
Profiling and efficiency test in R

● profvis package

- Memory: Memory allocated or deallocated (for negative numbers) for a given call

stack. This is represented in megabytes and aggregated over all the call stacks over

the code in the given row.

- Time: Time spent in milliseconds. This field is also aggregated over all the call stacks

executed over the code in the given row

- More details in the previous meeting slides (page 12-14) made by Núria

- Tip: Sourcing the function file (instead of calling function from package) can show

the profiling of each line.

Packages and functions for memory profiling

http://rstudio.github.io/profvis/
https://earth.bsc.es/wiki/lib/exe/fetch.php?media=tools:r_users_meeting_nov2020.pdf

● peakRAM package

Small package with one function to tell you what’s the peak RAM in a given chunk

of code.

● memuse package

○ Nice user guide

○ Useful functions: Sys.filesize, Sys.meminfo, Sys,procmem, memuse
> memuse::Sys.filesize("/esarchive/exp/ecmwf/system5c3s/monthly_mean/tas_f6h/tas_19810101.nc")
26.647 MiB
> memuse::Sys.meminfo()
Totalram: 15.383 GiB # Nord3-standard node: 32Gb; medmem node: 64Gb
Freeram: 6.946 GiB
> memuse::Sys.procmem()
Size: 180.852 MiB
Peak: 180.852 MiB
> memuse(res, unit = 'best')
8.922 KiB

Packages and functions for memory profiling

https://cran.r-project.org/web/packages/peakRAM/index.html
https://cran.rstudio.com/web/packages/memuse/index.html
https://cran.rstudio.com/web/packages/memuse/vignettes/memuse-guide.pdf

(1) RAM used

- memuse::Sys.procmem shows the amount of ram used by the current R process

- pryr::mem_used shows how much memory is currently used by R. Sum-up of gc()
> pryr::mem_used()
31.2 MB
> memuse::Sys.procmem()
Size: 66.734 MiB
Peak: 66.734 MiB

(2) peak RAM

- peakRAM::peakRAM monitors the total and peak RAM used by any number of R

expressions or functions

- memuse::Sys.procmem shows the amount of ram used by the current R process

> peakRAM::peakRAM({d <- func(10000)})

 Function_Call Elapsed_Time_sec Total_RAM_Used_MiB Peak_RAM_Used_MiB

1 {d<-func(10000)} 0.001 0.1 0.2

Some comparisons

(3) Data size

- utils::object.size

- pryr::object_size is more accurate than object.size

- memuse::memuse
> object.size(data)
1600784 bytes
> format(object.size(data), unit = 'auto')
[1] "1.5 Mb"
> pryr::object_size(data)
1,600,784 B
> pryr::compare_size(data)
 base pryr
1600784 1600784
> memuse::memuse(data)
1.527 MiB

Some comparisons

Spend some time on profiling = save more time in the long term!

→ Check your script to find the efficiency bottleneck memory- or time-wise. If it

happens in some functions, report in the corresponding GitLab.

→ Your tests would be more practical and meaningful than what we do.

→ Remember that multiApply could be heavy for light operation; try to use more cores

and larger data to see if the performance makes sense.

Why do you need profiling?

