Climate Model Output Rewriter (CMOR)

 

 

 

 

Version 2.0 (CMOR2)

Charles Doutriaux, Karl E. Taylor

 

August 18, 2010

 

 

 

 

 

 

 

 

A Revision of Version 1.0 (CMOR1)

Karl E. Taylor, Charles Doutriaux, and Jean-Yves Peterschmitt

 

July 14, 2006

 


Design Considerations and Overview............................................................................ 4

Acknowledgements......................................................................................................... 10

Description of CMOR Functions................................................................................... 11

Preliminary notes:.......................................................................................................... 11

Setting up CMOR............................................................................................................. 12

Initialize CMOR: cmor_setup....................................................................................................................................... 12

Dealing with Dataset...................................................................................................... 13

Define a Dataset: cmor_dataset.................................................................................................................................. 13

Define a Dataset Attribute: cmor_set_cur_dataset_attribute................................................................. 16

Retrieve  a Dataset Attribute: cmor_get_cur_dataset_attribute........................................................... 17

Inquire whether a Dataset Attribute Exists: cmor_has_cur_dataset_attribute......................... 17

Dealing with tables......................................................................................................... 18

Loading a Table in Memory from File:cmor_load_table............................................................................. 18

Loading a Table from Memory:cmor_set_table............................................................................................... 18

Dealing with Axes........................................................................................................... 18

Define an Axis: cmor_axis............................................................................................................................................... 18

Define an Axis Attribute: cmor_set_axis_attribute........................................................................................ 21

Retrieve an Axis Attribute: cmor_get_axis_attribute.................................................................................. 21

Inquire whether an Axis Attribute Exists: cmor_has_axis_attribute................................................ 22

Dealing with Grids.......................................................................................................... 22

Define a Grid: cmor_grid................................................................................................................................................. 22

Define Grid Mapping Parameters: cmor_set_grid_mapping.................................................................... 23

Define a Coordinate Variable for a Time Varying Grid: cmor_time_varying_grid_coordinate               25

Vertical Dimensions....................................................................................................... 26

Provide Non-Dimensional Vertical Coordinate Information: cmor_zfactor............................... 26

Variables......................................................................................................................... 28

Define a Variable: cmor_variable.............................................................................................................................. 28

Define a Variable Attribute: cmor_set_variable_attribute....................................................................... 30

Retrieve a Variable Attribute: cmor_get_variable_attribute.................................................................. 31

Inquire Whether a Variable Attribute Exists: cmor_has_variable_attribute............................... 31

Writing Data................................................................................................................... 32

Generate Output Path: cmor_create_output_path......................................................................................... 32

Write Data to File: cmor_write.................................................................................................................................. 32

Close File(s): cmor_close............................................................................................................................................... 34

Appendix A: Errors in CMOR........................................................................................ 36

Critical Errors.................................................................................................................. 36

Appendix B: Limits in cmor.......................................................................................... 39

Appendix C: Sample Codes............................................................................................. 40

FORTRAN......................................................................................................................... 40

Sample Program 1............................................................................................................................................................... 40

C....................................................................................................................................... 49

Sample Program 1: grids................................................................................................................................................ 49

PYTHON.......................................................................................................................... 53

Sample Program 1............................................................................................................................................................... 53

Sample Program 2: grids................................................................................................................................................ 54

Appendix D: MIP Tables................................................................................................. 57

CMOR 1 sample............................................................................................................... 57

CMOR 2 (table excerpts)................................................................................................. 65


Design Considerations and Overview

 

This document describes Version 2 of a software library called "Climate Model Output Rewriter" (CMOR2),[1] written in C with access also provided via Fortran 90 and through Python[2].  CMOR is used to produce CF-compliant[3] netCDF[4] files.  The structure of the files created by CMOR and the metadata they contain fulfill the requirements of many of the climate community's standard model experiments (which are referred to here as "MIPs"[5] and include, for example, AMIP, CMIP, CFMIP, PMIP, APE, and IPCC scenario runs).  

 

CMOR was not designed to serve as an all-purpose writer of CF-compliant netCDF files, but simply to reduce the effort required to prepare and manage MIP model output.  Although MIPs encourage systematic analysis of results across models, this is only easy to do if the model output is written in a common format with files structured similarly and with sufficient metadata uniformly stored according to a common standard.  Individual modeling groups store their data in different ways, but if a group can read its own data, then it should easily be able to transform the data, using CMOR, into the common format required by the MIPs.   The adoption of CMOR as a standard code for exchanging climate data will facilitate participation in MIPs because after learning how to satisfy the output requirements of one MIP, it will be easy to prepare output for other MIPs.

 

CMOR output has the following characteristics:

 

 

Although the CMOR output adheres to a fairly rigid structure, there is considerable flexibility allowed in the design of codes that write data through the CMOR functions.  Depending on how the source data are stored, one might want to structure a code to read and rewrite the data through CMOR in several different ways.  Consider, for example, a case where data are originally stored in "history" files that contain many different fields, but a single time sample.   If one were to process several different fields through CMOR and one wanted to include many time samples per file, then it would usually be more efficient to read all the fields from the single input file at the same time, and then distribute them to the appropriate CMOR output files, rather than to process all the time-samples for a single field and then move on to the next field.  If, however, the original data were stored already by field (i.e., one variable per file), then it would make more sense to simply loop through the fields, one at a time.  The user is free to structure the conversion program in either of these ways (among others).

 

Converting data with CMOR typically involves the following steps (with the CMOR function names given in parentheses):

 

 

There is an additional function (cmor_zfactor), which enables one to define metadata associated with dimensionless vertical coordinates.

 

CMOR was designed to reduce the effort required of those contributing data to various MIPs.  An important aim was to minimize any transformations that the user would have to perform on their original data structures to meet the MIP requirements.  Toward this end, the code allows the following flexibility (with the MIP requirements obtained by CMOR from the appropriate MIP table and automatically applied):

 

 

The code does not, however, include a capability to interpolate data, either in the vertical or horizontally.  If a user stores data on model levels, but a MIP requests it on standard pressure levels, then the user must interpolate before passing the data to CMOR. 

 

The output resulting from CMOR is "self-describing" and includes metadata summarized below, organized by attribute type (global, coordinate, or variable attributes) and by its source (specified by the user or in a MIP table, or generated by CMOR).

 

Global attributes typically provided by the MIP table or generated by CMOR:

 

 

Global attributes typically provided by the user in a call to a CMOR function:

 

 

Note: additional global attributes can be added by the user via the cmor_set_cur_dataset_attribute function (see below).

 

Coordinate attributes typically provided by a MIP table or generated by CMOR:

 

 

Coordinate or grid mapping attributes typically provided by the user in a call to a CMOR function:

 

 

Variable attributes typically provided by a MIP table or generated by CMOR:

 

 

Variable attributes typically provided by the user in a call to a CMOR function:

 

 

As is evident from the above summary of metadata, a substantial fraction of the information is defined in the MIP tables, which explains why writing MIP output through CMOR is much easier than writing data without the help of the MIP tables.   Besides the attribute information, the MIP tables also include information that controls the structure of the output and allows CMOR to apply some rudimentary quality assurance checks.  Among this ancillary information in the MIP tables is the following:

 

 

Acknowledgements

 

Several individuals have supported the development of the CMOR1 software and provided encouragement, including Dean Williams, Dave Bader, and Peter Gleckler.  Jonathan Gregory, Jim Boyle, and Bob Drach all provided valuable suggestions on how to simplify or in other ways improve the design of this software, and we particularly appreciate the time they spent reading and thinking about this problem.  Jim Boyle additionally helped in a number of other ways, including porting CMOR to various platforms.  Brian Eaton provided his usual careful and thoughtful responses to questions about CF compliance. Finally, we appreciate the encouragement expressed by the WGCM for developing CMOR.

 

The complete rewrite of CMOR, along with the new capabilities added to version 2, was implemented by Charles Doutriaux.  We thank Dean Williams, Bob Drach, Renata McCoy, Jim Boyle, and the British Atmospheric Data Center (BADC). We also thank every one of the “early” adopters of CMOR2 who patiently helped us test and debug CMOR2. In particular we would like to thank Jamie Kettleborough from the UK Metoffice, Stephen Pascoe of the British Atmospheric Data Centre, Joerg Wegner of Zentrum für Marine und Atmosphärische Wissenschaften, Yana Malysheva of the Geophysical Fluid Dynamics Laboratory and Alejandro Bodas-Salcedo of UK Metoffice for the many lines of codes, bug fixes, and sample tests they sent our way.


Description of CMOR Functions

 

Preliminary notes:

  In the following, all arguments should be passed using keywords (to improve readability and flexibility in ordering the arguments).  Those arguments appearing below that are followed by an equal sign may be optional and, if not passed by the user, are assigned the default value that follows the equal sign.  The information in a MIP-specific input table determines whether or not an argument shown in brackets is optional or required, and pro vides MIP-specific default values for some parameters.  All arguments not in brackets and not followed by an equal sign are always required.

 

Three versions of each function are shown below.  The first one is for Fortran (green text) the second for C (blue text), and the third for Python (orange text).   In the following, text that applies to only one of the coding languages appears in the appropriate color.

 

Some of the arguments passed to CMOR (e.g., names of variables and axes are only unambiguously defined in the context of a specific CMOR table, and in the Fortran version of the functions this is specified by one of the function arguments, whereas in the C and Python versions it is specified through a call to cmor_load_table and cmor_set_table.

 

All functions are type “integer”.  If a function results in an error, an “exception” will be raised in the Python version (otherwise None will be returned), and in either the Fortran or C versions, the error will be indicated by the integer returned by the function itself.  In C an integer other than 0 will be returned, and in Fortran errors will result in a negative integer (except in the case of cmor_grid, which will return a positive integer).

 

If no error is encountered, some functions will return information needed by the user in subsequent calls to CMOR.  In almost all cases this information is indicated by the value of a single integer that in Fortran and Python is returned as the value of the function itself, whereas in C it is returned as an output argument).  There are two cases in the Fortran version of CMOR, however, when a string argument may be set by CMOR (cmor_close and cmor_create_output_path).  These are the only cases when the value of any of the Fortran function’s arguments might be modified by CMOR.    

 

Setting up CMOR

Initialize CMOR: cmor_setup

 

Fortran: error_flag = cmor_setup(inpath='./', netcdf_file_action=CMOR_PRESERVE, set_verbosity=CMOR_NORMAL, exit_control=CMOR_NORMAL, logfile, create_subdirectories)

C: error_flag = cmor_setup(char *inpath, int *netcdf_file_action, int *set_verbosity, int *exit_control, char*logfile, int *create_subdirectories)

Python: setup(inpath='.', netcdf_file_action=CMOR_PRESERVE, set_verbosity=CMOR_NORMAL, exit_control=CMOR_NORMAL, logfile=None, create_subdirectories=1)

 

Description: Initialize CMOR, specify path to MIP table(s) that will be read by CMOR, specify whether existing output files will be overwritten, and specify how error messages will be handled

 

Arguments:

[inpath] = a character string specifying the path to the directory where the needed MIP-specific tables reside.

[netcdf_file_action] = controls handling of existing netCDF files.  If the value passed is CMOR_REPLACE, a new file will be created; any existing file with the same name as the one CMOR is trying to create will be overwritten.  If the value is CMOR_APPEND, an existing file will be appended; if the file does not exist, it will be created.  If the value is CMOR_PRESERVE, a new file will be created unless a file by the same name already exists, in which case the program will error exit.[8] To generate a NetCDF file in the “CLASSIC” NetCDF3 format, a “_3” should be appended to the above parameters (e.g., CMOR_APPEND would become CMOR_APPEND_3). To generate a NetCDF file in the “CLASSIC” NetCDF4 format, a “_4” should be appended to the above parameters (e.g., CMOR_APPEND would become CMOR_APPEND_4), this allows the user to take advantage of NetCDF4 compression and chunking capabilities. The default values (no underscore) are aliased to the _3 values.

[set_verbosity] controls how informational messages and error messages generated by CMOR are handled.  If set_verbosity=CMOR_NORMAL, errors and warnings will be sent to the standard error device (typically the user's screen). If verbosity=CMOR_QUIET, then only error messages will be sent (and warnings will be suppressed). 

[exit_control] determines if errors will trigger program to exit: CMOR_EXIT_ON_MAJOR = stop only on critical error; CMOR_NORMAL = stop only if severe errors; CMOR_EXIT_ON_WARNING = stop even after minor errors detected.

[logfile] where CMOR will write its messages -- default is “standard error” (stderr). 

[create_subdirectories] do we want to create the correct path subdirectory structure or simply dump the files wherever cmor_dataset will point to. 

 

\Returns upon success:

Fortran: 0

C: 0

Python: None

 

 

Dealing with Dataset

Define a Dataset: cmor_dataset

 

Fortran: error_flag = cmor_dataset(outpath, experiment_id, institution, source, calendar, [realization=1], [contact], [history], [comment], [references], [leap_year], [leap_month], [month_lengths], [model_id], [forcing],

[initialization_method], [physics_version], [institute_id], [parent_experiment_id], [branch_time])

C: error_flag = cmor_dataset(char *outpath, char *experiment_id, char *institution, char *source,   char *calendar, int realization, char *contact,  char *history,  char *comment, char *references, int leap_year, int leap_month, int month_lengths[12], char *model_id, char *forcing,

int initialization_method, int physics_version, char *institute_id, char *parent_experiment_id, double *branch_time)

Python: dataset(experiment_id, institution, source, calendar, outpath='.', realization=1, contact="", history="", comment="", references="", leap_year=None, leap_month=None, month_lengths=None, model_id=””, forcing=””,

initialization_method=None, physics_version=None, institute_id=””, parent_experiment_id=None, branch_time=0.)

 

Description: This function provides information to CMOR that is common to all output files that will be written.  The "dataset" defined by this function refers to some or all of the output from a single model simulation (i.e., output from a single realization of a single experiment from a single model).  Only one dataset can be defined at any time, but the dataset can be closed (by calling cmor_close()), and then another dataset can be defined by calling cmor_dataset. Note that after a new dataset is defined, all axes and variables must be defined; axes and variables defined earlier are not associated with the new dataset.

 

Arguments:

outpath = path where all output files in this dataset will be written (including both model output netCDF files and log and error files).  The log and error files will be placed in this directory, but the model output files will be placed in subdirectories.  By default the subdirectory tree will be generated by CMOR, if necessary, consistent with the following structure: <activity>/ <product>/<institute_id>/<model_id>/<experiment>/<frequency>/ <modeling_realm>/<variable_name>/<ensemble member>

 

            Notes:

1)    CMOR will check that the directory does exist, that it is a directory and that you do have read/write permissions.

2)    One can turn off the creation of the subdirectories via the keyword “create_subdirectories” in the cmor_setup call.

3)    The necessary information is sent to CMOR as arguments of either cmor_dataset or cmor_variable Other attributes can also be set via the command: cmor_set_cur_dataset_attribute.

 

frequency is determined from the “approximate_interval” defined in the MIP-specific table where the variable that will be written is found.

modeling_realm is read from the MIP-specific table where the variable that will be written is found, If there is no modeling_realm associated specifically with the variable, the default value defined for the table itself will be used.

experiment_id  = character string identifying the experiment within the project that generated the data (e.g., 'control', 'perturbation', etc.)  See individual MIP home pages for the official experiment designations (or see the MIP-table list of "expt_id_ok" acceptable i.d.'s).  Either the short “experiment i.d.” or the longer “experiment name” may be passed to CMOR.

institution = character string identifying the institution that generated the data [e.g., 'NCAR (National Center for Atmospheric Research, Boulder, CO, USA)']

source = character string fully identifying the model and version used to generate the output.  The first portion of the string should be a copy of the global attribute “model_id”.  Additionally, this attribute must include the year (i.e., model vintage) when this model version was first used in a scientific application.  Finally, it should include information concerning the component models.  The following template should be followed in constructing this string: '[model_id] [year] atmosphere: [model_name] ([technical_name], [resolution_and_levels]); ocean: [model_name] ([technical_name], [resolution_and_levels]); sea ice: [model_name] ([technical_name]); land: [model_name] ([technical_name])'' For some models, it may not make much sense to include all these components, and nothing following “[year]” is absolutely mandatory. As an example, "source" might contain the string: 'CCSM2 2002 atmosphere: CAM2 (cam2_0_brnchT_itea_2, T42L26); ocean:  POP (pop2_0_ver_1.4.3, 2x3L15); sea ice: CSIM4; land: CLM2.0'.  For some MIP's it might be appropriate to list only a single component, in which case the descriptor (e.g., 'atmosphere') may be omitted along with the other model components (e.g., 'CAM2 2002 (cam2_0_brnchT_itea_2, T42L26)'.  Additional explanatory information may follow the required information.

calendar = CF-compliant calendar specification (e.g., ‘gregorian’, 'noleap', etc.)  This argument must be included even in the case of a non-standard calendar, in which case it must not be given one of the calendars currently defined by CF ('gregorian', 'standard', 'proleptic_gregorian', 'noleap', '365_day', '360_day', 'julian', and 'none'), and it must not be completely blank or a null string.  It would be acceptable, for example, to assign 'non_standard' to this argument in the case of a non-standard calendar.

[realization] = an integer distinguishing among members of an ensemble of simulations (e.g., 1, 2, 3, etc.).  If only a single simulation was performed, then this argument should be given the value 1 (which is also the default value). CMOR will reset this to 0 automatically for “fixed” frequency (i.e. time-independent fields)

[contact] = name and contact information (e.g., email, address, phone number) of person who should be contacted for more information about the data.

[history] = audit trail for modifications to the original data, each modification typically preceded by a "timestamp".   The "history" attribute provided here will be a global one and should not depend on which variable is contained in the file.  A variable-specific "history" can also be included in calling cmor_variable, described below.

[comment] = miscellaneous information about the data or methods used to produce it.  Each MIP may encourage the user to provide different information here.  For example, the user may be asked to include a description of how the initial conditions for a simulation were specified and how the model was spun-up (including the length of the spin-up period).

[references] = Published or web-based references that describe the data or methods used to produce it.  Typically, the user should provide references describing the model formulation here.

[leap_year] = for non-standard calendars (otherwise omit), an integer, indicating an example of a leap year.

[leap_month] = for non-standard calendars (otherwise omit), an integer in the range 1-12, specifying which month is lengthened by a day in leap years (1=January).

[month_lengths] = for non-standard calendars (otherwise omit), an integer vector of size 12, specifying the number of days in the months from January through December (in a non-leap year).

[model_id] = a string containing an acronym that identifies the model used to generate the output.[9] For CMIP5, the model_id should be officially approved by the CMIP Panel (through PCMDI).  It should be as short as possible, so that it can be used, for example, in labeling curves on multi-model plots.  For examples of model_ids from CMIP3, see http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php.  The acronym may include the acronym of the modeling center and the model name/version separated by a hyphen (e.g., “IPSL-CM4”), but it may be o.k. to omit the modeling center.  Please note that you might in the future want to submit results from a successor to the present model, so if appropriate, you may want to indicate a model version, but please keep it simple e.g., CCSM4, not CCSM4.1.2.  Full version information will appear in the “source” global attribute described above.

[forcing] = a string containing a list of the “forcing” agents that could cause the climate to change in the experiment.9  The forcing should be expressed as a comma separated list of identifying strings that are part of the so-called DRS controlled vocabulary described in Appendix 1.2 of http://cmip-pcmdi.llnl.gov/cmip5/docs/cmip5_data_reference_syntax.pdf.  Within and/or following this machine-interpretable list may be text enclosed in parentheses providing further information.

[initialization_method] = an integer referring to the initialization method used. In C passing 0 means omitting it.

[physics_version] = an integer referring to the physics used by the model, in C passing 0 means omitting it

[institute_id] = a short acronym describing “institution”

[parent_experiment_id] = experiment_id indicating which experiment this branches from. For CMIP5 this should match the short name of the parent experiment id. Please pass “N/A” if Not Applicable.

[branch_time] = time in parent experiment when this simulation started (in the units of the parent experiment). Pass 0 if Not Applicable.

 

Returns upon success:

Fortran: 0

C: 0

Python: None

 

Define a Dataset Attribute: cmor_set_cur_dataset_attribute

 

Fortran: error_flag = cmor_set_cur_dataset_attribute(name,value)

C: error_flag = cmor_set_cur_dataset_attribute(char *name, char *value, int optional)

Python: set_cur_dataset_attribute(name,value)

 

Description: Associate a global attribute with the current dataset.  In CMIP5, this function can be called to set, for example, “institute_id”, “initialization” and “physics”.

 

Arguments:

name = name of the global attribute to set.

value = character string containing the value of this attribute.

optional = an argument that is ignored.  (Internally, CMOR calls this function and needs this argument.)

 

Returns upon success:

Fortran: 0

C: 0

Python: None

 

 

Retrieve  a Dataset Attribute: cmor_get_cur_dataset_attribute

 

Fortran: error_flag = cmor_get_cur_dataset_attribute(name,result)

C: error_flag = cmor_get_cur_dataset_attribute(char *name, char *result)

Python: result = get_cur_dataset_attribute(name)

 

Description: Retrieves a global attribute associated with the current dataset.

 

Arguments:

name = name of the global attribute to retrieve.

result = string  (or pointer to a string), which is returned by the function and contains the retrieved global attribute (not for Python).

 

Returns upon success:

Fortran: 0

C: 0

Python: None

 

 

Inquire whether a Dataset Attribute Exists: cmor_has_cur_dataset_attribute

 

Fortran: error_flag = cmor_has_cur_dataset_attribute(name)

C: error_flag = cmor_has_cur_dataset_attribute(char *name)

Python: error_flag = has_cur_dataset_attribute(name)

 

Description: Determines whether a global attribute is associated with the current dataset.

 

Arguments:

name = name of the global attribute of interest.

 

Returns:

a negative integer if an error is encountered; otherwise returns 0.

0 upon success

            True if the attribute exists, False otherwise.

 

 

Dealing with tables

Loading a Table in Memory from File:cmor_load_table

 

Fortran: table_id = cmor_load_table(table)

C: error_flag = cmor_load_table(char *table, int *table_id)

Python: table_id = load_table(table)

 

Description: Loads a table to use later when defining CMOR components. CMOR will look first at the path as specified by the argument passed to this function, and if it doesn’t find a file there it will prepend the outpath defined in calling cmor_dataset. If it still doesn’t find it it will use the “prefix” where the library CMOR is to be installed (from configure time) followed by share (e.g /usr/local/cmor/share). If it stills fails an error will be raised.

Loading a Table from Memory:cmor_set_table

 

Fortran: cmor_set_table(table_id)

C: error_flag = cmor_set_table(int table_id)

Python: table_id = set_table(table_id)

 

Description: Sets the table referred to by table_id as the table to obtain needed information when defining CMOR components (variables, axes, grids, etc…).

 

 

Dealing with Axes

 

Define an Axis: cmor_axis

 

Fortran: axis_id = cmor_axis([table], table_entry, units, [length], [coord_vals], [cell_bounds], [interval])

C: error_flag = cmor_axis(int *axis_id, char *table_entry, char *units, int length, void *coord_vals, char type, void *cell_bounds, int cell_bounds_ndim, char *interval)

Python: axis_id = axis(table_entry, units=None, length=None, coord_vals=None, cell_bounds=None, interval=None)

 

Description:  Define an axis and pass the coordinate values associated with one of the dimensions of the data to be written. This function returns a "handle" (axis_id) that uniquely identifies the axis to be written.  The axis_id will subsequently be passed by the user to other CMOR functions.  The cmor_axis function will typically be repeatedly invoked to define all axes.  The axis specified by the table_entry argument must be found in the currently “set” CMOR table, as specified by the cmor_load_table and cmor_set_table functions, or as an option, it can be provided in the Fortran version (for backward compatibility) by the now deprecated “table” keyword argument.  There normally is no need to call this function in the case of a singleton (scalar) dimension unless the MIP recommended (or required) coordinate value (or cell_bounds) are inconsistent with what the user can supply, or unless the user wants to define the "interval" attribute.

 

Arguments:

[table] = character string containing the filename of the MIP-specific table where the axis defined here appears (e.g., ‘CMIP5_table_Amon’, 'IPCC_table_A1', 'AMIP_table_1a', 'AMIP_table_2', 'CMIP_table_2', etc.).   In CMOR2 this is an optional argument and is deprecated because the table can be specified through the cmor_load_table and cmor_set_table functions.

axis_id = the “handle”: a positive integer returned by CMOR, which uniquely identifies the axis stored in this call to cmor_axis and subsequently can be used in calls to cmor_write.

table_entry = name of the axis (as it appears in the MIP table) that will be defined by this function.

units = units associated with the coordinates passed in coord_vals and cell_bounds.  (These are the units of the user's coordinate values, which, if CMOR is built with udunits (as is required in version 2), may differ from the units of the coordinates written to the netCDF file by CMOR.  For non-standard calendars (e.g., models with no leap year), conversion of time values can be made only if CMOR is built with CDMS.) These units must be recognized by udunits or must be identical to the units specified in the MIP table.  In the case of a dimensionless vertical coordinate or in the case of a non-numerical axis (like geographical region), either set units='none', or, optionally, set units='1'.

[length] = integer specifying the number of elements that CMOR should extract from the coord_vals array (normally length will be the size of the array itself). For a simple “index axis” (i.e., an axis without coordinate values), this specifies the length of the dimension.  In the Fortran and Python versions of the function, this argument is not always required (except in the case of a simple index axis); if omitted “length” will be the size of the coord_vals array,

[coord_vals] = 1-d array (single precision float, double precision float, or, for labels, character strings) containing coordinate values, ordered consistently with the data array that will be passed by the user to CMOR through function cmor_write (see documentation below).  This argument is required except if: 1) the axis is a simple “index axis” (i.e., an axis without coordinate values), or 2) for a time coordinate, the user intends to pass the coordinate values when the cmor_write function is called.  Note that the coordinate values must be ordered monotonically, so, for example, in the case of longitudes that might have the values, 0., 10., 20, ... 170., 180., 190., 200.,  ... 340., 350., passing the (equivalent) values, 0., 10., 20, ... 170., 180., -170., -160., ... -20., -10. is forbidden.  In the case of time-coordinate values, if cell bounds are also passed, then CMOR will first check that each coordinate value is not outside its associated cell bounds; subsequently, however, the user-defined coordinate value will be replaced by the mid-point of the interval defined by its bounds, and it is this value that will be written to the netCDF file. In the case of character string coord_vals there are no cell_bounds, but for the C version of the function, the argument cell_bounds_ndim is used to specify the length of the strings in the coord_vals array (i.e., the array will be dimensioned [length][cell_bounds_ndim]).

type = type of the coord_vals/bnds passed, which can be ‘d’ (double), ‘f’ (float), ‘l’ (long) or ‘i’ (int).

[cell_bounds] = 1-d or 2-d array (of the same type as coord_vals) containing cell bounds, which should be in the same units as coord_vals (specified in the "units" argument above) and should be ordered in the same way as coord_vals.  In the case of a 1-d array, the size is one more than the size of coord_vals and the cells must be contiguous.  In the case of a 2-d array, it is dimensioned (2, n) where n is the size of coord_vals (see CF standard document, http://www.cgd.ucar.edu/cms/eaton/cf-metadata, for further information).  This argument may be omitted when cell bounds are not required.  It must be omitted if coord_vals is omitted.

cell_bounds_ndim = This argument only appears in the C version of this function.   Except in the case of a character string axis, it specifies the rank of the cell_bounds array: if 1, the bounds array will contain n+1 elements, where n is length of coord_vals and the cells must be contiguous, whereas if 2, the dimension will be (n,2) in C order.  Pass 0 if no cell_bounds values have been passed. In the special case of a character string axis, this argument is used to specify the length of the strings in the coord_vals array (i.e., the array will be dimensioned [length][cell_bounds_ndim]).

[interval] = Supplemental information that will be included in the cell_methods attribute, which is typically defined for the time axis in order to describe the sampling interval.  This string should be of the form: "value unit comment: anything" (where "comment:" and anything may always be omitted).  For monthly mean data sampled every 15 minutes, for example, interval = "15 minutes".

 

Returns:

Fortran: a negative integer if an error is encountered; otherwise returns a positive integer (the “handle”) uniquely identifying the axis.

C: 0 upon success.

Python: upon success, a positive integer (the “handle”) uniquely identifying the axis, or if an error is encountered an exception is raised.

 

 

Define an Axis Attribute: cmor_set_axis_attribute

 

Fortran: Not implemented because it is not needed for CMIP5.

C: error_flag = cmor_set_axis_attribute(int axis_id, char *attribute_name, char type, void *value)

Python: Not implemented because it is not needed for CMIP5.

 

Description:  Defines an attribute to be associated with the axis specified by the axis_id.  This is not likely to be needed in preparing CMIP5 output.

 

Arguments:

axis_id = the “handle” returned by cmor_axis (when the axis was defined), which will become better described by the attribute defined in this function.

attribute_name = name of the attribute

type = type of the attribute value passed.   This can be ‘d’ (double), ‘f’ (float), ‘l’ (long), ‘i’ (int), or ‘c’ (char)

value = whatever value you wish to set the attribute to (type defined by type argument)

 

Return upon success:

C: 0

 

 

Retrieve an Axis Attribute: cmor_get_axis_attribute

 

Fortran: Not implemented because it is not needed for CMIP5.

C: error_flag = cmor_get_axis_attribute(int axis_id, char *attribute_name, char type, void *value)

Python: Not implemented because it is not needed for CMIP5.

 

Description: retrieves an attribute value set for the axis specified by the axis_id. This is not likely to be needed in preparing CMIP5 output.

 

Arguments:

axis_id = the “handle” returned by cmor_axis (when the axis was defined) with which the attribute requested is associated.

attribute_name = name of the attribute

type = type of the attribute value to be retrieved.  This can be ‘d’ (double), ‘f’ (float), ‘l’ (long), ‘i’ (int), or ‘c’ (char).

value = the argument that will accept the retrieved attribute.

 

Return upon success:

C: 0

 

 

Inquire whether an Axis Attribute Exists: cmor_has_axis_attribute

 

 Fortran: Not implemented because it is not needed for CMIP5.

C: error_flag = cmor_has_axis_attribute(int axis_id, char *attribute_name)

Python: Not implemented because it is not needed for CMIP5.

 

Description: Determines whether an attribute exists and is associated with the variable specified by variable_id, which is a handle returned to the user by a previous call to cmor_variable.

 

Arguments:

axis_id = the “handle” specifying which axis is of interest.  An axis_id is returned by cmor_variable each time a variable is defined).

attribute_name = name of the attribute of interest.

 

Returns upon success (i.e., the attribute was found):

C: 0

 

 

Dealing with Grids

Define a Grid: cmor_grid

 

Fortran: grid_id = cmor_grid(axis_ids, latitude, longitude, [latitude_vertices], [longitude_vertices], [nvertices])

C: error_flag = cmor_grid(int *grid_id, int ndims, int *axis_ids, char type, void *latitude, void *longitude, int nvertices, void *latitude_vertices, void *longitude_vertices)

Python: grid_id = grid(axis_ids, latitude, longitude, latitude_vertices=None, longitude_vertices=None, nvertices=0)

 

Description: Define a grid to be associated with data, including the latitude and longitude arrays. The grid can be structured with up to 6 dimensions. These dimensions, which may be simple “index” axes, must be defined via cmor_axis prior to calling cmor_grid. This function returns a "handle" (grid_id) that uniquely identifies the grid (and its data/metadata) to be written.  The grid_id will subsequently be passed by the user to other CMOR functions.  The cmor_grid function will typically be invoked to define each grid necessary for the experiment (e.g., ocean grid, vegetation grid, atmosphere grid, etc…).  There is no need to call this function in the case of a Cartesian lat/lon grid.  In this case, simply define the latitude and longitude axes and pass their id’s (“handles”) to cmor_variable. Grids can be time dependent as well, in this case the latitude, longitude and vertices_latitude, vertices_longitude must be defined separately via cmor_time_varying_grid_coordinate. Note that in this case the number of vertices must be passed when calling cmor_grid.

 

Arguments:

grid_id = the “handle”: a positive integer returned by CMOR, which uniquely identifies the grid defined in this call to CMOR and subsequently can be used in calls to CMOR.

ndims = number of dimensions needed to define the grid (i.e., the number of elements from axis_ids that will be used).

axis_ids = array containing the axis_s returned by cmor_axis when defining the axes constituting the grid.

[latitude] = array containing the grid’s latitude information (ndims dimensions), optional only in the case of time varying grids.

]longitude] = array containing the grid’s longitude information (ndims dimensions), optional only in the case of time varying grids

[nvertices] = length of vertices axis.  Fortran and Python can figure this out if latitude_vertices is passed. But in case of time-varying grids this is necessary in order to prepare the “Vertices” variable correctly.

[latitude_vertices] = array containing the grid’s latitude vertices information (ndim+1 dimensions). The vertices dimension must be the fastest varying dimension of the array (i.e., first one in Fortran, last one in C, last one in Python)

[longitude_vertices] = array containing the grid’s longitude vertices information (ndim+1 dimensions). The vertices dimension must be the fastest varying dimension of the array (i.e., first one in Fortran, last one in C, last one in Python)

 

Returns:

Fortran: a positive integer if an error is encountered; otherwise returns a negative integer (the “handle”) uniquely identifying the grid.

C: 0 upon success.

Python: upon success, a positive integer (the “handle”) uniquely identifying the axis, or if an error is encountered an exception is raised.

Note:

This function used to take an optional extra argument (up to CMOR2.0rc4 included), it is now not needed anymore as cellArea and cellVolume files are written in a separate file.

 

Define Grid Mapping Parameters: cmor_set_grid_mapping

 

Fortran: error_flag = cmor_set_grid_mapping(grid_id, mapping_name, parameter_names, parameter_values, parameter_units)

C: error_flag = cmor_set_grid_mapping(int grid_id, char *mapping_name, int nparameters, char **parameter_names, int lparameters, double parameter_values[], char **parameter_units, int lunits)

Python: set_grid_mapping(grid_id, mapping_name, parameter_names, parameter_values=None, parameter_units=None)

 

Description: Define the grid mapping parameters associated with a grid (see CF conventions for more info on which parameters to set). Check validity of parameter names and units. Additional mapping names and parameter names can be defined via the MIP table.

 

Arguments:

grid_id = the “handle” returned by a previous call to cmor_grid, indicating which grid the mapping parameters should be associated with.

mapping_name = name of the mapping (see CF conventions).  This name dictates which parameters should be set and for some parameters restricts their possible values or range.  New mapping names can be added via MIP tables.

nparameters = number of parameters set.

parameter_names = array (list for Python) of strings containing the names of the parameters to set.  In the case of “standard_parallel”, CF allows either 1 or 2 parallels to be specified (i.e. the attribute standard_parallel may be an array of length 2).  In the case of 2 parallels, CMOR requires the user to specify these as separate parameters, named standard_parallel_1 and standard_parallel_2, but then the two parameters will be stored in an array, consistent with CF.  In the case of a single parallel, the name standard_parallel should be specified.  In the C version of this function, parameter_names is declared of length [nparameters][lparameters], where lparameters in the length of each string array element (see below). In Python parameter_names can be defined as a dictionary containing the keys that represent the parameter_names. The value associated with each key can be either a list [float, str] (or [str, float]) representing the value/units of each parameter, or another dictionary containing the keys “value” and “units”. If these conditions are fulfilled, then parameter_units and parameter_values are optional and would be ignored if passed.

lparameters = length of each element of the string array.  If, for example, parameter_names includes 5 parameters, each 24 characters long (i.e., it is declared [5][24]), you would pass lparameters=24.

parameter_values = array containing the values associated with each parameter. In Python this is optional if parameter_names is a dictionary containing the values and units.

parameter_units = array (list for Python) of string containing the units of the parameters to set. In C parameter_units is declared of length [nparameters][lunits]. In Python it is optional if parameter_names is a dictionary containing the value and units.

lunits = length of each elements of the units string array (e.g.,  if parameters_units is declared [5][24], you would pass 24 because each elements has 24 characters).

 

Returns upon success:

Fortran: 0

C: 0

Python: None

 

 

Define a Coordinate Variable for a Time Varying Grid: cmor_time_varying_grid_coordinate

 

Fortran: coord_var_id = cmor_time_varying_grid_coordinate(grid_id, table_entry, units, missing_value)

C: error_flag = cmor_time_varying_grid_coordinate(int *coord_var_id, int grid_id, char *table_entry, char *units, char type, void *missing, [int *coordinate_type]) {

Python: coord_var_id = time_varying_grid_coordinate(grid_id, table_entry, units, [missing_value])

 

Description: Define a grid to be associated with data, including the latitude and longitude arrays. The grid can be structured with up to 6 dimensions. These dimensions, which may be simple “index” axes, must be defined via cmor_axis prior to calling cmor_grid. This function returns a "handle" (grid_id) that uniquely identifies the grid (and its data/metadata) to be written.  The grid_id will subsequently be passed by the user to other CMOR functions.  The cmor_grid function will typically be invoked to define each grid necessary for the experiment (e.g., ocean grid, vegetation grid, atmosphere grid, etc.).  There is no need to call this function in the case of a Cartesian lat/lon grid.  In this case, simply define the latitude and longitude axes and pass their id’s (“handles”) to cmor_variable.

 

Arguments:

coord_var_id = the “handle”: a positive integer returned by this function, which uniquely identifies the variable and can be used in subsequent calls to CMOR.

grid_id =the value returned by cmor_grid when the grid was created.

table_entry = name of the variable (as it appears in the MIP table) that this function defines.

units = units of the data that will be passed to CMOR by function cmor_write.  These units may differ from the units of the data output by CMOR.   Whenever possible, this string should be interpretable by udunits (see http://my.unitdata.ucar.edu/content/software/udunits/).  In the case of dimensionless quantities the units should be specified consistent with the CF conventions, so for example: percent, units='percent'; for a fraction, units='1'; for parts per million, units='1e-6', etc.).

type = type of the missing_value, which must be the same as the type of the array that will be passed to cmor_write.  The options are: ‘d’ (double), ‘f’ (float), ‘l’ (long) or ‘i’ (int).

 [missing_value] = scalar that is used to indicate missing data for this variable.  It must be the same type as the data that will be passed to cmor_write.  This missing_value will in general be replaced by a standard missing_value specified in the MIP table.  If there are no missing data, and the user chooses not to declare the missing value, then this argument may be either omitted or assigned the value 'none' (i.e., missing_value='none').

[coordinate_type] = place holder for future implementation, unused, pass NULL

 

 

Returns:

Fortran: a positive integer if an error is encountered; otherwise returns a negative integer (the “handle”) uniquely identifying the grid.

C: 0 upon success.

Python: upon success, a positive integer (the “handle”) uniquely identifying the axis, or if an error is encountered an exception is raised.

 

Vertical Dimensions

Provide Non-Dimensional Vertical Coordinate Information: cmor_zfactor

 

Fortran: zfactor_id = cmor_zfactor(zaxis_id, zfactor_name, [axis_ids], [units], zfactor_values, zfactor_bounds)

C: error_flag = cmor_zfactor (int *zfactor_id, int zaxis_id, char *zfactor_name, char *units, int ndims, int axis_ids[], char type, void *zfactor_values, void *zfactor_bounds)

Python: zfactor_id = zfactor(zaxis_id, zfactor_name, units, axis_ids, type, zfactor_values=None, zfactor_bounds=None)

 

Description:  Define a factor needed to convert a non-dimensional vertical coordinate (model level) to a physical location.   For pressure, height, or depth, this function is unnecessary, but for dimensionless coordinates it is needed.  In the case of atmospheric sigma coordinates, for example, a scalar parameter must be defined indicating the top of the model, and the variable containing the surface pressure must be identified.  The parameters that must be defined for different vertical dimensionless coordinates are listed in Appendix D of the CF convention document (http://www.cgd.ucar.edu/cms/eaton/cf-metadata).   Often bounds for the zfactors will be needed (e.g., for hybrid sigma coordinates, "A's" and "B's" must be defined both for the layers and, often more importantly, for the layer interfaces).  This function must be invoked for each z-factor required.

 

Arguments:

zfactor_id = the “handle”: a positive integer returned by this function which uniquely identifies the grid defined in this call to CMOR and can subsequently be used in calls to CMOR.

zaxis_id = an integer ("handle") returned by cmor_axis (which must have been previously called) indicating which axis requires this factor.

zfactor_name = name of the z-factor (as it appears in the MIP table) that will be defined by this function.

 [axis_ids] = an integer array containing the list of axis_id's (individually defined by calls to cmor_axis), which the z-factor defined here is a function of (e.g. for surface pressure, the array of i.d.'s would usually include the longitude, latitude, and time axes.)  The order of the axes must be consistent with the array passed as param_values.  If the parameter is a function of a single dimension (e.g., model level), the single axis_id should be passed as an array of rank one and length 1, not as a scalar. If the parameter is a scalar, then this parameter may be omitted.

[units] = units associated with the z-factor passed in zfactor_values and zfactor_bounds.  (These are the units of the user's z-factors, which may differ from the units of the z-factors written to the netCDF file by CMOR.) .  These units must be recognized by udunits or must be identical to the units specified in the MIP table.  In the case of a dimensionless z-factors, either omit this argument, or set units='none', or set units='1'.

type = type of the zfactor_values and zfactor_bounds (if present) passed to this function.  This can be ‘d’ (double), ‘f’ (float), ‘l’ (long), ‘i’ (int), or ‘c’ (char).

[zfactor_values] = z-factor values associated with dimensionless vertical coordinate identified by zaxis_id. If this z-factor is a function of time (e.g., surface pressure for sigma coordinates), the user can omit this argument and instead store the z-factor values by calling cmor_write.  In that case the cmor_write argument, "var_id", should be set to zfactor_id (returned by this function) and the argument, "store_with", should be set to the variable id of the output field that requires zfactor as part of its metadata.  When many fields are a function of the (dimensionless) model level, cmor_write will have to be called several times, with the same zfactor_id, but with different variable ids.  If no values are passed, omit this argument.

[zfactor_bounds] = z-factor values associated with the cell bounds of the vertical dimensionless coordinate.  These values should be of the same type as the zfactor_values (e.g., if zfactor_values is double precision, then zfactor_bounds must also be double precision).  If no bounds values are passed, omit this argument or set zfactor = 'none'. This is a ONE dimensional array of length nlevs+1.

 

Returns:

Fortran: a negative integer if an error is encountered; otherwise returns a positive integer (the “handle”) uniquely identifying the z-factor.

C: 0 upon success.

Python: upon success, a positive integer (the “handle”) uniquely identifying the z-factor, or if an error is encountered an exception is raised.

 

 

Variables

Define a Variable: cmor_variable

 

Fortran: var_id = cmor_variable([table], table_entry, units, axis_ids, [missing_value], [tolerance], [positive], [original_name], [history], [comment])

C: error_flag = int cmor_variable(int *var_id, char *table_entry, char *units, int ndims, int axis_ids[], char type, void *missing, double *tolerance, char *positive, char*original_name, char *history, char *comment)

Python: var_id = variable(table_entry, units, axis_ids, type='f', missing_value=None, tolerance = 1.e-4, positive=None, original_name=None, history=None, comment=None)

 

Description: Define a variable to be written by CMOR and indicate which axes are associated with it.  This function prepares CMOR to write the file that will contain the data for this variable. This function returns a "handle" (var_id), uniquely identifying the variable, which will subsequently be passed as an argument to the cmor_write function. The variable specified by the table_entry argument must be found in the currently “set” CMOR table, as specified by the cmor_load_table and cmor_set_table functions, or as an option, it can be provided in the Fortran version (for backward compatibility) by the now deprecated “table” keyword argument.   The cmor_variable function will typically be repeatedly invoked to define other variables. Note that backward compatibility was kept with the Fortran-only optional “table” keyword. But it is now recommended to use cmor_load_table and cmor_set_table instead (and necessary for C/Python).

 

Arguments:

var_id = the “handle”: a positive integer returned by this function, which uniquely identifies the variable and can be used in subsequent calls to CMOR.

[table] = character string containing the filename of the MIP-specific table where table_entry (described next) can be found (e.g., “CMIP5_table_amon”, 'IPCC_table_A1', 'AMIP_table_1a', 'AMIP_table_2', 'CMIP_table_2', etc.)  In CMOR2 this is an optional argument and is deprecated because the table can be specified through the cmor_load_table and cmor_set_table functions.

table_entry = name of the variable (as it appears in the MIP table) that this function defines.

units = units of the data that will be passed to CMOR by function cmor_write.  These units may differ from the units of the data output by CMOR.   Whenever possible, this string should be interpretable by udunits (see http://my.unitdata.ucar.edu/content/software/udunits/).  In the case of dimensionless quantities the units should be specified consistent with the CF conventions, so for example: percent, units='percent'; for a fraction, units='1'; for parts per million, units='1e-6', etc.).

ndims = number of axes the variable contains (i.e., the rank of the array), which in fact is the number of elements in the axis_ids array that will be processed by CMOR.

axis_ids = 1-d array containing integers returned by cmor_axis, which specifies, via their “handles” (i.e., axis_ids), the axes associated with the variable that this function defines. These handles should be ordered consistently with the data that will be passed to CMOR through function cmor_write (see documentation below). If the size of the 1-d array is larger than the number of dimensions, the 'unused' dimension handles must be set to 0.  Note that if the handle of a single axis is passed, it must not be passed as a scalar but as a rank 1 array of length 1.  Scalar ("singleton") dimensions defined in the MIP table may be omitted from axis_ids unless they have been explicitly redefined by the user through calls to cmor_axis.  A "singleton" dimension that has been explicitly defined by the user should appear last in the list of axis_ids if the array of data passed to cmor_write for this variable actually omits this dimension; otherwise it should appear consistent with the position of the axis in the array of data passed to cmor_write. In the case of a non-Cartesian grid, replace the values of the grid specific axes (representing the lat/lon axes) with the single grid_id returned by cmor_grid.

type = type of the missing_value, which must be the same as the type of the array that will be passed to cmor_write.  The options are: ‘d’ (double), ‘f’ (float), ‘l’ (long) or ‘i’ (int).

 [missing_value] = scalar that is used to indicate missing data for this variable.  It must be the same type as the data that will be passed to cmor_write.  This missing_value will in general be replaced by a standard missing_value specified in the MIP table.  If there are no missing data, and the user chooses not to declare the missing value, then this argument may be either omitted or assigned the value 'none' (i.e., missing_value='none').

[tolerance] = scalar (type real) indicating fractional tolerance allowed in missing values found in the data.  A value will be considered missing if it lies within ±tolerance*missing_value of missing_value.  The default tolerance for real and double precision missing values is 1.0e-4 and for integers 0.  This argument is ignored if the missing_value argument is not present.

[positive] = 'up' or 'down' depending on whether a user-passed vertical energy (heat) flux or surface momentum flux (stress) input to CMOR is positive when it is directed upward or downward, respectively.   This information will be used by CMOR to determine whether a sign change is necessary to make the data consistent with the MIP requirements.  This argument is required for vertical energy and salt fluxes, for "flux correction" fields, and for surface stress; it is ignored for all other variables.

[original_name] = the name of the variable as it is commonly known at the user's home institute.  If the variable passed to CMOR was computed in some simple way from two or more original fields (e.g., subtracting the upwelling and downwelling fluxes to get a net flux), then it is recommended that this be indicated in the "original_name" (e.g., "irup – irdown", where "irup" and "irdown" are the names of the original fields that were subtracted).  If more complicated processing was required, this information would more naturally be included in a "history" attribute for this variable, described next.

[history] = how the variable was processed before outputting through CMOR (e.g., give name(s) of the file(s) from which the data were read and indicate what calculations were performed, such as interpolating to standard pressure levels or adding 2 fluxes together).  This information should allow someone at the user's institute to reproduce the procedure that created the CMOR output.  Note that this history attribute is variable-specific, whereas the history attribute defined by cmor_dataset provides information concerning the model simulation itself or refers to processing procedures common to all variables (for example, mapping model output from an irregular grid to a Cartesian coordinate grid).  Note that when appropriate, CMOR will also indicate in the "history" attribute any operations it performs on the data (e.g., scaling the data, changing the sign, changing its type, reordering the dimensions, reversing a coordinate's direction or offsetting longitude). Any user-defined history will precede the information generated by CMOR.

[comment] = additional notes concerning this variable can be included here.

 

Returns:

Fortran: a negative integer if an error is encountered; otherwise returns a positive integer (the “handle”) uniquely identifying the variable.

C: 0 upon success.

Python: upon success, a positive integer (the “handle”) uniquely identifying the variable, or if an error is encountered an exception is raised.

 

 

Define a Variable Attribute: cmor_set_variable_attribute

 

Fortran: Not implemented because it is not needed for CMIP5

C: error_flag = cmor_set_variable_attribute(int variable_id, char *attribute_name, char type, void *value)

Python: Not implemented because it is not needed for CMIP5

 

Description:  Defines an attribute to be associated with the variable specified by the variable_id.  This function is unlikely to be called in preparing CMIP5 output.

 

Arguments:

variable_id = the “handle” returned by cmor_variable (when the variable was defined), which will become better described by the attribute defined in this function.

attribute_name = name of the attribute

type = type of the attribute value passed, which can be ‘d’ (double), ‘f’ (float), ‘l’ (long), ‘i’ (int), or ‘c’ (char).

value = whatever value you wish to set the attribute to (type defined by type argument).

 

Returns upon success:

C: 0

 

 

Retrieve a Variable Attribute: cmor_get_variable_attribute

 

Fortran: Not implemented because it is not needed for CMIP5

C: error_flag = cmor_get_variable_attribute(int variable_id, char *attribute_name, char type, void *value)

Python: Not implemented because it is not needed for CMIP5

 

Description: retrieves an attribute value set for the variable specified by the variable_id. This function is unlikely to be called in preparing CMIP5 output.

 

Arguments:

variable_id = the “handle” returned by cmor_variable (when the variable was defined) identifying which variable the attribute is associated with.

attribute_name = name of the attribute

type = type of the attribute value to be retrieved.  This can be ‘d’ (double), ‘f’ (float), ‘l’ (long), ‘i’ (int), or ‘c’ (char)

value = the argument that will accept the retrieved attribute.

 

Returns upon success:

C: 0

 

 

Inquire Whether a Variable Attribute Exists: cmor_has_variable_attribute

 

Fortran: Not implemented because it is not needed for CMIP5.

C: error_flag = cmor_has_variable_attribute(int variable_id, char *attribute_name)

Python: Not implemented because it is not needed for CMIP5.

 

Description: Determines whether an attribute exists and is associated with the variable specified by variable_id, which is a handle returned to the user by a previous call to cmor_variable.  This function is unlikely to be called in preparing CMIP5 output.

 

Arguments:

variable_id = the “handle” specifying which variable is of interest.  A variable_id is returned by cmor_variable each time a variable is defined.

attribute_name = name of the attribute of interest.

 

Returns upon success (i.e., if the attribute is found):

C: 0

 

 

Writing Data

Generate Output Path: cmor_create_output_path

 

Fortran: call cmor_create_output_path(var_id, path)

C: isfixed = cmor_create_output_path(int var_id, char *path)

Python: path = create_output_path(var_id)

 

Description: construct the output path, consistent with CMIP5 specifications, where the file will be stored.

 

Arguments:

var_id = variable identification (as returned from cmor_variable) you wish to get the output path for.

path = string (or pointer to a string), which is returned by the function and contains the output path.

 

Returns:

Fortran: nothing it is a subroutine

C: 0 upon success or 1 if the filed is a fixed field

Python: the full path to the output file

Write Data to File: cmor_write

 

Fortran: error_flag = cmor_write(var_id, data, [file_suffix], [ntimes_passed], [time_vals], [time_bnds], [store_with])

C: error_flag = cmor_write(int var_id, void *data, char type, char *file_suffix, int ntimes_passed, double *time_vals, double *time_bounds, int *store_with)

Python: write(var_id, data, ntimes_passed=None, file_suffix="", time_vals=None, time_bnds=None, store_with=None)

 

Description:  For the variable identified by var_id, write an array of data that includes one or more time samples.  This function will typically be repeatedly invoked to write other variables or append additional time samples of data.  Note that time-slices of data must be written chronologically.

 

Arguments:

var_id = integer returned by cmor_variable identifying the variable that will be written by this function.

data = array of data written by this function (of rank<8).  The rank of this array should either be: (a) consistent with the number of axes that were defined for it, or (b) it should be 1-dimensional, in which case the data must be stored contiguously in memory. In case (a), an exception is that for a variable that is a function of time and when only one "time-slice" is passed, then the array can optionally omit this dimension. Thus, for a variable that is a function of longitude, latitude, and time, for example, if only a single time-slice is passed to cmor_write, the rank of array "data" may be declared as either 2 or 3; when declared rank 3, the time-dimension will be size 1.  It is recommended (but not required) that the shape of data (i.e., the size of each dimension) be consistent with those expected for this variable (based on the axis definitions), but they are allowed to be larger (the extra values beyond the defined dimension domain will be ignored).  In any case the dimension sizes (lengths) must obviously not be smaller than those defined by the calls to cmor_axis.

type = type of variable array (“data”), which can be ‘d’ (double), ‘f’ (float), ‘l’ (long) or ‘i’ (int). 

[file_suffix] = string that will be concatenated with a string automatically generated by CMOR to form a unique filename where the output is written.  This suffix is only required when a time-sequence of output fields will not all be written into a single file (i.e., two or more files will contain the output for the variable).  The file prefix generated by CMOR is of the form variable_table, where variable is replaced by table_entry (i.e., the name of the variable), and table is replaced by the table number (e.g., tas_A1 refers to surface air temperature as specified in table A1).  Permitted characters will be: a-z, A-Z, 0-9, and “-”.  There are no restrictions on the suffix except that it must yield unique filenames and that it cannot contain any “_”.  If the user supplies a suffix, the leading '_' should be omitted (e.g., pass '1979-1988', not '_1979-1988').  Note that the suffix passed through cmor_write remains in effect for the particular variable until (optionally) redefined by a subsequent call. In the case of CMOR “Append mode” (in case the file already existed before a call to cmor_setup), then file_suffix is to be used to point to the original file, this value should reflect the FULL path where the file can be found, not just the file name. CMOR2 will be smart enough to figure out if a suffix was used when creating that file. Note that this file will be first moved to a temporary file and eventually renamed to reflect the additional times written to it.

[ntimes_passed] = integer number of time slices passed on this call.  If omitted, the number will be assumed to be the size of the time dimension of the data (if there is a time dimension).

[time_vals] = 1-d array (must be double precision) time coordinate values associated with the data array.  This argument should appear only if the time coordinate values were not passed in defining the time axis (i.e., in calling cmor_axis).  The units should be consistent with those passed as an argument to cmor_axis in defining the time axis.  If cell bounds are also passed (see next argument, '[time_bnds]'), then CMOR will first check that each coordinate value is not outside its associated cell bounds; subsequently, however, the user-defined coordinate value will be replaced by the mid-point of the interval defined by its bounds, and it is this value that will be written to the netCDF file.

 

[time_bnds] = 2-d array (must be double precision) containing time bounds, which should be in the same units as time_vals.  If the time_vals argument is omitted, this argument should also be omitted.    The array should be dimensioned (2, n) in Fortran, and (n,2) in C/Python, where n is the size of time_vals (see CF standard document, http://www.cgd.ucar.edu/cms/eaton/cf-metadata, for further information).

[store_with] = integer returned by cmor_variable identifying the variable that the zfactor should be stored with.  This argument must be defined when and only when writing a z-factor.  (See description of the zfactor function above.)

 

Returns upon success:

Fortran: 0

C: 0

Python: None

 

 

Close File(s): cmor_close

 

Fortran: error_flag = cmor_close(var_id, file_name, preserve) 

C: error_flag = cmor_close(void)  or

C: error_flag = cmor_close_variable(int var_id, char *file_name, int *preserve)

Python: error_flag (or if name=True, returns the name of the file and optionally the new var_id if preserve is True) = close(var_id=None, file_name=False, preserve=False)

 

Description:  Close a single file specified by optional argument var_id, or if the argument is omitted (or void), close all files created by CMOR (including log files). To be safe, before exiting any program that invokes CMOR, it is often best to call this function with the argument omitted. When using C, to close a single variable, use: cmor_close_variable(var_id), rather than cmor_close(void). When using this function to close a single file, an additional optional argument (of type “string”) can be included, into which will be returned the file name created by CMOR. Another additional optional argument can be passed specifying if the variable should be preserved, i.e more data have to be written for this variable but you wish to start a new file (the original var_id is preserved).

 

Arguments:

 [var_id] = the “handle” identifying an individual variable and the associated output file that will be closed by this function.

[file_name] = a string where the output file name will be stored. This option provides a convenient method for the user to record the filename, which might be needed on a subsequent call to CMOR, for example, in order to append additional time samples to the file.

[preserve] = Do you want to preserve the var definition? (0/1) 

 

Returns:

Fortran: 0 upon success

C: 0 upon success

            Python: None if file_name=False or the name of the file if file_name=True.


Appendix A: Errors in CMOR

 

Critical Errors

The following errors are considered as CRITICAL and will cause a CMOR code to stop.

 

1.     Calling a CMOR function before running cmor_setup

2.     NetCDF version is neither 3.6.3 or 4.1 or greater

3.     Udunits could not parse units

4.     Incompatible units

5.     Udunits could not create a converter

6.     Logfile could not be open for writing

7.     Output directory does not exist

8.     Output directory is not a directory

9.     User does not have read/write privileges on the output directory

10.   Wrong value for error_mode

11.   wrong value for netCDF mode

12.   error reading udunits system

13.   NetCDF could not set variable attribute

14.   Dataset does not have one of the required attributes (required attributes can be defined in the MIP table)

15.   Required global attribute is missing

16.   If CMIP5 project: source attributes does not start with model_id attribute.

17.   Forcing dataset attribute is not valid

18.   Leap_year defined with invalid leap_month

19.   Invalid leap month (<1 or >12)

20.   Leap month defined but no leap year

21.   Negative realization number

22.   Zfactor variable not defined when needed

23.   Zfactor defined w/o values and NOT time dependent.

24.   Variable has axis defined with formula terms depending on axis that are not part of the variable

25.   NetCDF error  when creating zfactor variable

26.   NetCDF Error defining compression parameters

27.   Calling cmor_write with an invalid variable id

28.   Could not create path structure

29.   “variable id” contains a “_” or a ‘-‘ this means bad MIP table.

30.   “file_suffix” contains a “_”

31.   Could not rename the file you’re trying to append to.

32.   Trying to write an “Associated variable” before the variable itself

33.   Output file exists and you’re not in append/replace mode

34.   NetCDF Error opening file for appending

35.   NetCDF could not find time dimension in a file onto which you want to append

36.   NetCDF could not figure out the length time dimension in a file onto which you want to append

37.   NetCDF could not find your variable while appending to a file

38.   NetCDF could not find time dimension in the variable onto which you’re trying to append

39.   NetCDF could not find time bounds in the variable onto which you’re trying to append

40.   NetCDF mode got corrupted.

41.   NetCDF error creating file

42.   NetCDF error putting file in definition mode

43.   NetCDF error writing file global attribute

44.   NetCDF error creating dimension in file

45.   NetCDF error creating variable

46.   NetCDF error writing variable attribute

47.   NetCDF error setting chunking parameters

48.   NetCDF error leaving definition mode

49.   Hybrid coordinate, could not find “a” coefficient

50.   Hybrid coordinate, could not find “b” coefficient

51.   Hybrid coordinate, could not find “a_bnds” coefficient

52.   Hybrid coordinate, could not find “b_bnds” coefficient

53.   Hybrid coordinate, could not find “p0” coefficient

54.   Hybrid coordinate, could not find “ap” coefficient

55.   Hybrid coordinate, could not find “ap_bnds” coefficient

56.   Hybrid coordinate, could not find “sigma” coefficient

57.   Hybrid coordinate, could not find “sigma_bnds” coefficient

58.   NetCDF writing error

59.   NetCDF error closing file

60.   Could not rename temporary file to its final name.

61.   Cdms could not convert time values for calendar.

62.   Variable does not have all required attributes (cmor_variable)

63.   Reference variable is defined with “positive”, user did not pass it to cmor_variable

64.   Could not allocate memory for zfactor elements

65.   Udunits error freeing units

66.   Udunits error freeing converter

67.   Could not allocate memory for zfactor_bounds

68.   Calling cmor_variable before reading in a MIP table

69.   Too many variable defined (see appendix on CMOR limits)

70.   Could not find variable in MIP table

71.   Wrong parameter “positive” passed

72.   No “positive” parameter passed to cmor_variable and it is required for this variable

73.   Variable defined with too many (not enough) dimensions

74.   Variable defined with axis that should not be on this variable

75.   Variable defined within existing axis (wrong axis_id)

76.   Defining variable with axes defined in a MIP table that is not the current one.

77.   Defining a variable with too many axes (see annex on CMOR limits)

78.   Defining variable with axes ids that are not valid.

79.   Defining variable with grid id that is not valid.

80.   Defining a variable with dimensions that are not part of the MIP table (except for var named “latitude” and “longitude”, since they could have grid axes defined in another MIP table)

81.   Trying to retrieve length of time for a variable defined w/o time length

82.   Trying to retrieve variable shape into an array of wrong rank (Fortran only really)

83.   Calling cmor_write with time values for a timeless variable

84.   Cannot allocate memory for temporary array to write

85.   Invalid absolute mean for data written (lower or greater by one order of magintudethan what the MIP table allows)

86.   Calling cmor_write with time values when they have already been defined with cmor_axis when creating time axis

87.   Cannot allocate memory to store time values

88.   Cannot allocate memory to store time bounds values

89.   Time values are not monotonic

90.   Calling cmor_write w/o time values when no values were defined via cmor_axis when creating time axis

91.   Time values already written in file

92.   Time axis units do not contain “since” word (cmor_axis)

93.   Invalid data type for time values (ok are ‘f’,’l’,’i’,’d’)

94.   Time values are not within time bounds

95.   Non monotonic time bounds

96.   Longitude axis spread over 360 degrees.

97.   Overlapping bound values (except for climatological data)

98.   bounds and axis values are not stored in the same order

99.   requested value for axis not present

100.                  approximate time axis interval much greater (>20%) than the one defined in your MIP table

101.                  calling cmor_axis before loading a MIP table

102.                  too many axes defined (see appendix on CMOR limits)

103.                  could not find reference axis name in current MIP table

104.                  output axis needs to be standard_hybrid_sigma and input axis is not one of : “standard_hybrid_sigma”, “alternate_hybrid_sigma”, “standard_sigma”

105.                  MIP table requires to convert axis to unknown type

106.                  requested “region” not present on axis

107.                  axis (with bounds) values are in invalid type (valid are: ‘f’,’d’,’l’,’i’)

108.                  requested values already checked but stored internally, could be bad user cleanup

109.                  MIP table defined for version of CMOR greater than the library you’re using

110.                  too many experiments defined in MIP table (see appendix on CMOR limits)

111.                  cmor_set_table used with invalid table_id

112.                  MIP table  has too many axes defined in it (see appendix on CMOR limits)

113.                  MIP table  has too many variables defined in it (see appendix on CMOR limits)

114.                  MIP table  has too many mappings defined in it (see appendix on CMOR limits)

115.                  MIP table  defines the same mapping twice

116.                  grid mapping has too many parameters (see appendix on CMOR limits)

117.                  grid has different number of axes than what grid_mapping prescribes.

118.                  Could not find all the axes required by grid_mapping

119.                  Call to cmor_grid with axis that are not created yet via cmor_axis

120.                  Too many grids defined (see appendix on cmor_limits)

121.                  Call to cmor_grid w/o latitude array

122.                  Call to cmor_grid w/o longitude array

 

 

 


Appendix B: Limits in cmor

 

The following are defined in cmor.h

 

#define CMOR_MAX_STRING 1024

#define CMOR_DEF_ATT_STR_LEN 256

#define CMOR_MAX_ELEMENTS 500

#define CMOR_MAX_AXES CMOR_MAX_ELEMENTS*3

#define CMOR_MAX_VARIABLES CMOR_MAX_ELEMENTS

#define CMOR_MAX_GRIDS 100

#define CMOR_MAX_DIMENSIONS 7

#define CMOR_MAX_ATTRIBUTES 100

#define CMOR_MAX_ERRORS 10

#define CMOR_MAX_TABLES 10

#define CMOR_MAX_GRID_ATTRIBUTES 25


Appendix C: Sample Codes

FORTRAN

Sample Program 1

 

!!$pgf90 -I/work/NetCDF/5.1/include -L/work/NetCDF/5.1/lib -l netcdf -L. -l cmor Test/test_dimensionless.f90 -IModules -o cmor_test

!!$pgf90 -g -I/pcmdi/charles_work/NetCDF/include -L/pcmdi/charles_work/NetCDF/lib -lnetcdf -module Modules -IModules -L. -lcmor -I/pcmdi/charles_work/Unidata/include -L/pcmdi/charles_work/Unidata/lib -ludunits Test/test_dimensionless.f90 -o cmor_test

 

MODULE local_subs

 

  USE cmor_users_functions

  PRIVATE

  PUBLIC read_coords, read_time, read_3d_input_files, read_2d_input_files

CONTAINS

 

  SUBROUTINE read_coords(alats, alons, plevs, bnds_lat, bnds_lon)

 

    IMPLICIT NONE

   

    DOUBLE PRECISION, INTENT(OUT), DIMENSION(:) :: alats

    DOUBLE PRECISION, INTENT(OUT), DIMENSION(:) :: alons

    DOUBLE PRECISION, INTENT(OUT), DIMENSION(:) :: plevs

    DOUBLE PRECISION, INTENT(OUT), DIMENSION(:,:) :: bnds_lat

    DOUBLE PRECISION, INTENT(OUT), DIMENSION(:,:) :: bnds_lon

   

    INTEGER :: i

   

    DO i = 1, SIZE(alons)

       alons(i) = (i-1)*360./SIZE(alons)

       bnds_lon(1,i) = (i - 1.5)*360./SIZE(alons)

       bnds_lon(2,i) = (i - 0.5)*360./SIZE(alons)

    END DO

   

    DO i = 1, SIZE(alats)

       alats(i) = (size(alats)+1-i)*10

       bnds_lat(1,i) = (size(alats)+1-i)*10 + 5.

       bnds_lat(2,i) = (size(alats)+1-i)*10 - 5.

    END DO

 

    DO i = 1, SIZE(plevs)

       plevs(i) = i*1.0e4

    END DO

      plevs = (/100000., 92500., 85000., 70000.,&

       60000., 50000., 40000., 30000., 25000., 20000.,&

       15000., 10000., 7000., 5000., 3000., 2000., 1000. /)

   

    RETURN

  END SUBROUTINE read_coords

 

  SUBROUTINE read_time(it, time, time_bnds)

   

    IMPLICIT NONE

   

    INTEGER, INTENT(IN) :: it

    DOUBLE PRECISION, INTENT(OUT) :: time

    DOUBLE PRECISION, INTENT(OUT), DIMENSION(2,1) :: time_bnds

   

    time = (it-0.5)*30.

    time_bnds(1,1) = (it-1)*30.

    time_bnds(2,1) = it*30.

   

    RETURN

  END SUBROUTINE read_time

 

  SUBROUTINE read_3d_input_files(it, varname, field)

 

    IMPLICIT NONE

   

    INTEGER, INTENT(IN) :: it

    CHARACTER(len=*), INTENT(IN) :: varname

    REAL, INTENT(OUT), DIMENSION(:,:,:) :: field

   

    INTEGER :: i, j, k

    REAL :: factor, offset

    CHARACTER(len=LEN(varname)) :: tmp

   

    tmp = TRIM(ADJUSTL(varname))

    SELECT CASE (tmp)

    CASE ('CLOUD') 

       factor = 0.1

       offset = -50.

    CASE ('U') 

       factor = 1.

       offset = 100.

    CASE ('T')

       factor = 0.5

       offset = -150.

    END SELECT

   

    DO k=1,SIZE(field, 3)

       DO j=1,SIZE(field, 2)

          DO i=1,SIZE(field, 1)

             field(i,j,k) = ((k-1)*64 + (j-1)*16 + (i-1)*4 + it)*factor - offset

          END DO

       END DO

    END DO

   

  END SUBROUTINE read_3d_input_files

 

  SUBROUTINE read_2d_input_files(it, varname, field)

 

    IMPLICIT NONE

   

    INTEGER, INTENT(IN) :: it

    CHARACTER(len=*), INTENT(IN) :: varname

    REAL, INTENT(OUT), DIMENSION(:,:) :: field

   

    INTEGER :: i, j

    REAL :: factor, offset

    CHARACTER(len=LEN(varname)) :: tmp

   

    tmp = TRIM(ADJUSTL(varname))

    SELECT CASE (tmp)

    CASE ('LATENT') 

      

       factor = 1.

       offset = 20.

    CASE ('TSURF')

       factor = 2.0

       offset = -220.

    CASE ('SOIL_WET')

       factor = 10.

       offset = 0.

    CASE ('PSURF')

       factor = 100.

       offset = -9.7e4

    END SELECT

   

    DO j=1,SIZE(field, 2)

       DO i=1,SIZE(field, 1)

          field(i,size(field,2)+1-j) = ((j-1)*16 + (i-1)*4 + it)*factor - offset

       END DO

    END DO

 

  END SUBROUTINE read_2d_input_files

 

END MODULE local_subs

 

 

PROGRAM ipcc_test_code

!

!   Purpose:   To serve as a generic example of an application that

!       uses the "Climate Model Output Rewriter" (CMOR)

 

!    CMOR writes CF-compliant netCDF files.

!    Its use is strongly encouraged by the IPCC and is intended for use

!       by those participating in many community-coordinated standard

!       climate model experiments (e.g., AMIP, CMIP, CFMIP, PMIP, APE,

!       etc.)

!

!   Background information for this sample code:

!

!      Atmospheric standard output requested by IPCC are listed in

!   tables available on the web.  Monthly mean output is found in

!   tables A1a and A1c.  This sample code processes only two 3-d

!   variables listed in table A1c ("monthly mean atmosphere 3-D data"

!   and only four 2-d variables listed in table A1a ("monthly mean

!   atmosphere + land surface 2-D (latitude, longitude) data").  The

!   extension to many more fields is trivial.

!

!      For this example, the user must fill in the sections of code that

!   extract the 3-d and 2-d fields from his monthly mean "history"

!   files (which usually contain many variables but only a single time

!   slice).  The CMOR code will write each field in a separate file, but

!   many monthly mean time-samples will be stored together.  These

!   constraints partially determine the structure of the code.

!

!

!   Record of revisions:

 

!       Date        Programmer(s)           Description of change

!       ====        ==========              =====================

!      10/22/03     Rusty Koder              Original code

!       1/28/04     Les R. Koder             Revised to be consistent

!                                            with evolving code design

 

! include module that contains the user-accessible cmor functions.

  USE cmor_users_functions

  USE local_subs

 

  IMPLICIT NONE

 

  !   dimension parameters:

  ! ---------------------------------

  INTEGER, PARAMETER :: ntimes = 2    ! number of time samples to process

  INTEGER, PARAMETER :: lon = 4       ! number of longitude grid cells 

  INTEGER, PARAMETER :: lat = 3       ! number of latitude grid cells

  INTEGER, PARAMETER :: lev = 5       ! number of standard pressure levels

  INTEGER, PARAMETER :: lev2 = 17       ! number of standard pressure levels

  INTEGER, PARAMETER :: n2d = 4       ! number of IPCC Table A1a fields to be

                                      !     output.

  INTEGER, PARAMETER :: n3d = 3       ! number of IPCC Table A1c fields to

                                      !     be output. 

 

  !   Tables associating the user's variables with IPCC standard output

  !   variables.  The user may choose to make this association in a

  !   different way (e.g., by defining values of pointers that allow him

  !   to directly retrieve data from a data record containing many

  !   different variables), but in some way the user will need to map his

  !   model output onto the Tables specifying the MIP standard output.

 

  ! ----------------------------------

 

                                ! My variable names for IPCC Table A1c fields

  CHARACTER (LEN=5), DIMENSION(n3d) :: &

                                 varin3d=(/'CLOUD', 'U    ', 'T    '/)

 

                                ! Units appropriate to my data

  CHARACTER (LEN=5), DIMENSION(n3d) :: &

                                  units3d=(/ '%    ', 'm s-1',   'K    '  /)

 

                     ! Corresponding IPCC Table A1c entry (variable name)

  CHARACTER (LEN=2), DIMENSION(n3d) :: entry3d = (/ 'cl', 'ua', 'ta' /)

 

                                ! My variable names for IPCC Table A1a fields

  CHARACTER (LEN=8), DIMENSION(n2d) :: &

                  varin2d=(/ 'LATENT  ', 'TSURF   ', 'SOIL_WET', 'PSURF   ' /)

 

                                ! Units appropriate to my data

   CHARACTER (LEN=6), DIMENSION(n2d) :: &

                          units2d=(/ 'W m-2 ', 'K     ', 'kg m-2', 'Pa    ' /)

 

   CHARACTER (LEN=4), DIMENSION(n2d) :: &

                      positive2d= (/  'down',  '    ', '    ', '    '  /)

 

                     ! Corresponding IPCC Table A1a entry (variable name)

  CHARACTER (LEN=5), DIMENSION(n2d) :: &

                        entry2d = (/ 'hfls ', 'tas  ', 'mrsos', 'ps   ' /)

 

!  uninitialized variables used in communicating with CMOR:

!  ---------------------------------------------------------

 

  INTEGER :: error_flag

  INTEGER :: znondim_id, zfactor_id

  INTEGER, DIMENSION(n2d) :: var2d_ids

  INTEGER, DIMENSION(n3d) :: var3d_ids

  REAL, DIMENSION(lon,lat) :: data2d

  REAL, DIMENSION(lon,lat,lev2) :: data3d

  DOUBLE PRECISION, DIMENSION(lat) :: alats

  DOUBLE PRECISION, DIMENSION(lon) :: alons

  DOUBLE PRECISION, DIMENSION(lev2) :: plevs

  DOUBLE PRECISION, DIMENSION(1) :: time

  DOUBLE PRECISION, DIMENSION(2,1):: bnds_time

  DOUBLE PRECISION, DIMENSION(2,lat) :: bnds_lat

  DOUBLE PRECISION, DIMENSION(2,lon) :: bnds_lon

  DOUBLE PRECISION, DIMENSION(lev) :: zlevs

  DOUBLE PRECISION, DIMENSION(lev+1) :: zlev_bnds

  REAL, DIMENSION(lev) :: a_coeff

  REAL, DIMENSION(lev) :: b_coeff

  REAL :: p0

  REAL, DIMENSION(lev+1) :: a_coeff_bnds

  REAL, DIMENSION(lev+1) :: b_coeff_bnds

  INTEGER :: ilon, ilat, ipres, ilev, itim, itim2, ilon2,ilat2

  DOUBLE PRECISION bt

 

  character(256)::  outpath

 

  !  Other variables:

  !  ---------------------

 

  INTEGER :: it, m 

  bt=0.

  ! ================================

  !  Execution begins here:

  ! ================================

 

  ! Read coordinate information from model into arrays that will be passed

  !   to CMOR.

  ! Read latitude, longitude, and pressure coordinate values into

  !   alats, alons, and plevs, respectively.  Also generate latitude and

  !   longitude bounds, and store in bnds_lat and bnds_lon, respectively.

  !   Note that all variable names in this code can be freely chosen by

  !   the user.

 

  !   The user must write the subroutine that fills the coordinate arrays

  !   and their bounds with actual data.  The following line is simply a

  !   a place-holder for the user's code, which should replace it.

 

  !  *** possible user-written call ***

 

  call read_coords(alats, alons, plevs, bnds_lat, bnds_lon)

 

  ! Specify path where tables can be found and indicate that existing

  !    netCDF files should not be overwritten.

 

  error_flag = cmor_setup(inpath='Test', netcdf_file_action='replace')

 

  ! Define dataset as output from the GICC model (first member of an

  !   ensemble of simulations) run under IPCC 2xCO2 equilibrium

  !   experiment conditions, and provide information to be included as

  !   attributes in all CF-netCDF files written as part of this dataset.

 

  error_flag = cmor_dataset(                                   &

       outpath='Test',                                         &

       experiment_id='abrupt 4XCO2',           &

       institution=                                            &

       'GICC (Generic International Climate Center, ' //       &

       'Geneva, Switzerland)',                                 &

       source='GICCM1 (2002): ' //                             &

       'atmosphere:  GICAM3 (gicam_0_brnchT_itea_2, T63L32); '// &

       'ocean: MOM (mom3_ver_3.5.2, 2x3L15); '             //  &

       'sea ice: GISIM4; land: GILSM2.5',                      &

       calendar='360_day',                                      &

       realization=1,                                          &

       history='Output from archive/giccm_03_std_2xCO2_2256.', &

       institute_id = 'PCMDI', &

       comment='Equilibrium reached after 30-year spin-up ' // &

       'after which data were output starting with nominal '// &

       'date of January 2030',                                 &

       references='Model described by Koder and Tolkien ' //   &

       '(J. Geophys. Res., 2001, 576-591).  Also '        //   &

       'see http://www.GICC.su/giccm/doc/index.html '     //   &

       ' 2XCO2 simulation described in Dorkey et al. '    //   &

       '(Clim. Dyn., 2003, 323-357.)',&

       model_id='GICCM1',forcing='TO',contact="Barry Bonds",&

       parent_experiment_id="N/A",branch_time=bt)

 

 

  !  Define all axes that will be needed

 

  ilat = cmor_axis(  &

       table='Tables/CMIP5_Amon',    &

       table_entry='latitude',       &

       units='degrees_north',        & 

       length=lat,                   &

       coord_vals=alats,             &

       cell_bounds=bnds_lat)       

      

  ilon2 = cmor_axis(  &

       table='Tables/CMIP5_Lmon',    &

       table_entry='longitude',      &

       length=lon,                   &

       units='degrees_east',         &

       coord_vals=alons,             &

       cell_bounds=bnds_lon)     

       

  ilat2 = cmor_axis(  &

       table='Tables/CMIP5_Lmon',    &

       table_entry='latitude',       &

       units='degrees_north',        & 

       length=lat,                   &

       coord_vals=alats,             &

       cell_bounds=bnds_lat)       

     

  ilon = cmor_axis(  &

       table='Tables/CMIP5_Amon',    &

       table_entry='longitude',      &

       length=lon,                   &

       units='degrees_east',         &

       coord_vals=alons,             &

       cell_bounds=bnds_lon)     

       

  ipres = cmor_axis(  &

       table='Tables/CMIP5_Amon',    &

       table_entry='plevs',       &

       units='Pa',                   &

       length=lev2,                   &

       coord_vals=plevs)

 

  !   note that the time axis is defined next, but the time coordinate

  !   values and bounds will be passed to cmor through function

  !   cmor_write (later, below).

 

  itim = cmor_axis(  &

       table='Tables/CMIP5_Amon',    &

       table_entry='time',           &

       units='days since 2030-1-1',  &

       length=ntimes,                &

       interval='20 minutes')

  itim2 = cmor_axis(  &

       table='Tables/CMIP5_Lmon',    &

       table_entry='time',           &

       units='days since 2030-1-1',  &

       length=ntimes,                &

       interval='20 minutes')

 

  !  define model eta levels (although these must be provided, they will

  !    actually be replaced by a+b before writing the netCDF file)

  zlevs = (/ 0.1, 0.3, 0.55, 0.7, 0.9 /)

  zlev_bnds=(/ 0.,.2, .42, .62, .8, 1. /)

 

  ilev = cmor_axis(  &

       table='Tables/CMIP5_Amon',    &

       table_entry='standard_hybrid_sigma',       &

       units='1', &

       length=lev,                   &

       coord_vals=zlevs,             &

       cell_bounds=zlev_bnds)

 

  !   define z-factors needed to transform from model level to pressure

  p0 = 1.e5

  a_coeff = (/ 0.1, 0.2, 0.3, 0.22, 0.1 /)

  b_coeff = (/ 0.0, 0.1, 0.2, 0.5, 0.8 /)

 

  a_coeff_bnds=(/0.,.15, .25, .25, .16, 0./)

  b_coeff_bnds=(/0.,.05, .15, .35, .65, 1./)

 

  error_flag = cmor_zfactor(  &

       zaxis_id=ilev,                      &

       zfactor_name='p0',                  &

       units='Pa',                         &

       zfactor_values = p0)

 

  error_flag = cmor_zfactor(  &

       zaxis_id=ilev,                       &

       zfactor_name='b',                    &

       axis_ids= (/ ilev /),                &

       zfactor_values = b_coeff,            &

       zfactor_bounds = b_coeff_bnds  )

 

  error_flag = cmor_zfactor(  &

       zaxis_id=ilev,                       &

       zfactor_name='a',                    &

       axis_ids= (/ ilev /),                &

       zfactor_values = a_coeff,            &

       zfactor_bounds = a_coeff_bnds )

 

  zfactor_id = cmor_zfactor(  &

       zaxis_id=ilev,                         &

       zfactor_name='ps',                     &

       axis_ids=(/ ilon, ilat, itim /),       &

       units='Pa' )

 

  !  Define the only field to be written that is a function of model level

  !    (appearing in IPCC table A1c)

 

  var3d_ids(1) = cmor_variable(    &

       table='Tables/CMIP5_Amon',  &

       table_entry=entry3d(1),     &

       units=units3d(1),           &

       axis_ids=(/ ilon, ilat, ilev, itim /),  &

       missing_value=1.0e28, &

       original_name=varin3d(1))

 

  !  Define variables appearing in IPCC table A1c that are a function of pressure

  !         (3-d variables)

 

  DO m=2,n3d

     var3d_ids(m) = cmor_variable(    &

          table='Tables/CMIP5_Amon',  &

          table_entry=entry3d(m),     &

          units=units3d(m),           &

          axis_ids=(/ ilon, ilat, ipres, itim /), &

          missing_value=1.0e28,       &

          original_name=varin3d(m))

  ENDDO

 

 

  !  Define variables appearing in IPCC table A1a (2-d variables)

  

  DO m=1,n2d

     if (m.ne.3) then

     var2d_ids(m) = cmor_variable(    &

          table='Tables/CMIP5_Amon',      &

          table_entry=entry2d(m),     &

          units=units2d(m),           &

          axis_ids=(/ ilon, ilat, itim /), &

          missing_value=1.0e28,       &

          positive=positive2d(m),     &

          original_name=varin2d(m))  

  else

     var2d_ids(m) = cmor_variable(    &

          table='Tables/CMIP5_Lmon',      &

          table_entry=entry2d(m),     &

          units=units2d(m),           &

          axis_ids=(/ ilon2, ilat2, itim2 /), &

          missing_value=1.0e28,       &

          positive=positive2d(m),     &

          original_name=varin2d(m))

  endif

  ENDDO

 

  PRINT*, ' '

  PRINT*, 'completed everything up to writing output fields '

  PRINT*, ' '

 

  !  Loop through history files (each containing several different fields,

  !       but only a single month of data, averaged over the month).  Then

  !       extract fields of interest and write these to netCDF files (with

  !       one field per file, but all months included in the loop).

 

  time_loop: DO it=1, ntimes

    

     ! In the following loops over the 3d and 2d fields, the user-written   

     ! subroutines (read_3d_input_files and read_2d_input_files) retrieve

     ! the requested IPCC table A1c and table A1a fields and store them in

     ! data3d and data2d, respectively.  In addition a user-written code

     ! (read_time) retrieves the time and time-bounds associated with the

     ! time sample (in units of 'days since 1970-1-1', consistent with the

     ! axis definitions above).  The bounds are set to the beginning and

     ! the end of the month retrieved, indicating the averaging period.

    

     ! The user must write a code to obtain the times and time-bounds for

     !   the time slice.  The following line is simply a place-holder for

     !   the user's code, which should replace it.

    

    call read_time(it, time(1), bnds_time)

 

    call read_3d_input_files(it, varin3d(1), data3d)

 

    error_flag = cmor_write(                                  &

         var_id        = var3d_ids(1),                        &

         data          = data3d,                              &

         ntimes_passed = 1,                                   &

         time_vals     = time,                                &

         time_bnds     = bnds_time   )

 

    call read_2d_input_files(it, varin2d(4), data2d)                 

 

    error_flag = cmor_write(                                  &

         var_id        = zfactor_id,                          &

         data          = data2d,                              &

         ntimes_passed = 1,                                   &

         time_vals     = time,                                &

         time_bnds     = bnds_time,                           &

         store_with    = var3d_ids(1) )

 

    ! Cycle through the 3-d fields (stored on pressure levels),

    ! and retrieve the requested variable and append each to the

    ! appropriate netCDF file.

 

    DO m=2,n3d

       

        ! The user must write the code that fills the arrays of data

        ! that will be passed to CMOR.  The following line is simply a

        ! a place-holder for the user's code, which should replace it.

 

        call read_3d_input_files(it, varin3d(m), data3d)

      

        ! append a single time sample of data for a single field to

        ! the appropriate netCDF file.

        call cmor_create_output_path(var3d_ids(m),outpath)

        print*, 'Ok we will dump that at: ',outpath

        error_flag = cmor_write(                                  &

             var_id        = var3d_ids(m),                        &

             data          = data3d,                              &

             ntimes_passed = 1,                                   &

             time_vals     = time,                                &

             time_bnds     = bnds_time  )

       

        IF (error_flag < 0) THEN

           ! write diagnostic messages to standard output device

           write(*,*) ' Error encountered writing IPCC Table A1c ' &

                // 'field ', entry3d(m), ', which I call ', varin3d(m)

           write(*,*) ' Was processing time sample: ', time

                     

        END IF

 

     END DO

    

     ! Cycle through the 2-d fields, retrieve the requested variable and

     ! append each to the appropriate netCDF file.

    

     DO m=1,n2d

       

        ! The user must write the code that fills the arrays of data

        ! that will be passed to CMOR.  The following line is simply a

        ! a place-holder for the user's code, which should replace it.

       

        call read_2d_input_files(it, varin2d(m), data2d)                 

 

        ! append a single time sample of data for a single field to

        ! the appropriate netCDF file.

 

        error_flag = cmor_write(                                  &

             var_id        = var2d_ids(m),                        &

             data          = data2d,                              &

             ntimes_passed = 1,                                   &

             time_vals     = time,                                &

             time_bnds     = bnds_time  )

       

       IF (error_flag < 0) THEN

           ! write diagnostic messages to standard output device

           write(*,*) ' Error encountered writing IPCC Table A1a ' &

                // 'field ', entry2d(m), ', which I call ', varin2d(m)

           write(*,*) ' Was processing time sample: ', time

                     

        END IF

        

     END DO

    

  END DO time_loop

 

  !   Close all files opened by CMOR.

 

  error_flag = cmor_close() 

 

  print*, ' '

  print*, '******************************'

  print*, ' '

  print*, 'ipcc_test_code executed to completion '  

  print*, ' '

  print*, '******************************'

 

END PROGRAM ipcc_test_code

 

 

 

C

Sample Program 1: grids

 

#include <time.h>

#include <stdio.h>

#include<string.h>

#include "cmor.h"

#include <stdlib.h>

#include <math.h>

 

void read_time(it, time, time_bnds)

     int it;

     double time[];

     double time_bnds[];

{   

  time[0] = (it-0.5)*30.;

  time_bnds[0] = (it-1)*30.;

  time_bnds[1] = it*30.;

 

  time[0]=it;

  time_bnds[0] = it;

  time_bnds[1] = it+1;

 

}

 

void read_3d_input_files(it, varname, field,n0,n1,n2)

     int it,n0,n1,n2;

     char *varname;

     double field[];

{

  int i,j,k;

  float factor,offset;

   

  if (strcmp(varname,"CLOUD")==0) {

    factor = 0.1;

    offset = -50.;

  }

  else if (strcmp(varname,"U")==0) {

    factor = 1.;

    offset = 100.;

  }

  else if (strcmp(varname,"T")==0) {

    factor = 0.5;

    offset = -150.;

  }

   

  for (k=0;k<n2;k++) {

    for (j=0;j<n1;j++) {

      for (i=0;i<n0;i++) {

        field[k*(n0*n1)+j*n0+i] = (k*64 + j*16 + i*4 + it)*factor - offset;

      }

    }

  }

}

 

void read_2d_input_files(it, varname, field, n0, n1)

  int it,n0,n1;

  char *varname;

  double field[];

{   

  int i, j,k;

  double factor, offset;

  double tmp;

 

  if (strcmp(varname,"LATENT")==0){

    factor = 1.;

    offset = 120.;

  }

  else if (strcmp(varname,"TSURF")==0){

    factor = 2.0;

    offset = -230.;

  }

  else if (strcmp(varname,"SOIL_WET")==0){

    factor = 10.;

    offset = 0.;

  }

  else if (strcmp(varname,"PSURF")==0){

    factor = 1.;

    offset = -9.7e2;

  }

 

  for (j=0;j<n0;j++){

    for (i=0;i<n1;i++) {

      tmp = ((double)j*16. + (double)(i)*4. + (double)it)*factor - offset;

      k= (n0-1-j)*n1+i;

      field[k] = tmp;

    }

  }

}

 

int main()

{

 

  /*   dimension parameters: */

  /* --------------------------------- */

#define   ntimes  2    /* number of time samples to process */

#define   lon  3       /* number of longitude grid cells   */

#define   lat  4       /* number of latitude grid cells */

#define   lev  5       /* number of standard pressure levels */

 

  double x[lon];

  double y[lat];

  double lon_coords[lon*lat];

  double lat_coords[lon*lat];

  double lon_vertices[lon*lat*4];

  double lat_vertices[lon*lat*4];

 

  double data2d[lat*lon];

  double data3d[lev*lat*lon];

 

  int myaxes[10];

  int mygrids[10];

  int myvars[10];

  int tables[4];

  int axes_ids[CMOR_MAX_DIMENSIONS];

  int i,j,k,ierr;

 

  double Time[ntimes];

  double  bnds_time[ntimes*2];

  double tolerance=1.e-4;

  double lon0 = 280.;

  double lat0=0.;

  double delta_lon = 10.;

  double delta_lat = 10.;

  char id[CMOR_MAX_STRING];

  double tmpf=0.;

 

#define nparam 6 /* number of grid parameters */

#define lparam 40

#define lunits 14

  char params[nparam][lparam] = {"standard_parallel1","longitude_of_central_meridian","latitude_of_projection_origin","false_easting","false_northing","standard_parallel2"};

  char punits[nparam][lunits] = {"degrees_north","degrees_east","degrees_north","m","m","degrees_north"};

  //char punits[nparam][lunits] = {"","","","","",""};

  double pvalues[nparam] = {-20.,175.,13.,8.,0.,20};

  int exit_mode;

  /* first construct grid lon/lat */

  for (j=0;j<lat;j++) {

    y[j]=j;

    for (i=0;i<lon;i++) {

      x[i]=i;

      lon_coords[i+j*lon] = lon0+delta_lon*(j+1+i);

      lat_coords[i+j*lon] = lat0+delta_lat*(j+1-i);

      /* vertices lon*/

      k = i*4+j*lon*4+0;

      printf("i,j,k: %i, %i, %i\n",i,j,k);

      lon_vertices[i*4+j*lon*4+0] = lon_coords[i+j*lon]-delta_lon;

      lon_vertices[i*4+j*lon*4+1] = lon_coords[i+j*lon];

      lon_vertices[i*4+j*lon*4+2] = lon_coords[i+j*lon]+delta_lon;

      lon_vertices[i*4+j*lon*4+3] = lon_coords[i+j*lon];

      /* vertices lat */

      lat_vertices[i*4+j*lon*4+0] = lat_coords[i+j*lon];

      lat_vertices[i*4+j*lon*4+1] = lat_coords[i+j*lon]-delta_lat;

      lat_vertices[i*4+j*lon*4+2] = lat_coords[i+j*lon];

      lat_vertices[i*4+j*lon*4+3] = lat_coords[i+j*lon]+delta_lat;

      }

  }

 

  exit_mode = CMOR_EXIT_ON_MAJOR;

  j = CMOR_REPLACE;

  printf("Test code: ok init cmor, %i\n",exit_mode);

  ierr = cmor_setup(NULL,&j,NULL,&exit_mode,NULL,NULL);

  printf("Test code: ok init cmor\n");

  int tmpmo[12];

  ierr = cmor_dataset(

       "Test",

       "amip",

       "GICC (Generic International Climate Center, Geneva, Switzerland)",

       "GICCM1 (2002): atmosphere:  GICAM3 (gicam_0_brnchT_itea_2, T63L32); ocean: MOM (mom3_ver_3.5.2, 2x3L15); sea ice: GISIM4; land: GILSM2.5",

       "standard",

       1,

       "Rusty Koder (koder@middle_earth.net)",

       "Output from archive/giccm_03_std_2xCO2_2256.",

       "Equilibrium reached after 30-year spin-up after which data were output starting with nominal date of January 2030",

       "Model described by Koder and Tolkien (J. Geophys. Res., 2001, 576-591).  Also see http://www.GICC.su/giccm/doc/index.html  2XCO2 simulation described in Dorkey et al. '(Clim. Dyn., 2003, 323-357.)",

       0,

       0,

       tmpmo,

       "GICCM1\0","N/A",0,0,"GICC","N/A",&tmpf);

  printf("Test code: ok load cmor table(s)\n");

  ierr = cmor_load_table("Tables/CMIP5_Amon",&tables[1]);

  printf("Test code: ok load cmor table(s)\n");

  //ierr = cmor_load_table("Test/IPCC_test_table_Grids",&tables[0]);

  ierr = cmor_load_table("Tables/CMIP5_grids",&tables[0]);

  printf("Test code: ok load cmor table(s)\n");

  ierr = cmor_set_table(tables[0]);

 

  /* first define grid axes (x/y/rlon/rlat,etc... */

  ierr = cmor_axis(&myaxes[0],"x","m",lon,&x[0],'d',NULL,0,NULL);

  printf("Test code: ok got axes id: %i for 'x'\n",myaxes[0]);

  ierr = cmor_axis(&myaxes[1],"y","m",lat,&y[0],'d',NULL,0,NULL);

  printf("Test code: ok got axes id: %i for 'y'\n",myaxes[1]);

 

  axes_ids[0] = myaxes[1];

  axes_ids[1] = myaxes[0];

  /*now defines the grid */

  printf("going to grid stuff \n");

  ierr = cmor_grid(&mygrids[0],2,&axes_ids[0],'d',&lat_coords[0],&lon_coords[0],4,&lat_vertices[0],&lon_vertices[0]);

 

 

  for (i=0;i<cmor_grids[0].ndims;i++) {

    printf("Dim : %i the grid has the follwoing axes on itself: %i (%s)\n",i,cmor_grids[0].axes_ids[i],cmor_axes[cmor_grids[0].axes_ids[i]].id);

  }

 

 

 

  /* ok puts some grid mappings in it,  not sure these parmeters make sens! */

  for(i=0;i<nparam;i++) printf("Test code: ok paramter: %i is: %s, with value %lf and units '%s'\n",i,params[i],pvalues[i],punits[i]);

 

  printf("back from grid going to mapping \n");

  ierr = cmor_set_grid_mapping(mygrids[0],"lambert_conformal_conic",nparam-1,&params[0],lparam,pvalues,&punits[0],lunits);

 

 

  for (i=0;i<cmor_grids[0].ndims;i++) {

    printf("New Dim : %i the grid has the follwoing axes on itself: %i (%s)\n",i,cmor_grids[0].axes_ids[i],cmor_axes[cmor_grids[0].axes_ids[i]].id);

  }

 

  /* ok sets back the vars table */

  cmor_set_table(tables[1]);

 

 

  for(i=0;i<ntimes;i++) read_time(i, &Time[i], &bnds_time[2*i]);

  ierr = cmor_axis(&myaxes[3],"time","months since 1980",2,&Time[0],'d',&bnds_time[0],2,NULL);

 

  printf("time axis id: %i\n",myaxes[3]);

  axes_ids[0]=myaxes[3]; /*time*/

  axes_ids[1]=mygrids[0]; /*grid */

 

  printf("Test code: sending axes_ids: %i %i\n",axes_ids[0],axes_ids[1]);

 

  ierr = cmor_variable(&myvars[0],"hfls","W m-2",2,axes_ids,'d',NULL,&tolerance,"down","HFLS","no history","no future");

 

  for (i=0;i<ntimes;i++) {

    printf("Test code: writing time: %i of %i\n",i+1,ntimes);

   

    printf("Test code: 2d\n");

    read_2d_input_files(i, "LATENT", &data2d[0],lat,lon);

    //for(j=0;j<10;j++) printf("Test code: %i out of %i : %lf\n",j,9,data2d[j]);

    printf("var id: %i\n",myvars[0]);

    ierr = cmor_write(myvars[0],&data2d,'d',NULL,1,NULL,NULL,NULL);

  }

  printf("ok loop done\n");

  ierr = cmor_close();

  printf("Test code: done\n");

  return 0;

}

 

PYTHON

Sample Program 1

import cmor

 

cmor.setup(inpath='Tables',netcdf_file_action=cmor.CMOR_REPLACE)

 

cmor.dataset('historical', 'ukmo', 'HadCM3'HadCM3 (2010)', '360_day',model_id='pcmdi-10b'’HadCM3',forcing='co2')'Nat',

parent_experiment_id=’N/A’,branch_time=0.,contact=’Tim Lincecum, timmy@sfgiants.com’, institute_id='pcmdi')

   

table='CMIP5_Amon'

cmor.load_table(table)

 

itime = cmor.axis(table_entry= 'time',

                  units= 'days since 2000-01-01 00:00:00',

                  coord_vals= [15,],

                  cell_bounds= [0, 30])

ilat = cmor.axis(table_entry= 'latitude',

                 units= 'degrees_north',

                 coord_vals= [0],

                 cell_bounds= [-1, 1])

ilon = cmor.axis(table_entry= 'longitude',

                 units= 'degrees_east',

                 coord_vals= [90],

                 cell_bounds= [89, 91])

 

axis_ids = [itime,ilat,ilon]

             

varid = cmor.variable('ts', 'K', axis_ids)

cmor.write(varid, [273])

path=cmor.close(varid, file_name=True)

print path

cmor.close()

 

Sample Program 2: grids

 

import cmor

import os

 

def gen_irreg_grid(lon,lat):

    lon0 = -120.

    lat0=0.;

    delta_lon = 10.;

    delta_lat = 10.;

    y = numpy.arange(lat)

    x = numpy.arange(lon)

    lon_coords = numpy.zeros((lat,lon))

    lat_coords = numpy.zeros((lat,lon))

    lon_vertices = numpy.zeros((lat,lon,4))

    lat_vertices = numpy.zeros((lat,lon,4))

 

    for j in range(lat): # really porr coding i know

        for i in range(lon): # getting worse i know

            lon_coords[j,i] = lon0+delta_lon*(j+1+i);

            lat_coords[j,i] = lat0+delta_lat*(j+1-i);

            lon_vertices[j,i,0] = lon_coords[j,i]-delta_lon;

            lon_vertices[j,i,1] = lon_coords[j,i];

            lon_vertices[j,i,2] = lon_coords[j,i]+delta_lon;

            lon_vertices[j,i,3] = lon_coords[j,i];

## !!$      /* vertices lat */

            lat_vertices[j,i,0] = lat_coords[j,i];

            lat_vertices[j,i,1] = lat_coords[j,i]-delta_lat;

            lat_vertices[j,i,2] = lat_coords[j,i];

            lat_vertices[j,i,3] = lat_coords[j,i]+delta_lat;

    return x,y,lon_coords,lat_coords,lon_vertices,lat_vertices

 

 

 

 

pth = os.path.split(os.path.realpath(os.curdir))

if pth[-1]=='Test':

    ipth = opth = '.'

else:

    ipth = opth = 'Test'

 

 

myaxes=numpy.zeros(9,dtype='i')

myaxes2=numpy.zeros(9,dtype='i')

myvars=numpy.zeros(9,dtype='i')

 

 

cmor.setup(inpath=ipth,set_verbosity=cmor.CMOR_NORMAL, netcdf_file_action = cmor.CMOR_REPLACE, exit_control = cmor.CMOR_EXIT_ON_MAJOR);

cmor.dataset(

    outpath = opth,

    experiment_id = "historical",

    institution = "GICC (Generic International Climate Center, Geneva, Switzerland)",

    source = "GICCM1 (2002): atmosphere:  GICAM3 (gicam_0_brnchT_itea_2, T63L32); ocean: MOM (mom3_ver_3.5.2, 2x3L15); sea ice: GISIM4; land: GILSM2.5",

    calendar = "standard",

    realization = 1,

    contact = "Rusty Koder (koder@middle_earth.net)",

    history = "Output from archive/giccm_03_std_2xCO2_2256.",

    comment = "Equilibrium reached after 30-year spin-up after which data were output starting with nominal date of January 2030",

    references = "Model described by Koder and Tolkien (J. Geophys. Res., 2001, 576-591).  Also see http://www.GICC.su/giccm/doc/index.html  2XCO2 simulation described in Dorkey et al. '(Clim. Dyn., 2003, 323-357.)",

    leap_year=0,

    leap_month=0,

    month_lengths=None,

    model_id="GICCM1",

    forcing="Ant, Nat",

    institute_id="pcmdi",

    parent_experiment_id="piControl",branch_time=18336.33)

 

tables=[]

a = cmor.load_table("Tables/CMIP5_grids")

tables.append(a)

tables.append(cmor.load_table("Tables/CMIP5_Amon"))

print 'Tables ids:',tables

 

cmor.set_table(tables[0])

 

x,y,lon_coords,lat_coords,lon_vertices,lat_vertices = gen_irreg_grid(lon,lat)

 

 

 

myaxes[0] = cmor.axis(table_entry = 'y',

                      units = 'm',

                      coord_vals = y)

myaxes[1] = cmor.axis(table_entry = 'x',

                      units = 'm',

                      coord_vals = x)

 

grid_id = cmor.grid(axis_ids = myaxes[:2],

                    latitude = lat_coords,

                    longitude = lon_coords,

                    latitude_vertices = lat_vertices,

                    longitude_vertices = lon_vertices)

print 'got grid_id:',grid_id

myaxes[2] = grid_id

 

mapnm = 'lambert_conformal_conic'

params = [ "standard_parallel1",

           "longitude_of_central_meridian","latitude_of_projection_origin",

           "false_easting","false_northing","standard_parallel2" ]

punits = ["","","","","","" ]

pvalues = [-20.,175.,13.,8.,0.,20. ]

cmor.set_grid_mapping(grid_id=myaxes[2],

                      mapping_name = mapnm,

                      parameter_names = params,

                      parameter_values = pvalues,

                      parameter_units = punits)

 

cmor.set_table(tables[1])

myaxes[3] = cmor.axis(table_entry = 'time',

                      units = 'months since 1980')

 

pass_axes = [myaxes[3],myaxes[2]]

myvars[0] = cmor.variable( table_entry = 'hfls',

                           units = 'W m-2',

                           axis_ids = pass_axes,

                           positive = 'down',

                           original_name = 'HFLS',

                           history = 'no history',

                           comment = 'no future'

                           )

for i in range(ntimes):

    data2d = read_2d_input_files(i, varin2d[0], lat,lon)

    print 'writing time: ',i,data2d.shape,data2d

    print Time[i],bnds_time[2*i:2*i+2]   

    cmor.write(myvars[0],data2d,1, time_vals=Time[i],time_bnds=bnds_time[2*i:2*i+2])

cmor.close()

 

 


Appendix D: MIP Tables

 

CMOR 1 sample

 

Sample Portion of a MIP Table (which will be made available by MIP organizers to contributing groups)

 

The user normally need not be concerned with the details contained in this table.

 

cmor_version: 0.8         ! version of CMOR that can read this table

cf_version:   1.0         ! version of CF that output conforms to

project_id:   IPCC Fourth Assessment       ! project id

table_id:     Table A1    ! table id

table_date:   7 April 2004 ! date this table was constructed

 

expt_id_ok:   'pre-industrial control experiment'

expt_id_ok:   'present-day control experiment'

expt_id_ok:   'climate of the 20th Century experiment (20C3M)'

expt_id_ok:   'committed climate change experiment'  ! official name(s) of

expt_id_ok:   'SRES A2 experiment'                   !  project's experiments

expt_id_ok:   'control experiment (for committed climate change experiment)'

expt_id_ok:   '720 ppm stabilization experiment (SRES A1B)'   

expt_id_ok:   '550 ppm stabilization experiment (SRES B1)'

expt_id_ok:   '1%/year CO2 increase experiment (to doubling)'

expt_id_ok:   '1%/year CO2 increase experiment (to quadrupling)'

expt_id_ok:   'slab ocean control experiment'

expt_id_ok:   '2xCO2 equilibrium experiment'

expt_id_ok:   'AMIP experiment'

 

magic_number: -1          ! used to check whether this file has been

                          !   altered from the official version.

                          !   should be set to number of non-blank

                          !   characters in file.

approx_interval:  30.     ! approximate spacing between successive time

                          !   samples (in units of the output time

                          !   coordinate.

missing_value: 1.e20      ! value used to indicate a missing value

                          !   in arrays output by netCDF as 32-bit IEEE

                          !   floating-point numbers (float or real)

 

!*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#

!

! SUBROUTINE ARGUMENT DEFAULT INFORMATION

!

!*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#

!

!  set default specifications for subroutine arguments to:

!     required/indeterminate/optional/ignored/forbidden

!    (indeterminate may or may not be required information, but is not always

!     required as an argument of the function call)

!

!

!============

subroutine_entry: cmor_axis

!============

!

required: table axis_name units length coord_vals cell_bounds

ignored: interval

!

!============

subroutine_entry: cmor_variable

!============

!

required: table table_entry units axis_ids

indeterminate: missing_value

optional: tolerance original_name history comment

ignored: positive

!

!============

subroutine_entry: cmor_write

!============

!

required:  var_id data

indeterminate: ntimes_passed time_vals time_bnds store_with

optional: file_suffix

!

!*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#

!

!  TEMPLATE FOR AXES

!

!*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#

!

!============

!axis_entry:               ! (required)

!============

!

!    Override default argument specifications for cmor_axis

!------------

!    acceptable arguments include units length coord_vals cell_bounds interval

!required:                  ! (default: table axis_name units length

!                                        coord_vals cell_bounds)

!indeterminate:

!optional:

!ignored:                   ! (default: interval)

!forbidden:

!------------

!

! Axis attributes:

!----------------------------------

!standard_name:             ! (required)

!units:                     ! (required)

!axis:                      ! X, Y, Z, T (default: undeclared)

!positive:                  ! up or down (default: undeclared)

!long_name:                 ! (default: undeclared)

!----------------------------------

!

! Additional axis information:

!----------------------------------

!out_name:                ! (default: same as axis_entry)

!type:                    ! double (default), real, character, integer

!stored_direction:        ! increasing (default) or decreasing

!valid_min:               ! type: double precision (default: no check performed

!valid_max:               ! type: double precision (default: no check performed

!requested:               ! space-separated list of requested coordinates

                          !       (default: undeclared)

!requested_bounds:        ! space-separated list of requested coordinate bounds

                          !       (default: undeclared)

!tol_on_requests:         ! fractional tolerance for meeting request

                          !  (default=1.e-3, which is used in the formula:

                          !     eps =  MIN(( tol*interval between grid-points)

                          !          and (1.e-3*tol*coordinate value)))

!value:                   ! of scalar (singleton) dimension

!bounds_values:           ! of scalar (singleton) dimension bounds

!----------------------------------

!

!*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#

!

!  TEMPLATE FOR VARIABLES

!

!*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#

!

!============

!variable_entry:                ! (required)

!============

!

!    Override default argument specifications for cmor_variable

!------------

!        acceptable arguments include  file_suffix missing_value tolerance

!                               original_name history comment positive

!required:                   ! (default: table table_entry units axis_ids)

!indeterminate:              ! (default: file_suffix missing_value)

!optional:                   ! (default: original_name history comment)

!ignored:                    ! (default: positive)

!forbidden:

!------------

!

! Variable attributes:

!----------------------------------

!standard_name:              ! (required)

!units:                      ! (required)

!cell_methods:               ! (default: undeclared)

!long_name:                  ! (default: undeclared)

!comment:                    ! (default: undeclared)

!----------------------------------

!

! Additional variable information:

!----------------------------------

!dimensions:                 ! (required)  (scalar dimension(s) should appear

                             !      last in list)

!out_name:                   ! (default: variable_entry)

!type:                       ! real (default), double, integer

!positive:                   ! up or down (default: undeclared)

!valid_min:                  ! type: real (default: no check performed)

!valid_max:                  ! type: real (default: no check performed)

!ok_min_mean_abs:            ! type: real (default: no check performed)

!ok_max_mean_abs:            ! type: real (default: no check performed)

!----------------------------------

!

!

!*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#

!

! AXIS INFORMATION

!

!*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#

!

!============

axis_entry: longitude

!============

!

!------------

!

! Axis attributes:

!----------------------------------

standard_name:    longitude

units:            degrees_east

axis:             X

long_name:        longitude

!----------------------------------

!

! Additional axis information:

!----------------------------------

out_name:         lon

valid_min:        0.           ! CMOR will add n*360 to input values

                               ! (where n is an integer) to ensure

                               !  longitudes are in proper range.  The

                               !  data will also be rearranged

                               !  appropriately.

valid_max:        360.         !  see above comment.

!----------------------------------

!

!

!=============

axis_entry: latitude

!=============

!

! Axis attributes:

!----------------------------------

standard_name:    latitude

units:            degrees_north

axis:             Y

long_name:        latitude

!----------------------------------

!

! Additional axis information:

!----------------------------------

out_name:         lat

valid_min:        -90.

valid_max:        90.

!----------------------------------

!

!

!============

axis_entry: time

!============

!

!    Override default argument specifications for cmor_axis

!------------

required: interval

indeterminate: coord_vals cell_bounds

!------------

!

! Axis attributes:

!----------------------------------

standard_name:    time

units:            days since ?    !  the user's basetime will be used

axis:             T

long_name:        time

!----------------------------------

!

!

!============

axis_entry: pressure

!============

!

!    Override default argument specifications for cmor_axis

!------------

ignored: cell_bounds

!------------

!

! Axis attributes:

!----------------------------------

standard_name:    air_pressure

units:            Pa

axis:             Z

positive:         down

long_name:        pressure

!----------------------------------

!

! Additional axis information:

!----------------------------------

out_name:         plev

valid_min:        0.

valid_max:        110000.

requested:        10000. 20000. 30000. 40000. 50000.

!----------------------------------

!

!

!============

axis_entry: height1

!============

!

!    Override default argument specifications for cmor_axis

!------------

ignored: cell_bounds

!------------

!

! Axis attributes:

!----------------------------------

standard_name:    height

units:            m

axis:             Z

positive:         up

long_name:        height

!----------------------------------

!

! Additional axis information:

!----------------------------------

out_name:         height

valid_min:        0.

valid_max:        10.

value:            2.

!----------------------------------

!

!

!============

axis_entry: height2

!============

!

!    Override default argument specifications for cmor_axis

!------------

ignored: cell_bounds

!------------

!

! Axis attributes:

!----------------------------------

standard_name:    height

units:            m

axis:             Z

positive:         up

long_name:        height

!----------------------------------

!

! Additional axis information:

!----------------------------------

out_name:         height

valid_min:        0.

valid_max:        30.

value:            10.

!----------------------------------

!

!============

axis_entry: depth1

!============

!

!------------

!

! Axis attributes:

!----------------------------------

standard_name:    depth

units:            m

axis:             Z

positive:         down

long_name:         depth

!----------------------------------

!

! Additional axis information:

!----------------------------------

out_name:         depth

valid_min:        0.0

valid_max:        1.0

value:            0.05

bounds_values:    0.0 0.1

!----------------------------------

!

!

!*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#

!

! VARIABLE INFORMATION

!

!*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#

!

!============

variable_entry: tas

!============

!

! Variable attributes:

!----------------------------------

standard_name:   air_temperature    

units:           K

cell_methods:    time: mean

long_name:       Surface Air Temperature

!----------------------------------

!

! Additional variable information:

!----------------------------------

dimensions:       longitude latitude time height1

valid_min:        200.

valid_max:        340.

ok_min_mean_abs:  270.

ok_max_mean_abs:  300.

!----------------------------------

!

!

!============

variable_entry: hfls

!============

!

!    Override default argument specifications for cmor_variable

!------------

required: positive

!------------

!

! Variable attributes:

!----------------------------------

standard_name: upward_surface_latent_heat_flux

units:         W m-2

cell_methods:  time: mean

long_name:     Surface Latent Heat Flux

!----------------------------------

!

! Additional variable information:

!----------------------------------

dimensions:       longitude latitude time

positive:         up

valid_min:        -50.

valid_max:        300.

ok_min_mean_abs:  20.

ok_max_mean_abs:  150.

!----------------------------------

!

!============

variable_entry: mrsos

!============

!

! Variable attributes:

!----------------------------------

standard_name: moisture_content_of_soil_layer

units:         kg m-2

cell_methods:  time: mean

long_name:     Moisture in Upper 0.1 m of Soil Column

comment:         includes subsurface frozen water but not surface snow and ice

!----------------------------------

!

! Additional variable information:

!----------------------------------

dimensions:       longitude latitude time depth1

!----------------------------------

!

!

!============

variable_entry: ua

!============

!

! Variable attributes:

!----------------------------------

standard_name: eastward_wind

units:         m s-1

cell_methods:  time: mean

long_name:     Zonal Wind Component

!----------------------------------

!

! Additional variable information:

!----------------------------------

dimensions:       longitude latitude pressure time

valid_min:        -200.

valid_max:        300.

ok_min_mean_abs:  0.1

ok_max_mean_abs:  100.

!----------------------------------

!

!

!============

variable_entry: ta

!============

!

! Variable attributes:

!----------------------------------

standard_name: air_temperature

units:         K

cell_methods:  time: mean

long_name:     Temperature

!----------------------------------

!

! Additional variable information:

!----------------------------------

dimensions:       longitude latitude pressure time

valid_min:        150.

valid_max:        350.

ok_min_mean_abs:  200.

ok_max_mean_abs:  300.

!----------------------------------

!

!============

variable_entry: pr

!============

!

! Variable attributes:

!----------------------------------

standard_name:  precipitation

units:          kg m-2 s-1

cell_methods:   time: mean

long_name:      Precipitation

comment:        includes all types (rain, snow, large-scale, convective, etc.)

!----------------------------------

!

! Additional variable information:

!----------------------------------

dimensions:         longitude latitude time

valid_min:          0.0

valid_max:          1.e-4

ok_min_mean_abs:    1.e-6

ok_max_mean_abs:    5.e-5

!----------------------------------

!

!============

variable_entry: cl

!============

!

! Variable attributes:

!----------------------------------

standard_name:  cloud_area_fraction

units:          %

cell_methods:   time: mean

long_name:      Total Cloud Fraction

!----------------------------------

!

! Additional variable information:

!----------------------------------

dimensions:         longitude latitude zlevel time

valid_min:          0.0

valid_max:          100.0

ok_min_mean_abs:    10.0

ok_max_mean_abs:    90.0

!----------------------------------

 

CMOR 2 (table excerpts)

 

 

table_id: Table Amon

modeling_realm: atmos

 

frequency: mon

 

cmor_version: 2.0         ! version of CMOR that can read this table

cf_version:   1.4         ! version of CF that output conforms to

project_id:   CMIP5  ! project id

table_date:   04 March 2010 ! date this table was constructed

 

missing_value: 1.e20      ! value used to indicate a missing value

                          !   in arrays output by netCDF as 32-bit IEEE

                          !   floating-point numbers (float or real)

 

baseURL: http://cmip-pcmdi.llnl.gov/CMIP5/dataLocation

product: output

 

required_global_attributes: creation_date tracking_id forcing model_id parent_experiment_id branch_time contact institute_id ! space separated required global attribute

 

forcings:   N/A Nat Ant GHG SD SI SA TO SO Oz LU Sl Vl SS Ds BC MD OC AA

 

expt_id_ok: '10- or 30-year run initialized in year XXXX' 'decadalXXXX'

expt_id_ok: 'volcano-free hindcasts XXXX' 'noVolcXXXX'

expt_id_ok: 'prediction with 2010 volcano' 'volcIn2010'

expt_id_ok: 'pre-industrial control' 'piControl'

expt_id_ok: 'Historical' 'historical'

expt_id_ok: 'mid-Holocene' 'midHolocene'

expt_id_ok: 'last glacial maximum' 'lgm'

expt_id_ok: 'last millennium' 'past1000'

expt_id_ok: 'RCP4.5' 'rcp45'

expt_id_ok: 'RCP8.5' 'rcp85'

expt_id_ok: 'RCP2.6' 'rcp26'

expt_id_ok: 'RCP6' 'rcp60'

expt_id_ok: 'ESM pre-industrial control' 'esmControl'

expt_id_ok: 'ESM historical' 'esmHistorical'

expt_id_ok: 'ESM RCP8.5' 'esmrcp85'

expt_id_ok: 'ESM fixed climate 1' 'esmFixClim1'

expt_id_ok: 'ESM fixed climate 2' 'esmFixClim2'

expt_id_ok: 'ESM feedback 1' 'esmFdbk1'

expt_id_ok: 'ESM feedback 2' 'esmFdbk2'

expt_id_ok: '1 percent per year CO2' '1pctCO2'

expt_id_ok: 'abrupt 4XCO2' 'abrupt4xCO2'

expt_id_ok: 'natural-only' 'historicalNat'

expt_id_ok: 'GHG-only' 'historicalGHG'

expt_id_ok: 'anthropogenic-only' 'historicalAnt'

expt_id_ok: 'anthropogenic sulfate aerosol direct effect only' 'historicalSD'

expt_id_ok: 'anthropogenic sulfate aerosol indirect effect only' 'historicalSI'

expt_id_ok: 'anthropogenic sulfate aerosol only' 'historicalSA'

expt_id_ok: 'tropospheric ozone only' 'historicalTO'

expt_id_ok: 'stratospheric ozone' 'historicalSO'

expt_id_ok: 'ozone only' 'historicalOz'

expt_id_ok: 'land-use change only' 'historicalLU'

expt_id_ok: 'solar irradiance only' 'historicalSl'

expt_id_ok: 'volcanic aerosol only' 'historicalVl'

expt_id_ok: 'sea salt only' 'historicalSS'

expt_id_ok: 'dust' 'historicalDs'

expt_id_ok: 'black carbon only' 'historicalBC'

expt_id_ok: 'mineral dust only' 'historicalMD'

expt_id_ok: 'organic carbon only' 'historicalOC'

expt_id_ok: 'anthropogenic aerosols only' 'historicalAA'

expt_id_ok: 'AMIP' 'amip'

expt_id_ok: '2030 time-slice' 'sst2030'

expt_id_ok: 'control SST climatology' 'sstClim'

expt_id_ok: 'CO2 forcing' 'sstClim4xCO2'

expt_id_ok: 'all aerosol forcing' 'sstClimAerosol'

expt_id_ok: 'sulfate aerosol forcing' 'sstClimSulfate'

expt_id_ok: '4xCO2 AMIP' 'amip4xCO2'

expt_id_ok: 'AMIP plus patterned anomaly' 'amipFuture'

expt_id_ok: 'aqua planet control' 'aquaControl'

expt_id_ok: '4xCO2 aqua planet' 'aqua4xCO2'

expt_id_ok: 'aqua planet plus 4K anomaly' 'aqua4K'

expt_id_ok: 'AMIP plus 4K anomaly' 'amip4K'

 

 

approx_interval:  30.000000     ! approximate spacing between successive time

                          !   samples (in units of the output time

                          !   coordinate.

 

!============

axis_entry: longitude

!============

!----------------------------------

! Axis attributes:

!----------------------------------

standard_name:    longitude

units:            degrees_east

axis:             X             ! X, Y, Z, T (default: undeclared)

long_name:        longitude

!----------------------------------

! Additional axis information:

!----------------------------------

out_name:         lon

valid_min:        0        

valid_max:        360

stored_direction: increasing

type:             double

must_have_bounds: yes

!----------------------------------

!

 

 

!============

axis_entry: latitude

!============

!----------------------------------

! Axis attributes:

!----------------------------------

standard_name:    latitude

units:            degrees_north

axis:             Y             ! X, Y, Z, T (default: undeclared)

long_name:        latitude

!----------------------------------

! Additional axis information:

!----------------------------------

out_name:         lat

valid_min:        -90        

valid_max:        90

stored_direction: increasing

type:             double

must_have_bounds: yes

!----------------------------------

!

 

 

!============

axis_entry: plevs

!============

!----------------------------------

! Axis attributes:

!----------------------------------

standard_name:    air_pressure

units:            Pa

axis:             Z             ! X, Y, Z, T (default: undeclared)

positive:         down         ! up or down (default: undeclared)

long_name:        pressure

!----------------------------------

! Additional axis information:

!----------------------------------

out_name:         plev

stored_direction: decreasing

tolerance:        0.001

 

type:             double

requested:        100000. 92500. 85000. 70000. 60000. 50000. 40000. 30000. 25000. 20000. 15000. 10000. 7000. 5000. 3000. 2000. 1000.        ! space-separated list of requested coordinates

must_have_bounds: no

!----------------------------------

!

 

 

!============

axis_entry: alevbnds

!============

!----------------------------------

! Axis attributes:

!----------------------------------

axis:             Z             ! X, Y, Z, T (default: undeclared)

long_name:        atmospheric model half-level

!----------------------------------

! Additional axis information:

!----------------------------------

out_name:         lev

stored_direction: increasing

type:             double

must_have_bounds: no

index_only:       ok

!----------------------------------

!

 

 

!============

axis_entry: time

!============

!----------------------------------

! Axis attributes:

!----------------------------------

standard_name:    time

units:            days since ?

axis:             T             ! X, Y, Z, T (default: undeclared)

long_name:        time

!----------------------------------

! Additional axis information:

!----------------------------------

out_name:         time

stored_direction: increasing

type:             double

must_have_bounds: yes

!----------------------------------

!

 

 

!============

axis_entry: time2

!============

!----------------------------------

! Axis attributes:

!----------------------------------

standard_name:    time

units:            days since ?

axis:             T             ! X, Y, Z, T (default: undeclared)

long_name:        time

!----------------------------------

! Additional axis information:

!----------------------------------

out_name:         time

stored_direction: increasing

type:             double

must_have_bounds: yes

climatology:      yes

!----------------------------------

!

 

 

!============

axis_entry: height2m

!============

!----------------------------------

! Axis attributes:

!----------------------------------

standard_name:    height

units:            m

axis:             Z             ! X, Y, Z, T (default: undeclared)

positive:         up         ! up or down (default: undeclared)

long_name:        height

!----------------------------------

! Additional axis information:

!----------------------------------

out_name:         height

valid_min:        1        

valid_max:        10

stored_direction: increasing

type:             double

value:            2.            ! of scalar (singleton) dimension

must_have_bounds: no

!----------------------------------

!

 

 

!============

axis_entry: height10m

!============

!----------------------------------

! Axis attributes:

!----------------------------------

standard_name:    height

units:            m

axis:             Z             ! X, Y, Z, T (default: undeclared)

positive:         up         ! up or down (default: undeclared)

long_name:        height

!----------------------------------

! Additional axis information:

!----------------------------------

out_name:         height

valid_min:        1        

valid_max:        30

stored_direction: increasing

type:             double

value:            10.            ! of scalar (singleton) dimension

must_have_bounds: no

!----------------------------------

!

 

!============

axis_entry: smooth_level

!============

!

! This coordinate is a hybrid height coordinate with units of meters (m).

!  It increases upward.

!  The values of a(k)*ztop, which appear in the formula below, should be stored as smooth_level.

!  Note that in the netCDF file the variable will be named "lev", not smooth_level.

!

!------------

!

! Axis attributes:

!----------------------------------

standard_name:    atmosphere_sleve_coordinate

units:            m

axis:             Z

positive:           up

long_name:        atmosphere smooth level vertical (SLEVE) coordinate

!----------------------------------

!

! Additional axis information:

!----------------------------------

out_name:         lev

must_have_bounds: yes

stored_direction: increasing

valid_min:        -200.

valid_max:        800000.

formula:          z(n,k,j,i) = a(k)*ztop + b1(k)*zsurf1(n,j,i) + b2(k)*zsurf2(n,j,i)

z_factors:        a: a b1: b1 b2: b2 ztop: ztop zsurf1: zsurf1 zsurf2: zsurf2

z_bounds_factors: a: a_bnds b1: b1_bnds b2: b2_bnds ztop: ztop zsurf1: zsurf1 zsurf2: zsurf2

!----------------------------------

!

!============

axis_entry: natural_log_pressure

!============

!

!This coordinate is dimensionless and varies from near 0 at the surface and increases upward.

!  The values of lev(k), which appears in the formula below, should be stored as natural_log_pressure. 

!  Note that in the netCDF file the variable will be named "lev", not natural_log_pressure.

!

!------------

!

! Axis attributes:

!----------------------------------

standard_name:    atmosphere_ln_pressure_coordinate

axis:             Z

long_name:        atmosphere natural log pressure coordinate

positive:           down

!----------------------------------

!

! Additional axis information:

!----------------------------------

out_name:         lev

must_have_bounds: yes

stored_direction: decreasing

valid_min:        -1.

valid_max:        20.

formula:          p(k) = p0 * exp(-lev(k))

z_factors:        p0: p0 lev: lev

z_bounds_factors: p0: p0 lev: lev_bnds

!----------------------------------

!

!============

axis_entry: standard_sigma

!============

!

! This coordinate is dimensionless and varies from 0 at the model top to 1.0 at the surface.

!  The values of sigma(k), which appears in the formula below, should be stored as standard_sigma. 

!  Note that in the netCDF file the variable will be named "lev", not standard_sigma.

!

!------------

!

! Axis attributes:

!----------------------------------

standard_name:    atmosphere_sigma_coordinate

axis:             Z

positive:         down

long_name:        sigma coordinate

!----------------------------------

!

! Additional axis information:

!----------------------------------

out_name:         lev

must_have_bounds: yes

stored_direction: decreasing

valid_min:        0.0

valid_max:        1.0

formula:          p(n,k,j,i) = ptop + sigma(k)*(ps(n,j,i) - ptop)

z_factors:        ptop: ptop sigma: lev ps: ps

z_bounds_factors: ptop: ptop sigma: lev_bnds ps: ps

!----------------------------------

!

!

!============

axis_entry:  standard_hybrid_sigma

!============

!

! This coordinate is dimensionless and varies from a small value at the model top to 1.0 at the surface.

!  The values of a(k)+ b(k), which appear in the formula below, should be stored as standard_hybrid_sigma. 

!  Note that in the netCDF file the variable will be named "lev", not standard_hybrid_sigma.

!

!---------------------------------

! Axis attributes:

!----------------------------------

standard_name:    atmosphere_hybrid_sigma_pressure_coordinate

units:            1

axis:             Z

positive:         down

long_name:        hybrid sigma pressure coordinate

!----------------------------------

! Additional axis information:

!----------------------------------

out_name:         lev

must_have_bounds: yes

stored_direction: decreasing

valid_min:        0.0

valid_max:        1.0

formula:          p(n,k,j,i) = a(k)*p0 + b(k)*ps(n,j,i)

z_factors:        p0: p0 a: a b: b ps: ps

z_bounds_factors: p0: p0 a: a_bnds b: b_bnds ps: ps

!----------------------------------       

!

!

!============

axis_entry:  alternate_hybrid_sigma

!============

!

! This coordinate is dimensionless and varies from a small value at the model top to 1.0 at the surface.

!  The values of ap(k)/p0 + b(k), which appear in the formula below, should be stored as alternate_hybrid_sigma. 

!  Note that in the netCDF file the variable will be named "lev", not alternate_hybrid_sigma.

!

!------------

!

! Axis attributes:

!----------------------------------

standard_name:    atmosphere_hybrid_sigma_pressure_coordinate

units:            1

axis:             Z

positive:         down

long_name:        hybrid sigma pressure coordinate

!----------------------------------

!

! Additional axis information:

!----------------------------------

out_name:         lev

must_have_bounds: yes

stored_direction: decreasing

valid_min:        0.0

valid_max:        1.0

formula:          p(n,k,j,i) = ap(k) + b(k)*ps(n,j,i)

z_factors:        p0: p0 ap: ap b: b ps: ps

z_bounds_factors: p0 ap: ap_bnds b: b_bnds ps: ps

!----------------------------------       

!

!

!============

axis_entry:  hybrid_height

!============

!

! This coordinate has dimension of meters (m) and increases upward.

!  The values of a(k) which appear in the formula below, should be stored as hybrid_height. 

!  Note that in the netCDF file the variable will be named "lev", not hybrid_height.

!

!------------

!

! Axis attributes:

!----------------------------------

standard_name:    atmosphere_hybrid_height_coordinate

units:            m

axis:             Z

positive:         up

long_name:        hybrid height coordinate

!----------------------------------

!

! Additional axis information:

!----------------------------------

out_name:         lev

must_have_bounds: yes

stored_direction: increasing

valid_min:        0.0

formula:          z(k,j,i) = a(k) + b(k)*orog(j,i)

z_factors:        a: lev b: b orog: orog

z_bounds_factors: a: lev_bnds b: b_bnds orog: orog

!----------------------------------       

!

! ***************************************************************

!

! Vertical coordinate formula terms:

!

! ***************************************************************

!

!

!============

variable_entry:    orog

!============

modeling_realm:    atmos

!----------------------------------

! Variable attributes:

!----------------------------------

standard_name:     surface_altitude

units:             m

long_name:         Surface Altitude

comment:           height above the geoid; as defined here, ""the geoid"" is a surface of constant geopotential that, if the ocean were at rest, would coincide with mean sea level. Under this definition, the geoid changes as the mean volume of the ocean changes (e.g., due to glacial melt, or global warming of the ocean).  Report here the height above the present-day geoid.  Over ocean, report as 0.0

!----------------------------------

! Additional variable information:

!----------------------------------

dimensions:        longitude latitude

out_name:          orog

type:              real

valid_min:         -700

valid_max:         1.00E+04

!----------------------------------

!

!

!============

variable_entry: p0

!============

!------------

!

! Variable attributes:

!----------------------------------

long_name:       vertical coordinate formula term: reference pressure

units:           Pa

!----------------------------------

!

!

!============

variable_entry: ptop

!============

!

!------------

!

! Variable attributes:

!----------------------------------

long_name:       pressure at top of model

units:           Pa

!----------------------------------

!

!

!

!============

variable_entry: a

!============

!------------

!

! Variable attributes:

!----------------------------------

long_name:   vertical coordinate formula term: a(k)

!----------------------------------

!

! Additional variable information:

!----------------------------------

dimensions:         alevel

type:               double

!----------------------------------

!

!

!============

variable_entry: b

!============

!------------

!

! Variable attributes:

!----------------------------------

long_name:   vertical coordinate formula term: b(k)

!----------------------------------

!

! Additional variable information:

!----------------------------------

dimensions:         alevel

type:               double

!----------------------------------

!

!

!============

variable_entry: a_bnds

!============

!

!------------

!

! Variable attributes:

!----------------------------------

long_name:   vertical coordinate formula term: a(k+1/2)

!----------------------------------

!

! Additional variable information:

!----------------------------------

dimensions:         alevel

type:               double

!----------------------------------

!

!

!============

variable_entry: b_bnds

!============

!

!------------

!

! Variable attributes:

!----------------------------------

long_name:   vertical coordinate formula term: b(k+1/2)

!----------------------------------

!

! Additional variable information:

!----------------------------------

dimensions:         alevel

type:               double

!----------------------------------

!

!

!============

variable_entry: ap

!============

!

! Variable attributes:

!----------------------------------

long_name:   vertical coordinate formula term: ap(k)

units:           Pa

!----------------------------------

!

! Additional variable information:

!----------------------------------

dimensions:         alevel

type:               double

!----------------------------------

!

!

!============

variable_entry: ap_bnds

!============

!

! Variable attributes:

!----------------------------------

long_name:   vertical coordinate formula term: ap(k+1/2)

units:           Pa

!----------------------------------

!

! Additional variable information:

!----------------------------------

dimensions:         alevel

type:               double

!----------------------------------

!

!

!============

variable_entry: ztop

!============

!

!------------

!

! Variable attributes:

!----------------------------------

long_name:       height of top of model

units:           m

!----------------------------------

!

!

!

 

!============

variable_entry:    tas

!============

modeling_realm:    atmos

!----------------------------------

! Variable attributes:

!----------------------------------

standard_name:     air_temperature

units:             K

cell_methods:      time: mean

long_name:         Near-Surface Air Temperature

comment:           near-surface (usually, 2 meter) air temperature.

!----------------------------------

! Additional variable information:

!----------------------------------

dimensions:        longitude latitude time height2m

out_name:          tas

type:              real

!----------------------------------

!

 

 

!============

variable_entry:    tasmin

!============

modeling_realm:    atmos

!----------------------------------

! Variable attributes:

!----------------------------------

standard_name:     air_temperature

units:             K

cell_methods:      time: minimum within days time: mean over time

long_name:         Daily Minimum Near-Surface Air Temperature

comment:           monthly mean of the daily-minimum near-surface (usually, 2 meter) air temperature.

!----------------------------------

! Additional variable information:

!----------------------------------

dimensions:        longitude latitude time height2m

out_name:          tasmin

type:              real

!----------------------------------

!

 

!============

variable_entry:    pr

!============

modeling_realm:    atmos

 

!----------------------------------

! Variable attributes:

!----------------------------------

standard_name:     precipitation_flux

units:             kg m-2 s-1

cell_methods:      time: mean

long_name:         Precipitation

comment:           at surface; includes both liquid and solid phases from all types of clouds (both large-scale and convective)

!----------------------------------

! Additional variable information:

!----------------------------------

dimensions:        longitude latitude time

out_name:          pr

type:              real

!----------------------------------

!

 

 

!============

variable_entry:    hfls

!============

modeling_realm:    atmos

 

!----------------------------------

! Variable attributes:

!----------------------------------

standard_name:     surface_upward_latent_heat_flux

units:             W m-2

cell_methods:      time: mean

long_name:         Surface Upward Latent Heat Flux

comment:           includes both evaporation and sublimation

!----------------------------------

! Additional variable information:

!----------------------------------

dimensions:        longitude latitude time

out_name:          hfls

type:              real

positive:          up

!----------------------------------

!

 

 

!============

variable_entry:    cl

!============

modeling_realm:    atmos

!----------------------------------

! Variable attributes:

!----------------------------------

standard_name:     cloud_area_fraction_in_atmosphere_layer

units:             %

cell_methods:      time: mean

long_name:         Cloud Area Fraction

comment:           Report on model layers (not standard pressures).  Include both large-scale and convective cloud.

!----------------------------------

! Additional variable information:

!----------------------------------

dimensions:        longitude latitude alevel time

out_name:          cl

type:              real

!----------------------------------

!

 

 

!============

variable_entry:    ua

!============

modeling_realm:    atmos

!----------------------------------

! Variable attributes:

!----------------------------------

standard_name:     eastward_wind

units:             m s-1

cell_methods:      time: mean

long_name:         Eastward Wind

!----------------------------------

! Additional variable information:

!----------------------------------

dimensions:        longitude latitude plevs time

out_name:          ua

type:              real

!----------------------------------

!

 

 

!============

variable_entry:    co2

!============

modeling_realm:    atmos

!----------------------------------

! Variable attributes:

!----------------------------------

standard_name:     mole_fraction_of_carbon_dioxide_in_air

units:             1e-6

cell_methods:      time: mean

long_name:         Mole Fraction of CO2

comment:           For some simulations (e.g., prescribed concentration pi-control run), this will not vary from one year to the next, and so report instead the variable described in the next table entry.  If spatially uniform, omit this field, but report Total Atmospheric Mass of CO2 (see the table entry after the next one).

!----------------------------------

! Additional variable information:

!----------------------------------

dimensions:        longitude latitude plevs time

out_name:          co2

type:              real

!----------------------------------

!

 

!============

variable_entry:    co2Clim

!============

modeling_realm:    atmos

!----------------------------------

! Variable attributes:

!----------------------------------

standard_name:     mole_fraction_of_carbon_dioxide_in_air

units:             1e-6

cell_methods:      time: mean within years time: mean over years

long_name:         Mole Fraction of CO2

comment:           Report only for simulations (e.g., prescribed concentration pi-control run), in which the CO2 does not vary from one year to the next. Report 12 monthly values, starting with January, even if the values don't vary seasonally.  When calling CMOR, identify this variable as co2Clim, not co2.   If  CO2 is spatially uniform, omit this field, but report Total Atmospheric Mass of CO2 (see the table entry after the next).

!----------------------------------

! Additional variable information:

!----------------------------------

dimensions:        longitude latitude plevs time2

out_name:          co2

type:              real

!----------------------------------

!

 

!============

variable_entry:    co2mass

!============

modeling_realm:    atmos

!----------------------------------

! Variable attributes:

!----------------------------------

units:             kg

cell_methods:      time: mean

long_name:         Total Atmospheric Mass of CO2

comment:           For some simulations (e.g., prescribed concentration pi-control run), this will not vary from one year to the next, and so report instead the variable described in the next table entry.  If CO2 is spatially nonuniform, omit this field, but report Mole Fraction of CO2 (see the table entry before the previous one).

!----------------------------------

! Additional variable information:

!----------------------------------

dimensions:        time

out_name:          co2mass

type:              real

!----------------------------------

!

 

!============

variable_entry:    co2massClim

!============

modeling_realm:    atmos

!----------------------------------

! Variable attributes:

!----------------------------------

units:             kg

cell_methods:      time: mean within years time: mean over years

long_name:         Total Atmospheric Mass of CO2

comment:           Report only for simulations (e.g., prescribed concentration pi-control run), in which the CO2 does not vary from one year to the next. Report 12 monthly values, starting with January, even if the values don't vary seasonally.  When calling CMOR, identify this variable as co2massClim, not co2mass.  If CO2 is spatially nonuniform, omit this field, but report Mole Fraction of CO2 (see the table entry before the previous one).

!----------------------------------

! Additional variable information:

!----------------------------------

dimensions:        time2

out_name:          co2mass

type:              real

!----------------------------------

!

 



[1] CMOR is pronounced "C-more", which suggests that CMOR should enable a wide community of scientists to "see more" climate data produced by modeling centers around the world.  CMOR also reminds us of Ecinae Corianus, the revered ancient Greek scholar, known to his friends as "Seymour".  Seymour spent much of his life translating into Greek nearly all the existing climate data, which had originally been recorded on largely inscrutable hieroglyphic and cuneiform tablets.  His resulting volumes, organized in a uniform fashion and in a language readable by the common scientists of the day, provided the basis for much subsequent scholarly research.  Ecinae Corianus was later indirectly honored by early inhabitants of the British Isles who reversed the spelling of his name and used the resulting string of letters, grouped differently, to form new words referring to the major elements of climate.

[2] CMOR1 was written in Fortran 90 with access also provided through Python.

[3] See http://www.cgd.ucar.edu/cms/eaton/cf-metadata

[4] See http://my.unidata.ucar.edu/content/software/netcdf/

[5] "MIP" is an acronym for "model intercomparison project".

[6] CMOR1 was linked to an earlier version of the netCDF library and udunits was optional.

[7] Cdtime is now built into CMOR. Therefore linking against cdms is no longer necessary.

[8] In the Fortran version only, to preserve compatibility with CMOR1, the character strings “replace”, “append”, and “preserve” may be passed instead of the integers CMOR_REPLACE, CMOR_APPEND, and CMOR_PRESERVE, respectively, but this option is deprecated.

[9] Note: For CMIP5 model_id and forcing are required. For backward compatibility with the original CMOR code, the model_id and forcing are “optionally” required by CMOR2, meaning they become mandatory only if they appear as “required_global_attributes” in the CMOR table. For this reason, a call to cmor_dataset without these would not return an error until a call is made to cmor_write, since it is table-dependent.