#'Compute the Atlantic Multidecadal Variability (AMV) index #' #'The Atlantic Multidecadal Variability (AMV), also known as Atlantic #'Multidecadal Oscillation (AMO), is a mode of natural variability of the sea #'surface temperatures (SST) over the North Atlantic Ocean on multi-decadal #'time scales. The AMV index is computed as the difference of weighted-averaged #'SST anomalies over the North Atlantic region (0ºN-60ºN, 280ºE-360ºE) and the #'weighted-averaged SST anomalies over 60ºS-60ºN, 0ºE-360ºE (Trenberth & #'Dennis, 2005; Doblas-Reyes et al., 2013). #' #'@param data A numerical array to be used for the index computation with, at least, the #' dimensions: 1) latitude, longitude, start date and forecast month #' (in case of decadal predictions), 2) latitude, longitude, year and month #' (in case of historical simulations or observations). This data has to be #' provided, at least, over the whole region needed to compute the index. #'@param data_lats A numeric vector indicating the latitudes of the data. #'@param data_lons A numeric vector indicating the longitudes of the data. #'@param type A character string indicating the type of data ('dcpp' for #' decadal predictions, 'hist' for historical simulations, or 'obs' for #' observations or reanalyses). #'@param lat_dim A character string of the name of the latitude dimension. The #' default value is 'lat'. #'@param lon_dim A character string of the name of the longitude dimension. The #' default value is 'lon'. #'@param mask An array of a mask (with 0's in the grid points that have to be #' masked) or NULL (i.e., no mask is used). This parameter allows to remove #' the values over land in case the dataset is a combination of surface air #' temperature over land and sea surface temperature over the ocean. Also, it #' can be used to mask those grid points that are missing in the observational #' dataset for a fair comparison between the forecast system and the reference #' dataset. The default value is NULL. #'@param monini An integer indicating the month in which the forecast system is #' initialized. Only used when parameter 'type' is 'dcpp'. The default value #' is 11, i.e., initialized in November. #'@param fmonth_dim A character string indicating the name of the forecast #' month dimension. Only used if parameter 'type' is 'dcpp'. The default value #' is 'fmonth'. #'@param sdate_dim A character string indicating the name of the start date #' dimension. Only used if parameter 'type' is 'dcpp'. The default value is #' 'sdate'. #'@param indices_for_clim A numeric vector of the indices of the years to #' compute the climatology for calculating the anomalies, or NULL so the #' climatology is calculated over the whole period. If the data are already #' anomalies, set it to FALSE. The default value is NULL.\cr #' In case of parameter 'type' is 'dcpp', 'indices_for_clim' must be relative #' to the first forecast year, and the climatology is automatically computed #' over the common calendar period for the different forecast years. #'@param year_dim A character string indicating the name of the year dimension #' The default value is 'year'. Only used if parameter 'type' is 'hist' or #' 'obs'. #'@param month_dim A character string indicating the name of the month #' dimension. The default value is 'month'. Only used if parameter 'type' is #' 'hist' or 'obs'. #'@param na.rm A logical value indicanting whether to remove NA values. The default #' value is TRUE. #'@param ncores An integer indicating the number of cores to use for parallel #' computation. The default value is NULL. #' #'@return A numerical array with the AMV index with the same dimensions as data except #' the lat_dim, lon_dim and fmonth_dim (month_dim) in case of decadal predictions #' (historical simulations or observations). In case of decadal predictions, a new dimension #' 'fyear' is added. #' #'@examples #' ## Observations or reanalyses #' obs <- array(1:100, dim = c(year = 5, lat = 19, lon = 37, month = 12)) #' lat <- seq(-90, 90, 10) #' lon <- seq(0, 360, 10) #' index_obs <- AMV(data = obs, data_lats = lat, data_lons = lon, type = 'obs') #' #' ## Historical simulations #' hist <- array(1:100, dim = c(year = 5, lat = 19, lon = 37, month = 12, member = 5)) #' lat <- seq(-90, 90, 10) #' lon <- seq(0, 360, 10) #' index_hist <- AMV(data = hist, data_lats = lat, data_lons = lon, type = 'hist') #' #' ## Decadal predictions #' dcpp <- array(1:100, dim = c(sdate = 5, lat = 19, lon = 37, fmonth = 24, member = 5)) #' lat <- seq(-90, 90, 10) #' lon <- seq(0, 360, 10) #' index_dcpp <- AMV(data = dcpp, data_lats = lat, data_lons = lon, type = 'dcpp', monini = 1) #' #'@importFrom ClimProjDiags WeightedMean #'@import multiApply #'@export AMV <- function(data, data_lats, data_lons, type, lat_dim = 'lat', lon_dim = 'lon', mask = NULL, monini = 11, fmonth_dim = 'fmonth', sdate_dim = 'sdate', indices_for_clim = NULL, year_dim = 'year', month_dim = 'month', na.rm = TRUE, ncores = NULL) { ## Input Checks # data if (is.null(data)) { stop("Parameter 'data' cannot be NULL.") } if (!is.numeric(data)) { stop("Parameter 'data' must be a numeric array.") } # data_lats and data_lons part1 if (!(class(data_lats) == 'numeric' | class(data_lats) == 'integer')) { stop("Parameter 'data_lats' must be a numeric vector.") } if (!(class(data_lons) == 'numeric' | class(data_lons) == 'integer')) { stop("Parameter 'data_lons' must be a numeric vector.") } # type if (!type %in% c('dcpp', 'hist', 'obs')) { stop("Parameter 'type' must be 'dcpp', 'hist', or 'obs'.") } # lat_dim if (!(is.character(lat_dim) & length(lat_dim) == 1)) { stop("Parameter 'lat_dim' must be a character string.") } if (!lat_dim %in% names(dim(data))) { stop("Parameter 'lat_dim' is not found in 'data' dimension.") } # lon_dim if (!(is.character(lon_dim) & length(lon_dim) == 1)) { stop("Parameter 'lon_dim' must be a character string.") } if (!lon_dim %in% names(dim(data))) { stop("Parameter 'lon_dim' is not found in 'data' dimension.") } # data_lats and data_lons part2 if (dim(data)[lat_dim] != length(data_lats)){ stop(paste0("The latitude dimension of parameter 'data' must be the same", " length of parameter 'data_lats'.")) } if (dim(data)[lon_dim] != length(data_lons)){ stop(paste0("The longitude dimension of parameter 'data' must be the same", " length of parameter 'data_lons'.")) } # ncores if (!is.null(ncores)) { if (!is.numeric(ncores) | ncores %% 1 != 0 | ncores <= 0 | length(ncores) > 1) { stop("Parameter 'ncores' must be a positive integer.") } } # mask if (!is.null(mask)) { if (is.array(mask) & identical(names(dim(mask)), c(lat_dim,lon_dim)) & identical(as.integer(dim(mask)), c(length(data_lats), length(data_lons)))) { ## To mask those grid point that are missing in the observations mask <- s2dv::Reorder(data = mask, order = c(lat_dim, lon_dim)) fun_mask <- function(data, mask){ data[mask == 0] <- NA return(data) } data <- multiApply::Apply(data = data, target_dims = c(lat_dim, lon_dim), fun = fun_mask, mask = mask, ncores = ncores)$output1 } else { stop(paste0("Parameter 'mask' must be NULL (no mask) or a numerical array ", "with c(lat_dim, lon_dim) dimensions and 0 in those grid ", "points that have to be masked.")) } } # monini if (type == 'dcpp') { if (!is.numeric(monini) | monini %% 1 != 0 | monini < 1 | monini > 12) { stop("Parameter 'monini' must be an integer from 1 to 12.") } } # fmonth_dim if (type == 'dcpp') { if (!(is.character(fmonth_dim) & length(fmonth_dim) == 1)) { stop("Parameter 'fmonth_dim' must be a character string.") } if (!fmonth_dim %in% names(dim(data))) { stop("Parameter 'fmonth_dim' is not found in 'data' dimension.") } } # sdate_dim if (type == 'dcpp') { if (!(is.character(sdate_dim) & length(sdate_dim) == 1)) { stop("Parameter 'sdate_dim' must be a character string.") } if (!sdate_dim %in% names(dim(data))) { stop("Parameter 'sdate_dim' is not found in 'data' dimension.") } } # indices_for_clim if (!is.null(indices_for_clim)) { if (!class(indices_for_clim) %in% c('numeric', 'integer') & !(is.logical(indices_for_clim) & !any(indices_for_clim))) { stop(paste0("The parameter 'indices_for_clim' must be a numeric vector ", "or NULL to compute the anomalies based on the whole period, ", "or FALSE if data are already anomalies")) } } # year_dim if (type == 'hist' | type == 'obs') { if (!(is.character(year_dim) & length(year_dim) == 1)) { stop("Parameter 'year_dim' must be a character string.") } if (!year_dim %in% names(dim(data))) { stop("Parameter 'year_dim' is not found in 'data' dimension.") } } # month_dim if (type == 'hist' | type == 'obs') { if (!(is.character(month_dim) & length(month_dim) == 1)) { stop("Parameter 'month_dim' must be a character string.") } if (!month_dim %in% names(dim(data))) { stop("Parameter 'month_dim' is not found in 'data' dimension.") } } # na.rm if (!na.rm %in% c(TRUE,FALSE)) { stop("Parameter 'na.rm' must be TRUE or FALSE") } ## Regions for AMV (Doblas-Reyes et al., 2013) lat_min_1 <- 0; lat_max_1 <- 60 lon_min_1 <- 280; lon_max_1 <- 359.9 lat_min_2 <- -60; lat_max_2 <- 60 lon_min_2 <- 0; lon_max_2 <- 359.9 regions <- NULL regions$reg1 <- c(lon_min_1, lon_max_1, lat_min_1, lat_max_1) regions$reg2 <- c(lon_min_2, lon_max_2, lat_min_2, lat_max_2) mean_1 <- ClimProjDiags::WeightedMean(data = data, lon = data_lons, lat = data_lats, region = regions$reg1, londim = which(names(dim(data)) == lon_dim), latdim = which(names(dim(data)) == lat_dim)) mean_2 <- ClimProjDiags::WeightedMean(data = data, lon = data_lons, lat = data_lats, region = regions$reg2, londim = which(names(dim(data)) == lon_dim), latdim = which(names(dim(data)) == lat_dim)) data <- ClimProjDiags::CombineIndices(indices = list(mean_1,mean_2), weights = NULL, operation = 'subtract') # (mean_1 - mean_2) if (type == 'dcpp'){ target_dims <- c(sdate_dim, fmonth_dim) } else if (type %in% c('hist','obs')){ target_dims <- c(year_dim, month_dim) } INDEX <- multiApply::Apply(data = data, target_dims = target_dims, fun = .Indices, type = type, monini = monini, indices_for_clim = indices_for_clim, fmonth_dim = fmonth_dim, sdate_dim = sdate_dim, year_dim = year_dim, month_dim = month_dim, na.rm = na.rm, ncores = ncores)$output1 return(INDEX) }