (m) dimension and on the method used to store them (Fortran
is column-major). Considering i, j, k and u for the indexing for the 1st, 2nd 3rd and 4th dimension respectively, Nx where
x = {i, j, k, u} depending on the shape of the input and, a as the equivalent 1D array:

• Given any 2D array:
m(i, j) = a(i+ (j − 1) ·Ni

• Given any 3D array:
m(i, j, k) = a(i+ (j − 1) ·Ni+ (k − 1) ·Nj ·Ni)

• Given any 4D array:
m(i, j, k, u) = a(i+ (j − 1) ·Ni+ (k − 1) ·Nj ·Ni+ (u− 1) ·Nk ·Nj ·Ni)
Since the only 4D array in the model is tsn and uses the 4th dimension to switch between heat and salinity content
(used for independent calculations), it is reshaped as two consecutive 3D arrays using 3D to 1D index conversion.
Thus, we got memory coalescing.

A.2 Pageable vs Pinned throughput
A practical throughput test has been done to know how the data transfers between the CPU and the GPU differ depending
on:

• The allocation of the data (pageable or pinned)

• The physical path it takes. If it goes thru the 75 GB/s connection to a Directly Attached GPU (DA) or it goes thru
the 64 GB/s connection between Power9 processors (!DA) as shown in Figure 2

• The size of the data

In Figure 11 below, the throughput between the H2D and D2H has been averaged.

Fig. 17: Power9 Throughput comparison

A.3 Heat and salt budgets kernel
We consider that all the data is already in the GPU. The kernel is launched with 512 threads per block and as many blocks
as ceil(globsize, dimblock%x).

ATTRIBUTES(global) SUBROUTINE dia_hsb_kernel(surf, e3t_n, surf_ini, e3t_ini, &
& tsn, hc_ini, sc_ini, tmask, Volume_variation, Heat_content, &
& Salt_content, Volume, jpiglo, jpjglo, jpkglo)
IMPLICIT NONE
REAL(kind=8), DIMENSION(:) :: surf, e3t_n, surf_ini, e3t_ini, tsn, &

&hc_loc_ini, sc_loc_ini, tmask, zwrkv, zwrkh, zwrks, zwrk

12 EE/UAB TFG INFORMÀTICA: Accelerating Operational Earth System Models using GPUs

REAL(kind=8), SHARED :: sdata(*)
INTEGER, VALUE :: jpiglo, jpjglo, jpkglo
INTEGER :: i, si, ti, globsize

globsize = jpiglo*jpjglo*jpkglo

!Thread indexing
i = blockDim%x * (blockIdx%x-1) + threadIdx%x
ti = threadIdx%x

IF (i .le. globsize) THEN !Control out of bound accesses
si = MOD(i, jpkglo)+1 !Access 2D array
sdata(ti) = surf(si) * e3t_n(i) !Shared memory to avoid redundant code
Volume_variation(i) = (sdata(ti) - surf_ini(si) * e3t_ini(i)) * &

& tmask(i) * surf(si)
Heat_content(i) = (sdata(ti) * tsn(i) - &

& surf_ini(si) * hc_ini(i)) * tmask(i) * surf(si)
Salinity_content(i) = (sdata(ti) * tsn(globsize + i) - &

& surf_ini(si) * sc_ini(i)) * tmask(i) * surf(si)
Volume(i) = sdata(ti) * tmask(i) * surf(si)

END IF
END SUBROUTINE dia_hsb_kernel

A.4 CUDA reduction implementation.
To improve the numerical reproducibility and stability on parallel applications the Knuth’s trick is used. It employs 16
bytes complex numbers (8 for the real and 8 for the imaginary part) to increase the precision when adding multiple floating
points. It is called from the Global reduction and improves the precision when adding each point of the array (a scalar)
to a sum (current accumulated reduction value). Consequently, it has been also ported to GPU (CUDA Knuth trick) and
used in the reduce kernel (CUDA reduction). The modifications made kernel can be found in the Appendix A.4.

Code on CPU:

!d_array: 1D device array with the input data and used
!to store the partial and final result.
!d_imag: 1D device array to store the imaginary part
!during the knuth’s trick
!sum: host scalar to save the final result

d_imag = 0
iterator = globsize !i*j*k
piterator = iterator

!loop util one element is left
DO WHILE (iterator .gt. 1)

dimBlock = dim3(512, 1, 1) !512 threads per block
!half the number of blocks
dimGrid = dim3(ceiling(real(ceiling(real(iterator)/dimBlock%x))/2), 1, 1)
!call kernel and save shared memory per block for
!double precision floating point elements (8 Bytes)
CALL CUDA_reduction<<< dimGrid, dimBlock >>>(d_array, d_imag, globsize)
piterator = iterator !save the number of elements done this iteration
iterator = dimGrid%x !update the number of remaining elements
!cudaMemset to 0 elements used in this loop
d_zwrk((iterator + 1):piterator) = 0

END DO
!Copy result (1rst element) back to the Host
i = cudaMemcpy(sum, d_array, 1)

Code on GPU:

ATTRIBUTES(global) SUBROUTINE CUDA_reduction(invec, iin, jpi)
IMPLICIT NONE
REAL(kind=8), DIMENSION(:) :: invec, iin !input with the values and error accumulated

Sergi Palomas Martinez: Accelerating Operational Earth System Models using GPUs 13

REAL(kind=8), SHARED :: sdata(512), idata(512) !shared arrays to compute the reduction
INTEGER, VALUE :: jpi
INTEGER :: tid, i, stride, idx
COMPLEX(kind=8) :: stmp, atmp !complex numbers for the knuth’s trick

tid = threadIdx%x
i = blockDim%x*2 * (blockIdx%x - 1) + threadIdx%x

!Initialize shared memory
IF (i .le. (jpi-blockDim%x)) THEN

stmp = CMPLX(invec(i), iin(i), 8)
atmp = CMPLX(invec(i+blockDim%x), iin(i+blockDim%x), 8)
CALL CUDA_Knuth_trick(stmp, atmp)
sdata(tid) = REAL(atmp)
idata(tid) = AIMAG(atmp)

ELSE IF (i .le. jpi) THEN
sdata(tid) = invec(i)
idata(tid) = iin(i)

END IF
CALL syncthreads()

stride = min(blockDim%x/2, jpi)
!Reduction of a cuda Block
DO WHILE (stride > 0)

IF(tid <= stride) THEN
atmp = CMPLX(sdata(tid + stride), idata(tid+stride))
CALL CUDA_Knuth_trick(CMPLX(sdata(tid), idata(tid), 8), atmp)
sdata(tid) = REAL(atmp)
idata(tid) = AIMAG(atmp)

END IF
stride = rshift(stride, 1)
CALL syncthreads()

END DO

!Save the result (value and error) of every block to global memory
IF (tid .eq. 1) THEN

invec(blockIdx%x) = sdata(tid)
iin(blockIdx%x) = idata(tid)

END IF
END SUBROUTINE CUDA_reduction

ATTRIBUTES(device) SUBROUTINE CUDA_Knuth_trick(ydda, yddb)
IMPLICIT NONE
COMPLEX(kind=8), INTENT(in) :: ydda
COMPLEX(kind=8), INTENT(inout) :: yddb
REAL(kind=8) :: zerr, zt1, zt2

zt1 = REAL(ydda) + REAL(yddb)
zerr = zt1 - REAL(ydda)
zt2 = ((REAL(yddb) - zerr) + (REAL(ydda) - (zt1 - zerr))) &

& + AIMAG(ydda) + AIMAG(yddb)
!The result is t1 + t2 after normalization
yddb = CMPLX(zt1 + zt2, zt2 - ((zt1 + zt2) - zt1), 8)

END SUBROUTINE CUDA_Knuth_trick

