
Package ‘startR’
April 23, 2019

Title Automatically Retrieve Multidimensional Distributed Data Sets

Version 0.1.2

Description Tool to automatically fetch, transform and arrange subsets of multidimen-
sional data sets (collections of files) stored in local and/or remote file systems or servers, us-
ing multicore capabilities where possible. The tool provides an interface to perceive a collec-
tion of data sets as a single large multidimensional data array, and enables the user to re-
quest for automatic retrieval, processing and arrangement of subsets of the large array. Wrap-
per functions to add support for custom file formats can be plugged in/out, making the tool suit-
able for any research field where large multidimensional data sets are involved.

Depends R (>= 3.2.0)

Imports abind, bigmemory, future, multiApply (>= 2.1.1), parallel

Suggests easyNCDF, s2dverification

License LGPL-3

URL https://earth.bsc.es/gitlab/es/startR/

BugReports https://earth.bsc.es/gitlab/es/startR/issues

LazyData true

NeedsCompilation no

Author BSC-CNS [aut, cph],
Nicolau Manubens [aut, cre],
Javier Vegas [ctb],
Pierre-Antoine Bretonniere [ctb],
Roberto Serrano [ctb]

Maintainer Nicolau Manubens <nicolau.manubens@bsc.es>

R topics documented:
CDORemapper . 2
CircularSort . 3
indices . 4
NcCloser . 4
NcDataReader . 5
NcDimReader . 6
NcOpener . 7
NcVarReader . 8
SelectorChecker . 9

1

https://earth.bsc.es/gitlab/es/startR/
https://earth.bsc.es/gitlab/es/startR/issues

2 CDORemapper

Sort . 10
Start . 11
Subset . 25

Index 26

CDORemapper CDO Remap Data Transformation for ’startR’

Description

This is a transform function that uses CDO software to remap longitude-latitude data subsets
onto a specified target grid, intended for use as parameter transform in a call to the function
Start() in the package ’startR’. This function complies with the input/output interface required
by Start() defined in the documentation for the parameter transform of that function.

This function uses the function CDORemap() in the package ’s2dverification’ to perform the in-
terpolations and hence requires having CDO installed in the machine.

Usage

CDORemapper(data_array, variables, file_selectors, ...)

Arguments

data_array Input data array to be transformed. See details in the documentation of the
parameter transform of the function Start().

variables Auxiliary variables required for the transformation, automatically provided by
Start(). See details in the documentation of the parameter transform of
the function Start().

file_selectors
Information on the path of the file the input data array comes from. See details
in the documentation of the parameter transform of the function Start().

... Additional parameters to adjust the transform process, as provided in the param-
eter transform_params in a call to the function Start(). See details in
the documentation of the parameter transform of the function Start().

Value

An array with the same amount of dimensions as the input data array, potentially with different
sizes, and potentially with the attribute ’variables’ with additional auxiliary data. See details in the
documentation of the parameter transform of the function Start().

Author(s)

History:
0.0 - 2017-04 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code

See Also

CDORemap

CircularSort 3

Examples

Check https://earth.bsc.es/gitlab/es/startR for step-by-step examples
of Start() that use CDORemapper().

CircularSort Circular Sort Dimension Reorder for ’startR’

Description

This is a function that generates a reorder function intended for use as parameter <dim_name>_reorder
in a call to the function Start() in the package ’startR’. This function complies with the in-
put/output interface required by Start() defined in the documentation for the parameter . . . of
that function.

The applied reordering consists of a circular sort of the coordinate variable values, where any values
beyond the limits specified in the parameters start and end is applied a modulus to fall in the
specified range. This is useful for circular dimensions such as the Earth longitudes.

Usage

CircularSort(start, end, ...)

Arguments

start Numeric lower bound of the circular range.

end Numeric upper bound of the circular range.

... Additional parameters to adjust the reorderig (sent internally to the function
sort()).

Value

List with the reordered values in the component $x and the permutation indices in the component
$ix. See details in the documentation of the parameter . . . of the function Start().

Author(s)

History:
0.0 - 2017-04 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code

See Also

Sort

Examples

Check https://earth.bsc.es/gitlab/es/startR for step-by-step examples
of Start() that use CircularSort().

4 NcCloser

indices Mark Dimension Selectors as Indices

Description

Helper function intended for use in a call to the function Start in the package ’startR’, to explicitly
mark that a set of provided indices to subset one of the requested dimensions are actually indices
and not values to be matched against a coordinate variable. See details in the documentation of the
parameter . . . of the function Start().

Usage

indices(x)

Arguments

x Numeric vector or list with two numeric elements.

Value

The same as the input, but with an additional attribute ’indices’ with the value TRUE, marking the
indices as numeric indices.

Author(s)

See details in the documentation of the parameter transform of the function Start().

Examples

Check https://earth.bsc.es/gitlab/es/startR for step-by-step examples
of Start() that use indices().

NcCloser NetCDF File Closer for ’startR’

Description

This is a file closer function for NetCDF files, intended for use as parameter file_closer in a
call to the function Start() in the package ’startR’. This function complies with the input/output
interface required by Start() defined in the documentation for the parameter file_closer of
that function.

This function uses the function NcClose() in the package ’easyNCDF’, which in turn uses
nc_close() in the package ’ncdf4’.

Usage

NcCloser(file_object)

NcDataReader 5

Arguments

file_object Open connection to a NetCDF file, optionally with additional header informa-
tion. See details in the documentation of the parameter file_closer of the
function Start().

Value

This function returns NULL.

Author(s)

History:
0.0 - 2017-04 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code

See Also

NcOpener, NcDimReader, NcDataReader, NcVarReader

Examples

Check https://earth.bsc.es/gitlab/es/startR for step-by-step examples
of Start() that use NcCloser().

NcDataReader NetCDF File Data Reader for ’startR’

Description

This is a data reader function for NetCDF files, intended for use as parameter file_data_reader
in a call to the function Start() in the package ’startR’. This function complies with the in-
put/output interface required by Start() defined in the documentation for the parameter file_data_reader
of that function.

This function uses the function NcToArray() in the package ’easyNCDF’, which in turn uses
nc_var_get() in the package ’ncdf4’.

Usage

NcDataReader(file_path = NULL, file_object = NULL, file_selectors = NULL,
inner_indices = NULL, synonims)

Arguments

file_path Character string with the path to the data file to read. See details in the docu-
mentation of the parameter file_data_reader of the function Start().

file_object Open connection to a NetCDF file, optionally with additional header informa-
tion. See details in the documentation of the parameter file_data_reader
of the function Start().

file_selectors
Information on the path of the file to read data from. See details in the docu-
mentation of the parameter file_data_reader of the function Start().

6 NcDimReader

inner_indices
Named list with the numeric indices to take from each of the inner dimen-
sions in the requested file. See details in the documentation of the parameter
file_data_reader of the function Start().

synonims Named list with synonims for the dimension names to look for in the requested
file, exactly as provided in the parameter synonims in a call to the function
Start(). See details in the documentation of the parameter file_data_reader
of the function Start().

Value

A multidimensional data array with the named dimensions and indices requested in inner_indices,
potentially with the attribute ’variables’ with additional auxiliary data. See details in the documen-
tation of the parameter file_data_reader of the function Start().

Author(s)

History:
0.0 - 2017-04 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code

See Also

NcOpener, NcCloser, NcDimReader, NcVarReader

Examples

Check https://earth.bsc.es/gitlab/es/startR for step-by-step examples
of Start() that use NcDataReader().

NcDimReader NetCDF Dimension Reader for ’startR’

Description

This is a dimension reader function for NetCDF files, intended for use as parameter file_dim_reader
in a call to the function Start() in the package ’startR’. This function complies with the in-
put/output interface required by Start() defined in the documentation for the parameter file_dim_reader
of that function.

This function uses the function NcReadDims() in the package ’easyNCDF’.

Usage

NcDimReader(file_path = NULL, file_object = NULL, file_selectors = NULL,
inner_indices = NULL, synonims)

NcOpener 7

Arguments

file_path Character string with the path to the data file to read the dimensions for. See de-
tails in the documentation of the parameter file_dim_reader of the func-
tion Start().

file_object Open connection to a NetCDF file, optionally with additional header informa-
tion. See details in the documentation of the parameter file_dim_reader
of the function Start().

file_selectors
Information on the path of the file to read data from. See details in the docu-
mentation of the parameter file_dim_reader of the function Start().

inner_indices
Named list with the numeric indices to take from each of the inner dimensions in
the requested file. Used only in advanced configurations. See details in the doc-
umentation of the parameter file_dim_reader of the function Start().

synonims Named list with synonims for the dimension names to look for in the requested
file, exactly as provided in the parameter synonims in a call to the function
Start(). See details in the documentation of the parameter file_dim_reader
of the function Start().

Value

Named numeric vector with the names and sizes of the dimensions of the requested file.

Author(s)

History:
0.0 - 2017-04 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code

See Also

NcOpener, NcCloser, NcDataReader, NcVarReader

Examples

Check https://earth.bsc.es/gitlab/es/startR for step-by-step examples
of Start() that use NcDimReader().

NcOpener NetCDF File Opener for ’startR’

Description

This is a file closer function for NetCDF files, intended for use as parameter file_opener in a
call to the function Start() in the package ’startR’. This function complies with the input/output
interface required by Start() defined in the documentation for the parameter file_opener of
that function.

This function uses the function NcOpen() in the package ’easyNCDF’, which in turn uses nc_open()
in the package ’ncdf4’.

8 NcVarReader

Usage

NcOpener(file_path)

Arguments

file_path Character string with the path to the data file to read. See details in the docu-
mentation of the parameter file_opener of the function Start().

Value

An open connection to a NetCDF file, with additional header information, as returned by nc_open
in the package ’ncdf4’. See details in the documentation of the parameter file_opener of the
function Start().

Author(s)

History:
0.0 - 2017-04 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code

See Also

NcCloser, NcDataReader, NcDimReader, NcVarReader

Examples

Check https://earth.bsc.es/gitlab/es/startR for step-by-step examples
of Start() that use NcOpener().

NcVarReader NetCDF Variable Reader for ’startR’

Description

This is an auxiliary variable reader function for NetCDF files, intended for use as parameter file_var_reader
in a call to the function Start() in the package ’startR’. This function complies with the in-
put/output interface required by Start() defined in the documentation for the parameter file_var_reader
of that function.

This function uses the function NcDataReader() in the package ’startR’, which in turn uses
NcToArray() in the package ’easyNCDF’, which in turn uses nc_var_get() in the package
’ncdf4’.

Usage

NcVarReader(file_path = NULL, file_object = NULL, file_selectors = NULL,
var_name = NULL, synonims)

SelectorChecker 9

Arguments

file_path Character string with the path to the data file to read the variable from. See de-
tails in the documentation of the parameter file_var_reader of the func-
tion Start().

file_object Open connection to a NetCDF file, optionally with additional header informa-
tion. See details in the documentation of the parameter file_var_reader
of the function Start().

file_selectors
Information on the path of the file to read data from. See details in the docu-
mentation of the parameter file_var_reader of the function Start().

var_name Character string with the name of the variable to be read.

synonims Named list with synonims for the variable names to look for in the requested
file, exactly as provided in the parameter synonims in a call to the function
Start(). See details in the documentation of the parameter file_var_reader
of the function Start().

Value

A multidimensional data array with the named dimensions, potentially with the attribute ’variables’
with additional auxiliary data. See details in the documentation of the parameter file_var_reader
of the function Start().

Author(s)

History:
0.0 - 2017-04 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code

See Also

NcOpener, NcCloser, NcDataReader, NcDimReader

Examples

Check https://earth.bsc.es/gitlab/es/startR for step-by-step examples
of Start() that use NcVarReader().

SelectorChecker Default Selector Checker for ’startR’

Description

This is a selector checker function intended for use as parameter selector_checker in a call to
the function Start() in the package ’startR’. This function complies with the input/output inter-
face required by Start() defined in the documentation for the parameter selector_checker
of that function.

Usage

SelectorChecker(selectors, var = NULL, return_indices = TRUE, tolerance = NULL)

10 Sort

Arguments

selectors Numeric indices or variable values to be retrieved for a dimension, automatically
provided by Start(). See details in the documentation of the parameters
selector_checker and . . . of the function Start(). The indices or values
can be provided in the form of a vector or in the form of a list with two elements.

var Vector of values of a coordinate variable where to search matches with the pro-
vided indices or values in the parameter selectors, automatically provided
by Start(). See details in the documentation of the parameters selector_checker
and . . . of the function Start(). The parameter var is optional. When not
specified, SelectorChecker simply returns the input indices.

return_indices
Boolean flag, automatically configured by Start(), telling whether to return
numeric indices or coordinate variable values after doing the matching.

tolerance Numeric value with a tolerance value to be used in the matching of the selectors
and var. See documentation on <dim_name>_tolerance in . . . , in the
documentation of the function Start().

Value

A vector of either the indices of the matching values (if return_indices = TRUE) or the
matching values themselves (if return_indices = FALSE).

Author(s)

History:
0.0 - 2017-04 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code

Examples

Check https://earth.bsc.es/gitlab/es/startR for step-by-step examples
of Start() that use SelectorChecker().

Sort Sort Dimension Reorder for ’startR’

Description

This is a reorder function intended for use as parameter <dim_name>_reorder in a call to the
function Start() in the package ’startR’. This function complies with the input/output interface
required by Start() defined in the documentation for the parameter . . . of that function.

The applied reordering consists of an increasing sort of the coordinate variable values.

Usage

Sort(...)

Arguments

... Additional parameters to adjust the reorderig (sent internally to the function
sort()).

Start 11

Value

List with the reordered values in the component $x and the permutation indices in the component
$ix. See details in the documentation of the parameter . . . of the function Start().

Author(s)

History:
0.0 - 2017-04 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code

See Also

CircularSort

Examples

Check https://earth.bsc.es/gitlab/es/startR for step-by-step examples
of Start() that use Sort().

Start Declare, Discover, Subset and Retrieve Multidimensional Distributed
Data Sets

Description

See the startR documentation and tutorial for a step-by-step explanation on how to use Start().

Nowadays in the era of Big Data, large multidimensional data sets from diverse sources need to
be combined and processed. Analysis of Big Data in any field is often highly complex and time-
consuming. Taking subsets of these datasets (Divide) and processing them efficiently (and Conquer)
becomes an indispensable practice. This technique is also known as Domain Decomposition, Map
Reduce or, more commonly, ’chunking’.

startR (Subset, TrAnsform, ReTrieve, arrange and process large multidimensional data sets in
R) is an R project started at BSC with the aim to develop a tool that allows the user to automatically
process large multidimensional distributed data sets. It is an open source project that is open to ex-
ternal collaboration and funding, and will continuously evolve to support as many data set formats
as possible while maximizing its efficiency.

startR provides a framework under which a data set (collection of one or multiple data files,
potentially distributed over various remote servers) are perceived as if they all were part of a single
large multidimensional array. Once such multidimensional array is declared, any user-defined func-
tion can be applied to the data in a apply-like fashion, where startR transparently implements
the Map Reduce paradigm. The steps to follow in order to process a collection of Big Data sets are
as follows:

• Declaring the data set, i.e. declaring the distribution of the data files involved, the dimensions
and shape of the multidimensional array, and the boundaries of the tatget data. Numeric in-
dices or coordinate values can be used when fixing the boundaries. Once a data set is declared,

https://earth.bsc.es/gitlab/es/startR

12 Start

a list of involved files, dimension lengths, memory size and other metadata is made available.
Optionally, the data set can be retrieved and loaded onto the current R session if it is small
enough. This step can be performed with the Start() function.

• Declaring the workflow of operations to perform on the involved data set(s). This step can be
performed with the Step() and AddStep() functions.

• Defining the computation settings. The mandatory settings include a) how many subsets to
divide the data sets into and along which dimensions; b) which platform to perform the work-
flow of operations on (local machine, remote machine, remote HPC?), how to communicate
with it (unidirectional or bidirectional connection? shared or separate file systems?), which
queuing system it uses (slurm, PBS, LSF, none?); and c) how many parallel jobs and execu-
tion threads per job to use when running the calculations. This step can be performed when
building up the call to the Compute() function.

• Running the computation. startR transparently implements the Map Reduce paradigm, accord-
ing to the settings in the previous steps. The progress can optionally be monitored with the
EC-Flow workflow management tool. When the computation ends, a report of performance
timings is displayed. This step can be triggered with the Compute() function.

startR is not bound to a specific file format. Interface functions to custom file formats can be
provided for Start() to read them. As of April 2017 startR includes interface functions to the
following file formats:

• NetCDF

Usage

Start(...,
return_vars = NULL,
synonims = NULL,
file_opener = NcOpener,
file_var_reader = NcVarReader,
file_dim_reader = NcDimReader,
file_data_reader = NcDataReader,
file_closer = NcCloser,
transform = NULL,
transform_params = NULL,
transform_vars = NULL,
transform_extra_cells = 0,
apply_indices_after_transform = FALSE,
pattern_dims = NULL,
metadata_dims = NULL,
selector_checker = SelectorChecker,
merge_across_dims = FALSE,
split_multiselected_dims = FALSE,
path_glob_permissive = FALSE,
retrieve = FALSE,
num_procs = 1,
silent = FALSE,
debug = FALSE)

Start 13

Arguments

... When willing to retrieve data from one or a collection of data sets, the involved
data can be perceived as belonging to a large multi-dimensional array. For in-
stance, let us consider an example case. We want to retrieve data from a source,
which contains data for the number of monthly sales of various items, and also
for their retail price each month. The data on source is stored as follows:

/data/
|-> sales/
| |-> electronics
| | |-> item_a.data
| | |-> item_b.data
| | |-> item_c.data
| |-> clothing
| |-> item_d.data
| |-> idem_e.data
| |-> idem_f.data
|-> prices/
|-> electronics
| |-> item_a.data
| |-> item_b.data
| |-> item_c.data
|-> clothing
|-> item_d.data
|-> item_e.data
|-> item_f.data

Each item file contains data, stored in whichever format, for the sales or prices
over a time period, e.g. for the past 24 months, registered at 100 different stores
over the world. Whichever the format it is stored in, each file can be perceived
as a container of a data array of 2 dimensions, time and store. Let us assume
the ’.data’ format allows to keep a name for each of these dimensions, and the
actual names are ’time’ and ’store’.

The different item files for sales or prices can be perceived as belonging to an
’item’ dimension of length 3, and the two groups of three items to a ’section’
dimension of length 2, and the two groups of two sections (one with the sales
and the other with the prices) can be perceived as belonging also to another di-
mension ’variable’ of length 2. Even the source can be perceived as belonging
to a dimension ’source’ of length 1.

All in all, in this example, the whole data could be perceived as belonging to
a multidimensional ’large array’ of dimensions

source variable section item store month
1 2 2 3 100 24

The dimensions of this ’large array’ can be classified in two types. The ones
that group actual files (the file dimensions) and the ones that group data val-
ues inside the files (the inner dimensions). In the example, the file dimensions
are ’source’, ’variable’, ’section’ and ’item’, whereas the inner dimensions are

14 Start

’store’ and ’month’.

Having the dimensions of our target sources in mind, the parameter . . . expects
to receive information on:

• The names of the expected dimensions of the ’large dataset’ we want to
retrieve data from

• The indices to take from each dimension (and other constraints)
• How to reorder the dimension if needed
• The location and organization of the files of the data sets

For each dimension, the 3 first information items can be specified with a set of
parameters to be provided through For a given dimension ’dimname’, six
parameters can be specified:

dimname = <indices_to_take>, # 'all' / 'first' / 'last' /
indices(c(1, 10, 20)) /
indices(c(1:20)) /
indices(list(1, 20)) /
c(1, 10, 20) / c(1:20) /
list(1, 20)
dimname_var = <name_of_associated_coordinate_variable>,
dimname_tolerance = <tolerance_value>,
dimname_reorder = <reorder_function>,
dimname_depends = <name_of_another_dimension>,
dimname_across = <name_of_another_dimension>

The indices to take can be specified in three possible formats (see code com-
ments above for examples). The first format consists in using character tags,
such as ’all’ (take all the indices available for that dimension), ’first’ (take only
the first) and ’last’ (only the last). The second format consists in using numeric
indices, which have to be wrapped in a call to the indices() helper function.
For the second format, either a vector of numeric indices can be provided, or a
list with two numeric indices can be provided to take all the indices in the range
between the two specified indices (both extremes inclusive). The third format
consists in providing a vector character strings (for file dimensions) or of values
of whichever type (for inner dimensions). For the file dimensions, the provided
character strings in the third format will be used as components to build up the
final path to the files (read further). For inner dimensions, the provided values
in the third format will be compared to the values of an associated coordinate
variable (must be specified in dimname_reorder, read further), and the in-
dices of the closest values will be retrieved. When using the third format, a list
with two values can also be provided to take all the indices of the values within
the specified range.

The name of the associated coordinate variable must be a character string
with the name of an associated coordinate variable to be found in the data files
(in all* of them). For this to work, a file_var_reader function must be
specified when calling Start() (see parameter ’file_var_reader’). The coor-
dinate variable must also be requested in the parameter return_vars (see its
section for details). This feature only works for inner dimensions.

The tolerance value is useful when indices for an inner dimension are speci-
fied in the third format (values of whichever type). In that case, the indices of

Start 15

the closest values in the coordinate variable are seeked. However the closest
value might be too distant and we would want to consider no real match exists
for such provided value. This is possible via the tolerance. which allows to
specify a threshold beyond which not to seek for matching values and mark that
index as missing value.

The reorder_function is useful when indices for an inner dimension are spec-
ified in the third fromat, and the retrieved indices need to be reordered in func-
tion of their provided associated variable values. A function can be provided,
which receives as input a vector of values, and returns as outputs a list with
the components x with the reordered values, and ix with the permutation in-
dices. Two reordering functions are included in startR, the Sort() and the
CircularSort().

The name of another dimension to be specified in dimname_depends, only
available for file dimensions, must be a character string with the name of an-
other requested file dimension in . . . , and will make Start() aware that the
path components of a file dimension can vary in function of the path compo-
nent of another file dimension. For instance, in the example above, specifying
item_depends = 'section' will make Start() aware that the item
names vary in function of the section, i.e. section ’electronics’ has items ’a’, ’b’
and ’c’ but section ’clothing’ has items ’d’, ’e’, ’f’. Otherwise Start() would
expect to find the same item names in all the sections.

The name of another dimension to be specified in dimname_across, only
available for inner dimensions, must be a character string with the name of an-
other requested inner dimension in . . . , and will make Start() aware that
an inner dimension extends along multiple files. For instance, let us imagine
that in the example above, the records for each item are so large that it be-
comes necessary to split them in multiple files each one containing the reg-
isters for a different period of time, e.g. in 10 files with 100 months each
(’item_a_period1.data’, ’item_a_period2.data’, and so on). In that case, the data
can be perceived as having an extra file dimension, the ’period’ dimension. The
inner dimension ’month’ would extend across multiple files, and providing the
parameter month = indices(1, 300) would make Start() crash be-
cause it would perceive we have made a request out of bounds (each file contains
100 ’month’ indices, but we requested 1 to 300). This can be solved by specify-
ing the parameter month_across = period (along with the full specifica-
tion of the dimension ’period’).

Defining the path pattern
As mentioned above, the parameter . . . also expects to receive information with
the location of the data files. In order to do this, a special dimension must be
defined. In that special dimension, in place of specifying indices to take, a path
pattern must be provided. The path pattern is a character string that encodes the
way the files are organized in their source. It must be a path to one of the data
set files in an accessible local or remote file system, or a URL to one of the files
provided by a local or remote server. The regions of this path that vary across
files (along the file dimensions) must be replaced by wildcards. The wildcards
must match any of the defined file dimensions in the call to Start() and must
be delimited with heading and trailing ’$’. Shell globbing expressions can be
used in the path pattern. See the next code snippet for an example of a path

16 Start

pattern.

All in all, the call to Start() to load the entire data set in the example of
store item sales, would look as follows:

data <- Start(source = paste0('/data/$variable$/',
'$section$/$item$.data'),
variable = 'all',
section = 'all',
item = 'all',
item_depends = 'section',
store = 'all',
month = 'all')

Note that in this example it would still be pending to properly define the parame-
ters file_opener, file_closer, file_dim_reader, file_var_reader
and file_data_reader for the ’.data’ file format (see the corresponding
sections).

The call to Start() will return a multidimensional R array with the following
dimensions:

source variable section item store month
1 2 2 3 100 24

The dimension specifications in the . . . do not have to follow any particular or-
der. The returned array will have the dimensions in the same order as they have
been specified in the call. For example, the following call:

data <- Start(source = paste0('/data/$variable$/',
'$section$/$item$.data'),
month = 'all',
store = 'all',
item = 'all',
item_depends = 'section',
section = 'all',
variable = 'all')

would return an array with the following dimensions:

source month store item section variable
1 24 100 3 2 2

Next, a more advanced example to retrieve data for only the sales records, for
the first section (’electronics’), for the 1st and 3rd items and for the stores lo-
cated in Barcelona (assuming the files contain the variable ’store_location’ with
the name of the city each of the 100 stores are located at):

data <- Start(source = paste0('/data/$variable$/',
'$section$/$item$.data'),
variable = 'sales',

Start 17

section = 'first',
item = indices(c(1, 3)),
item_depends = 'section',
store = 'Barcelona',
store_var = 'store_location',
month = 'all',
return_vars = list(store_location = NULL))

The defined names for the dimensions do not necessarily have to match the
names of the dimensions inside the file. Lists of alternative names to be seeked
can be defined in the parameter synonims.

If data from multiple sources (not necessarily following the same structure) has
to be retrieved, it can be done by providing a vector of character strings with
path pattern specifications, or, in the extended form, by providing a list of lists
with the components ’name’ and ’path’, and the name of the dataset and path
pattern as values, respectively. For example:

data <- Start(source = list(
list(name = 'sourceA',
path = paste0('/sourceA/$variable$/',
'$section$/$item$.data')),
list(name = 'sourceB',
path = paste0('/sourceB/$section$/',
'$variable$/$item$.data'))
),
variable = 'sales',
section = 'first',
item = indices(c(1, 3)),
item_depends = 'section',
store = 'Barcelona',
store_var = 'store_location',
month = 'all',
return_vars = list(store_location = NULL))

return_vars Apart from retrieving a multidimensional data array, retrieving auxiliary vari-
ables inside the files can also be needed. The parameter return_vars allows
for requesting such variables, as long as a file_var_reader function is also
specified in the call to Start() (see documentation on the corresponding pa-
rameter).

This parameter expects to receive a named list where the names are the names
of the variables to be fetched in the files, and the values are vectors of character
strings with the names of the file dimension which to retrieve each variable for,
or NULL if the variable has to be retrieved only once from any (the first) of the
involved files. In the case of the the item sales example (see documentation on
parameter . . .), the store location variable is requested with the parameter
return_vars = list(store_location = NULL). This will cause Start()
to fetch once the variable ’store_location’ and return it in the component
$Variables$common$store_location, and will be an array of charac-

18 Start

ter strings with the location names, with the dimensions c('store' = 100).
Although useless in this example, we could ask Start() to fetch and return
such variable for each file along the items dimension as follows:
return_vars = list(store_location = c('item')). In that case,
the variable will be fetched once from a file of each of the items, and will be re-
turned as an array with the dimensions c('item' = 3, 'store' = 100).

If a variable is requested along a file dimension that contains path pattern speci-
fications (’source’ in the example), the fetched variable values will be returned in
the component $Variables$<dataset_name>$<variable_name>. For
example:

data <- Start(source = list(
list(name = 'sourceA',
path = paste0('/sourceA/$variable$/',
'$section$/$item$.data')),
list(name = 'sourceB',
path = paste0('/sourceB/$section$/',
'$variable$/$item$.data'))
),
variable = 'sales',
section = 'first',
item = indices(c(1, 3)),
item_depends = 'section',
store = 'Barcelona',
store_var = 'store_location',
month = 'all',
return_vars = list(store_location = c('source',
'item')))
Checking the structure of the returned variables
str(found_data$Variables)
Named list
..$common: NULL
..$sourceA: Named list
.. ..$store_location: char[1:18(3d)] 'Barcelona' 'Barcelona' ...
..$sourceB: Named list
.. ..$store_location: char[1:18(3d)] 'Barcelona' 'Barcelona' ...
Checking the dimensions of the returned variable
for the source A
dim(found_data$Variables$sourceA)
item store
3 3

The names of the requested variables do not necessarily have to match the actual
variable names inside the files. A list of alternative names to be seeked can be
specified via the parameter synonims.

synonims In some requests, data from different sources may follow different naming con-
ventions for the dimensions or variables, or even files in the same source could
have varying names. In order for Start() to properly identify the dimensions
or variables with different names, the parameter synonims can be specified as
a named list where the names are requested variable or dimension names, and
the values are vectors of character strings with alternative names to seek for such

Start 19

dimension or variable.

In the example used in parameter return_vars, it may be the case that the
two involved data sources follow slightly different naming conventions. For ex-
ample, source A uses ’sect’ as name for the sections dimension, whereas source
B uses ’section’; source A uses ’store_loc’ as variable name for the store loca-
tions, whereas source B uses ’store_location’. This can be taken into account as
follows:

data <- Start(source = list(
list(name = 'sourceA',
path = paste0('/sourceA/$variable$/',
'$section$/$item$.data')),
list(name = 'sourceB',
path = paste0('/sourceB/$section$/',
'$variable$/$item$.data'))
),
variable = 'sales',
section = 'first',
item = indices(c(1, 3)),
item_depends = 'section',
store = 'Barcelona',
store_var = 'store_location',
month = 'all',
return_vars = list(store_location = c('source',
'item')),
synonims = list(
section = c('sec', 'section'),
store_location = c('store_loc',
'store_location')
))

file_opener A function that receives as a single parameter (file_path) a character string
with the path to a file to be opened, and returns an object with an open connec-
tion to the file (optionally with header information) on success, or returns NULL
on failure.

This parameter takes by default NcOpener (an opener function for NetCDF
files).

See NcOpener for a template to build a file opener for your own file format.

file_var_reader
A function with the header file_path = NULL, file_object = NULL,
file_selectors = NULL, var_name, synonims that returns an array
with auxiliary data (i.e. data from a variable) inside a file. Start() will pro-
vide automatically either a file_path or a file_object to the file_var_reader
function (the function has to be ready to work whichever of these two is pro-
vided). The parameter file_selectors will also be provided automatically
to the variable reader, containing a named list where the names are the names of
the file dimensions of the queried data set (see documentation on . . .) and the
values are single character strings with the components used to build the path to
the file being read (the one provided in file_path or file_object). The

20 Start

parameter var_namewill be filled in automatically by Start() also, with the
name of one of the variales to be read. The parameter synonims will be filled
in with exactly the same value as provided in the parameter synonims in the
call to Start(), and has to be used in the code of the variable reader to check
for alternative variable names inside the target file. The file_var_reader
must return a (multi)dimensional array with named dimensions, and optionally
with the attribute ’variales’ with other additional metadata on the retrieved vari-
able.

Usually, the file_var_reader should be a degenerate case of the file_data_reader
(see documentation on the corresponding parameter), so it is recommended to
code the file_data_reder in first place.

This parameter takes by default NcVarReader (a variable reader function for
NetCDF files).

See NcVarReader for a template to build a variale reader for your own file
format.

file_dim_reader
A function with the header file_path = NULL, file_object = NULL,
file_selectors = NULL, synonims that returns a named numeric vec-
tor where the names are the names of the dimensions of the multidimensional
data array in the file and the values are the sizes of such dimensions. Start()
will provide automatically either a file_path or a file_object to the
file_dim_reader function (the function has to be ready to work whichever
of these two is provided). The parameter file_selectors will also be pro-
vided automatically to the dimension reader, containing a named list where the
names are the names of the file dimensions of the queried data set (see documen-
tation on . . .) and the values are single character strings with the components
used to build the path to the file being read (the one provided in file_path or
file_object). The parameter synonims will be filled in with exactly the
same value as provided in the parameter synonims in the call to Start(),
and can optionally be used in advanced configurations.

This parameter takes by default NcDimReader (a dimension reader function
for NetCDF files).

See NcDimReader for a(n advanced) template to build a dimension reader
for your own file format.

file_data_reader
A function with the header file_path = NULL, file_object = NULL,
file_selectors = NULL, inner_indices = NULL, synonims that
returns a subset of the multidimensional data array inside a file (even if internally
it is not an array). Start() will provide automatically either a file_path
or a file_object to the file_data_reader function (the function has to
be ready to work whichever of these two is provided). The parameter file_selectors
will also be provided automatically to the data reader, containing a named list
where the names are the names of the file dimensions of the queried data set
(see documentation on . . .) and the values are single character strings with the
components used to build the path to the file being read (the one provided in
file_path or file_object). The parameter inner_indices will be
filled in automatically by Start() also, with a named list of numeric vectors,

Start 21

where the names are the names of all the expected inner dimensions in a file
to be read, and the numeric vectors are the indices to be taken from the cor-
responding dimension (the indices may not be consecutive nor in order). The
parameter synonims will be filled in with exactly the same value as provided
in the parameter synonims in the call to Start(), and has to be used in
the code of the data reader to check for alternative dimension names inside the
target file. The file_data_reader must return a (multi)dimensional array
with named dimensions, and optionally with the attribute ’variales’ with other
additional metadata on the retrieved data.

Usually, the file_data_reader should use the file_dim_reader (see
documentation on the corresponding parameter), so it is recommended to code
the file_dim_reder in first place.

This parameter takes by default NcDataReader (a data reader function for
NetCDF files).

See NcDataReader for a template to build a data reader for your own file
format.

file_closer A function that receives as a single parameter (file_object) an open con-
nection (as returned by file_opener) to one of the files to be read, optionally
with header information, and closes the open connection. Always returns NULL.

This parameter takes by default NcCloser (a closer function for NetCDF files).

See NcCloser for a template to build a file closer for your own file format.

transform A function with the header dara_array, variables, file_selectors = NULL,
.... It receives as input, through the parameter data_array, a subset of
a multidimensional array (as returned by file_data_reader), applies a
transformation to it and returns it, preserving the amount of dimensions but po-
tentially modifying their size. This transformation may require data from other
auxiliary variables, automatically provided to transform through the param-
eter variables, in the form of a named list where the names are the variable
names and the values are (multi)dimensional arrays. Which variables need to be
sent to transform can be specified with the parameter transform_vars
in Start(). The parameter file_selectors will also be provided au-
tomatically to transform, containing a named list where the names are the
names of the file dimensions of the queried data set (see documentation on . . .)
and the values are single character strings with the components used to build the
path to the file the subset being processed belongs to. The parameter . . . will be
filled in with other additional parameters to adjust the transformation, exactly as
provided in the call to Start() via the parameter transform_params.

transform_params
Named list with additional parameters to be sent to the transform function
(if specified). See documentation on transform for details.

transform_vars
Vector of character strings with the names of auxiliary variables to be sent to the
transform function (if specified). All the variables to be sent to transform
must also have been requested as return variables in the parameter return_vars
of Start().

transform_extra_cells
Number of extra indices to retrieve from the data set, beyond the requested in-

22 Start

dices in . . . , in order for transform to dispose of additional information to
properly apply whichever transformation (if needed). As many as transform_extra_cells
will be retrieved beyond each of the limits for each of those inner dimensions
associated to a coordinate variable and sent to transform (i.e. present in
transform_vars). After transform has finished, Start() will take
again and return a subset of the result, for the returned data to fall within the
specified bounds in

apply_indices_after_transform
When a transform is specified in Start() and numeric indices are pro-
vided for any of the inner dimensions that depend on coordinate variables, these
numeric indices can be made effective (retrieved) before applying the transfor-
mation or after. The boolean flab apply_indices_after_transform
allows to adjust this behaviour. It takes FALSE by default (numeric indices are
applied before sending data to transform).

pattern_dims Name of the dimension with path pattern specifications (see . . . for details). If
not specified, Start() assumes the first provided dimension is the pattern
dimension, with a warning.

metadata_dims
It expects to receive a vector of character strings with the names of the file
dimensions which to return metadata for. As noted in file_data_reader,
the data reader can optionally return auxiliary data via the attribute ’variables’
of the returned array. Start() by default returns the auxiliary data read for
only the first file of each source (or data set) in the pattern dimension (see . . . for
info on what the pattern dimension is). However it can be configured to return
the metadata for all the files along any set of file dimensions. The parameter
metadata_dims allows to configure this level of granularity of the returned
metadata.

selector_checker
Function used internaly by Start() to translate a set of selectors (values for
a dimension associated to a coordinate variable) into a set of numeric indices.
It takes by default SelectorChecker and, in principle, it should not be re-
quired to change it for customized file formats. The option to replace it is left
open for more versatility. See the code of SelectorChecker for details on
the inputs, functioning and outputs of a selector checker.

merge_across_dims
Whether to merge dimensions across which another dimension extends (accord-
ing to the *_across parameters). Takes the value FALSE by default. For
example, if the dimension ’time’ extends across the dimension ’chunk’ and
merge_across_dims = TRUE, the resulting data array will only contain
only the dimension ’time’ as long as all the chunks together.

split_multiselected_dims
Whether to split a dimension that has been selected with a multidimensional
array of selectors into as many dimensions as present in the selector array. Takes
the value FALSE by default.

path_glob_permissive
When specifying a path pattern for a dataset, it might contain shell glob ex-
perissions. For each dataset, the first file matching the path pattern is found,
and the found file is used to work out fixed values for the glob expressions that
will be used for all the files of the dataset. However in some cases the val-
ues of the shell glob expressions may not be constant for all files in a dataset,
and they need to be worked out for each file involved. In this situation, the

Start 23

path_glob_permissive can be set to an integer value specifying for how
many folder levels in the path pattern, beginning from the end, the shell glob
expressions mut be preserved and worked out for each file.
The default value is FALSE, which is equivalent to 0. Setting TRUE is equiva-
lent to 1.
For example, a path pattern could be as follows: '/path/to/dataset/var_*/$date$_*_foo.nc'.
Leaving path_glob_permissive = FALSE will trigger automatic seek
of the contents to replace the asterisks (e.g. the first asterisk matches with
'bar' and the second with 'baz'. The found contents will be used for all files
in the dataset (in the example, the path pattern will be fixed to '/path/to/dataset/var_bar/$date$_baz_foo.nc'.
However, if any of the files in the dataset have other contents in the position of
the asterisks, Start()will not find them (in the example, a file like '/path/to/dataset/precipitation_bar/19901101_bin_foo.nc'
would not be found). Setting path_glob_permissive = 1 would pre-
serve global expressions in the latest level (in the example, the fixed path pattern
would be '/path/to/dataset/var_bar/$date$_*_foo.nc', and
the problematic file mentioned before would be found), but of course this would
slow down the Start() call if the dataset involves a large number of files.
Setting path_glob_permissive = 2 would leave the original path pat-
tern with the original glob expressions in the 1st and 2nd levels (in the example,
both asterisks would be preserved, thus would allow Start() to recognize files
such as '/path/to/dataset/precipitation_zzz/19901101_yyy_foo.nc').

retrieve Logical value telling whether to retrieve the data defined in the Start call or
to explore only its dimension lengths and names, and the values for the file and
inner dimensions. Takes FALSE by default.

num_procs Number of processes to be created for the parallel execution of the retrieval /
transformation / arrangement of the multiple involved files in a call to Start().
If set to NULL, takes the number of available cores (as detected by detectCores()
in the package ’future’). Takes 1 by default (no parallel execution).

silent Boolean flag, whether to display progress messages (FALSE; default) or not
(TRUE).

debug Whether to return detailed messages on the progress and operations in a Start
call (TRUE) or not (FALSE; default).

Details

Check the startR website for more information.

Value

If retrieve = TRUE the involved data is loaded into RAM memory and an object of the class
’startR_cube’ with the following components is returned:

Data Multidimensional data array with named dimensions, with the data values re-
quested via . . . and other parameters. This array can potentially contain metadata
in the attribute ’variables’.

Variales Named list of 1 + N components, containing lists of retrieved variables (as re-
quested in return_vars) common to all the data sources (in the 1st compo-
nent, $common), and for each of the N dara sources (named after the source
name, as specified in . . . , or, if not specified, $dat1, $dat2, ..., $datN).
Each of the variables are contained in a multidimensional array with named di-
mensions, and potentially with the attribute ’variables’ with additional auxiliary
data.

https://earth.bsc.es/gitlab/es/startR

24 Start

Files Multidimensonal character string array with named dimensions. Its dimensions
are the file dimensions (as requested in . . .). Each cell in this array contains a
path to a retrieved file, or NULL if the corresponding file was not found.

NotFoundFiles
Array with the same shape as $Files but with NULL in the positions for which
the corresponding file was found, and a path to the expected file in the positions
for which the corresponding file was not found.

FileSelectors
Multidimensional character string array with named dimensions, with the same
shape as $Files and $NotFoundFiles, which contains the components
used to build up the paths to each of the files in the data sources.

If retrieve = FALSE the involved data is not loaded into RAM memory and an object of the
class ’startR_header’ with the following components is returned:

Dimensions Named vector with the dimension lengths and names of the data involved in the
Start call.

Variales Named list of 1 + N components, containing lists of retrieved variables (as re-
quested in return_vars) common to all the data sources (in the 1st compo-
nent, $common), and for each of the N dara sources (named after the source
name, as specified in . . . , or, if not specified, $dat1, $dat2, ..., $datN).
Each of the variables are contained in a multidimensional array with named di-
mensions, and potentially with the attribute ’variables’ with additional auxiliary
data.

Files Multidimensonal character string array with named dimensions. Its dimensions
are the file dimensions (as requested in . . .). Each cell in this array contains a
path to a file to be retrieved (which may exist or not).

FileSelectors
Multidimensional character string array with named dimensions, with the same
shape as $Files and $NotFoundFiles, which contains the components
used to build up the paths to each of the files in the data sources.

StartRCall List of parameters sent to the Start call, with the parameter retrieve set
to TRUE. Intended for calling in order to retrieve the associated data a posteriori
with a call to do.call.

Author(s)

History:
0.0 - 2017-04 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code

Examples

Check https://earth.bsc.es/gitlab/es/startR for step-by-step examples
of Start().

Subset 25

Subset Subset a Data Array

Description

This function allows to subset (i.e. slice, take a chunk of) an array, in a similar way as done in the
function take() in the package plyr. There are two main inprovements:

The input array can have dimension names, either in names(dim(x)) or in the attribute ’di-
mensions’, and the dimensions to subset along can be specified via the parameter along either
with integer indices or either by their name.

There are additional ways to adjust which dimensions are dropped in the resulting array: either
to drop all, to drop none, to drop only the ones that have been sliced or to drop only the ones that
have not been sliced.

If an array is provided without dimension names, dimension names taken from the parameter
dim_names will be added to the array.

Usage

Subset(x, along, indices, drop = FALSE)

Arguments

x A multidimensional array to be sliced. It can have dimension names either in
names(dim(x)) or either in the attribute ’dimensions’.

along Vector with references to the dimensions to take the subset from: either integers
or dimension names.

indices List of indices to take from each dimension specified in ’along’. If a single
dimension is specified in ’along’ the indices can be directly provided as a single
integer or as a vector.

drop Whether to drop all the dimensions of length 1 in the resulting array, none,
only those that are specified in ’along’, or only those that are not specified in
’along’. The possible values are, respectively: ’all’ or TRUE, ’none’ or FALSE,
’selected’, and ’non-selected’.

Author(s)

History:
0.0 - 2016-06 (N. Manubens, <nicolau.manubens at bsc.es>) - Original code

Examples

sample_array <- array(1:24, dim = c(dataset = 1, sdate = 2, member = 3, ftime = 4))
subset <- Subset(sample_array, c('dataset', 'sdate', 'member'),

list(1, 1, 1), drop = 'selected')

Index

∗Topic IO
indices, 4
NcCloser, 4
NcDataReader, 5
NcDimReader, 6
NcOpener, 7
NcVarReader, 8
SelectorChecker, 9
Sort, 10
Start, 11

∗Topic array
CDORemapper, 2
CircularSort, 3
indices, 4
NcCloser, 4
NcDataReader, 5
NcDimReader, 6
NcOpener, 7
NcVarReader, 8
SelectorChecker, 9
Sort, 10
Start, 11

∗Topic datagen
Subset, 25

∗Topic manip
CDORemapper, 2
CircularSort, 3
indices, 4
NcCloser, 4
NcDataReader, 5
NcDimReader, 6
NcOpener, 7
NcVarReader, 8
SelectorChecker, 9
Sort, 10
Start, 11

CDORemap, 2
CDORemapper, 2
CircularSort, 3, 11

indices, 4

NcCloser, 4, 6–9

NcDataReader, 5, 5, 7–9
NcDimReader, 5, 6, 6, 8, 9
NcOpener, 5–7, 7, 9
NcVarReader, 5–8, 8

SelectorChecker, 9
Sort, 3, 10
Start, 11
Subset, 25

26

	CDORemapper
	CircularSort
	indices
	NcCloser
	NcDataReader
	NcDimReader
	NcOpener
	NcVarReader
	SelectorChecker
	Sort
	Start
	Subset
	Index

