
Accelerating Earth System 
Models

05/07/2019 BSC-CNS

Sergi Palomas
Mario Acosta
Ramón Grau

This material reflects only the author’s view. The European Commission is 
not responsible for any use that may be made of the information it 
contains

1

Portability of NEMO diagnostics to GPU



Index
1. Introduction

2. Context

3. Objectives

4. Diagnostics analysis

5. GPU diagnostic implementation

6. Results

7. Conclusions and future work

2



Introduction
- Earth system models are widely used in meteorological institutions and universities for weather 

and climate prediction studies

3



Introduction
- Earth system models are widely used in meteorological institutions and universities for weather 

and climate prediction studies

- Complex models that require a huge amount of computing resources/money

4



Introduction
- Earth system models are widely used in meteorological institutions and universities for weather 

and climate prediction studies

- Complex models that require a huge amount of computing resources/money

- Performance studies are key to:
- Achieve the best time to Solution in operational forecasts
- Reduce the costs of running the model on HPC infrastructures
- Save time to the scientists 

5



Introduction
- Earth system models are widely used in meteorological institutions and universities for weather 

and climate prediction studies

- Complex models that require a huge amount of computing resources/money

- Performance studies are key to:
- Achieve the best time to Solution in operational forecasts
- Reduce the costs of running the model on HPC infrastructures
- Save time to the scientists 

- NEMO is a state of the art framework for oceanographic studies. Its execution is extended by 
Diagnostics

6



Context
- Developed with the Computational Earth Science group (Earth-CES) at Barcelona 

Supercomputing Center (BSC-CNS)

- Earth model performance analysis team is in charge of providing new and more efficient 

approaches for Earth system models

- Earth models keep increasing in complexity and resolution every year

7



Context

GPUs usage in HPC is increasing

Good results for physics, ML and 
Data Science

Fewer attempts for large Earth 
models

8

COSMO Costs maintaining two versions
Nvidia on NEMO Hybrid computation



NEMO

The Nucleus for European Modelling of the Ocean (NEMO) is a state-of-the-art modeling framework 
used for oceanographic research, climate studies, seasonal forecasting and also for operational 
oceanography

Maintained by a European community

Used in several studies that take 

thousands of computing hours

Diagnostics are executed at the end of

 every time-step to prepare the post-processing



NEMO

ORCA025 grid resolution:

- x=1442 y=1050 z=75

200.000 lines in Fortran 90

Parallelized with MPI (domain decomposition)

XIOS as IO server



Environment

CTE IBM Power9:

- 52 nodes

- 2 x Power9 CPUs each

- 40 cores/node

- 4 x Nvidia Tesla v100 16GB each

MareNostrum 4 used to run NEMO at BSC

MareNostrum 4

Power9 intra-node connection



Objectives

Diagnostics results are not needed for NEMO anymore. GPUs can be used to take them out of the 

critical path

● Improve NEMO execution time

● Use the GPU as an extra device to run the diagnostics asynchronously

○ Analyze the impact of diagnostics

○ Select a target diagnostic that bottleneck the execution

○ Propose solutions based on GPU

○ Compare and evaluate the new implementation



Diagnostics analysis

Diagnostics take almost 15% of the total 

execution time of NEMO 

dia_ptr and dia_hsb are the most 

computer-hungry ones

Percentual time of most time-consuming diagnostics in 
NEMO



Select a target diagnostic

dia_ptr

● Control flow divergence

● Shared functions called 50 times 

per time-step

● Output vs. Computation

dia_hsb

● Imply all local domain

● Same operation

● Reduction

● Reuse of data

● Output scalar values



GPU implementation

Using the data of a single MPI process: (x=87, y=105, z=75)

Independent “example model” to develop, compare and test the results without running the complete 

model

1. dia_hsb

a. Data transfers optimization → pageable vs pinned memory

b. Environmental implications → CPU-GPU intra-node connection

2. Reduction

a. CUDA architecture → Warps, memory coalescing and bank conflicts



dia_hsb kernel
1. Send data to Device

2. Kernel:

a. Blocks of 512 threads

b. As many threads as elements 

(685125)

3. CPU receives the result

Speedup of 1,58x (77x for the kernel)
Absolute time (ms) per GPU procedure vs. CPU



Data transfers optimization

Pinned memory

Worth after 1 MB

Use a GPU with a connection to the 

Power9 CPU

Power9 CPU-GPU throughput by message size



pinned dia_hsb kernel

Absolute time (ms) CPU vs. Pageable vs. Pinned comparison

Pinned version is 5.1x faster than Pageable, achieving a total speedup of 8 compared to the CPU

1.58x

8x



CUDA reduction optimization

- v2: solves warp divergence

- v3: global coalesced accesses 

and solves bank conflicts

- v4: half block size. First addition 

stored in shared memory

- v5-6: unrolling loops

GPU reduction speedup compared to the first version



CUDA reduction

- 87*105*75 = 685125

Double floating point elements

- Knuth’s trick

- 512 threads per block

- Data is already on the GPU

- Result is 4 scalars

Speedup = 205

Absolut time (ms) GPU vs. CPU comparison



Results (single MPI process)

Control flow:

The speedup achieved is 50x respect a single MPI process

Absolute time (ms) GPU vs. CPU comparison



Results

Comparisons vs. 1 MPI process:
- Fine when developing and optimizing the CUDA implementation
- Serial code
- Lack of a global view



Results

Comparisons vs. 1 MPI process:
- Fine when developing and optimizing the CUDA implementation
- Serial code
- Lack of a global view

Considerations:
- 40 cores and 4 GPUs per node
- MPI_Gather is expensive
- MPI processes have to share GPUs



Results

Comparisons vs. 1 MPI process:
- Fine when developing and optimizing the CUDA implementation
- Serial code
- Lack of a global view

Considerations:
- 40 CPUs and 4 GPUs per node
- MPI_Gather is expensive
- MPI processes have to share GPUs

New results:
- 1 GPU per node
- 10 MPI processes per GPU



Results
Weak scalingCPU: Same work per core

GPU: takes the sum of all MPI processes

Weak scalability time comparison



Results
Strong scaling

dia_hsb Speedup respect full serial ORCA025



Conclusions

- Diagnostics take almost 15% of the total execution time

- They are not needed for the model but to prepare the output

- A GPU solution for dia_hsb has been implemented and tests are favorable

- Data transfers can bottleneck CUDA implementation

- Reductions take huge advantage of a GPU architecture

- Scalability tests show that the Kernel scales better than MPI



Future

- Integrate this work to NEMO

- Asynchronous GPU diagnostic execution

- Use this project as an example for the study of other diagnostics

- dia_ptr was not selected but also can be worth the effort

- Diagnostics executed as post-processing could also be taken into account

- Hybrid computation in the future (MareNostrum 5)



Thank you 

sergi.palomas@bsc.es
29



Accelerating Earth System 
Models

05/07/2019 BSC-CNS

Sergi Palomas
Mario Acosta
Ramón Grau

This material reflects only the author’s view. The European Commission is 
not responsible for any use that may be made of the information it 
contains

30

Portability of NEMO diagnostics to GPU



Select a target diagnostic

GPU considerations:

● SIMD instructions

● Overhead init buffers and kernel

● Data transfers

● Throughput effectiveness with 

message data size



Meridional transports and zonal means 
(dia_ptr)

Poleward heat and salt transports

Advective and diffusive component

Called twice every ts

dia_ptr controlled by if-else

shared functions: sjk, sj_3D

Percentual time per procedure in dia_ptr



Heat and salt budgets (dia_hsb)

At the end of every time-step

Global volume, volume variation, heat 

content and salt content deviation of the 

ocean

Percentual time per procedure in dia_hsb



CUDA reduction v1

- Every CUDA block uses its own shared memory

- CUDA schedule warps 

- Shared memory is 100x faster than Global

- Problem: Warp divergence serialize thread 

execution

- Problem: Memory coalescing (Global memory)

- Problem: Bank conflicts (Shared memory)



CUDA reduction v2

- Every CUDA block uses its own shared memory

- CUDA schedule warps 

- Shared memory is 100x faster than Global

- Problem: Warp divergence serialize thread 

execution

- Problem: Memory coalescing (Global memory)

- Problem: Bank conflicts (Shared memory)



CUDA reduction v3

- Every CUDA block uses its own shared memory

- CUDA schedule warps

- Shared memory is 100x faster than Global

- Problem: Warp divergence serialize thread 

execution

- Problem: Memory coalescing (Global memory)

- Problem: Bank conflicts (Shared memory)


