
ECMWF COPERNICUS REPORT

Seasonal Forecast verification tool for
the C3S_512 contract

Issued by: BSC

Author: Jesús Peña-Izquierdo

Contract: Copernicus C3S_512

Date: 31/07/2020

Copernicus Climate Change Service

Author: Jesús Peña-Izquierdo 2 of 19
 07/31/2020

Copernicus Climate Change Service

Contributors

BSC

Jesús Peña-Izquierdo

Author: Jesús Peña-Izquierdo 3 of 19
 07/31/2020

Copernicus Climate Change Service

Table of Contents

Overview 5

Workflow and modules 5

Configuration file: conf.yaml 7

3.1 Dataset parameters 7

3.2 Download parameters 9

3.3. Transfer parameters 10

3.4. Compute parameters 11

3.5. Plot parameters 13

3.6. Folders parameters 16

Additional tool files 17

How to run the tool. 17

Installation 18

Possible future improvements 19

Author: Jesús Peña-Izquierdo 4 of 19
 07/31/2020

Copernicus Climate Change Service

1. Overview

A specific python-based software tool has been developed for the verification of the different
seasonal forecast systems available in the Climate Data Store (CDS). This tool provides a complete
set of functionalities ranging from direct downloading of selected datasets from the CDS to the
computation and plotting of the specified metrics. All these functionalities are integrated in to a
workflow that automatically identifies what operations are required and which ones can be skipped.
It runs starting from a configuration file, which allows a high degree of parametrization, including all
required dataset download parameters, computation specifications (e.g. chunks sizes on selected
dimensions, number of cores, maximum allowed memory usage...), metrics parameters and plenty
of plotting details. The tool has been developed in a modular fashion to allow easy debugging,
modification and extension.

The software uses the xarray package to facilitate multidimensional array manipulation and it allows
efficient parallel computing, by integrating the Dask library. For some of the verification metrics
(fRPSS and fCRPSS), the R package SpecsVerification is used, which is a specific library for seasonal
forecast verification, also used in the preoperational contract C3S_51_Lot3. This R package is
wrapped using the python R2Py package.

A copy of the code runs at ECMWF virtual machines and is also available in the BSC Gitlab repository
under the s-prototype branch . 1

2. Workflow and modules

In order to perform the verification of a seasonal forecast system, a reference dataset (usually from
observations or a reanalysis) is also required in addition to the seasonal forecast dataset to compute
the corresponding verification metrics. Thus, two datasets for the same variable, temporal period,
spatial and temporal resolution are needed. Once the two datasets are preprocessed so they are
completely equivalent (previous conditions are met), the computation of metrics can start and
successively the generation of the corresponding figures. All these required tasks are performed by
the seasonal forecast verification tool which comprises four main modules. Each module is
responsible for one different task: 1. downloading, 2. transferring, 3. computing and 4. plotting. All
the parameters that define these tasks are specified in the configuration file ​conf.yaml ​which
includes a specific section for each of the modules. The main script, ​eqc.py​, calls the 4 modules in
consecutive order. However, the execution of any module can be manually enabled/disabled in the
configuration file or automatically skipped in case executing a given task is not necessary (for
example if the corresponding expected result already exists).

Each module expects specific inputs and provides specific outputs (figure 1). In this sense, the
workflow is defined in a way that it tries to never stop, even in the case of missing inputs (i.e.
missing files). If required files for a specific task are missing, the task will be skipped, an error log will

1https://earth.bsc.es/gitlab/external/c3s512-seasonal-forecast-eqc/-/tree/s-prototype

Author: Jesús Peña-Izquierdo 5 of 19
 07/31/2020

https://earth.bsc.es/gitlab/external/c3s512-seasonal-forecast-eqc/-/tree/s-prototype_dev

Copernicus Climate Change Service

be generated and the next task/module will be launched. The same happens (without error) in case
the expected results generated by a given tasks are found (because of a previous run); by default
the workflow will skip this task to the next module. The tool will keep running tasks until completing
all the pending tasks.

This procedure is very convenient when a set of different variables and/or systems are to be
assessed. If in one case data is missing (e.g. files are missing for a specific variable), the tool will
proceed with the following variable and/or system. In the same way, an uncompleted task of a
given variable/system can be resumed easily launching a complete job including many tasks. Only
the missing ones will be executed.

Figure 1. A schematic description of the seasonal forecast verification tool workflow. The main script (eqc.py) launches
the tasks/modules specified in the configuration file (conf.yaml). The 4 different modules requires specific inputs and
provides specific outputs which are the inputs of the successive tasks. The workflow is designed in a way that it tries to
never stops until finish; if required files are missing or expected outputs are already available, the tool will skip the
current task and launch the following module. Dashed lines represent these possible skip pathways.

An schematic description of this workflow is shown in figure 1 and briefly explain here:

● Module download is defined by script ​src/download.py​. It downloads the specified datasets
from the CDS in the original grib file format. Before sending the download request to the
CDS, the script checks what is already downloaded and what is missing. The download task
can be set so it only downloads the missing files or on the contrary re-download the dataset

Author: Jesús Peña-Izquierdo 6 of 19
 07/31/2020

Copernicus Climate Change Service

even in case the corresponding files are already downloaded (and with problems for
example). Check section 3.2 for details.

● Module transfer is defined by script ​src/transfer.py​. It converts the original grib downloaded
file to a more convenient and efficient netcdf file format. It also interpolates the reference
dataset to the seasonal forecast grid. The use of netcdf greatly improves the performance
allowing different types of chunking and a more efficient use of the memory. During
C3S_512 contract, module download was rarely used since the datachecker had already
downloaded most of the datasets. Then, the transfer module was in charge of extracting the
required data from the much larger files downloaded by the datachecker in grib (located at
/shared, these files include more products that the ones required for the verification) and
convert them in to netcdf. Module transfer first checks that expected grib files are present in
the corresponding source folder and then if the expected outputs in netcdf files are also
already generated. The transfer of netcdf files can be set so if corresponding netcdf files are
found, the transfer of files is skipped for those found. Check section 3.3 for more details.

● Module compute is defined by script ​src/compute.py​. It computes the specified metrics
(mean bias, mean correlation, fRPSS and fCRPSS) between the seasonal forecast system and
the selected reference (for the moment reanalysis ERA5). Before computing the metrics, this
module checks the consistency of nan’s through the time series, the matching of the variable
units between the seasonal forecast and the reference datasets (if there is not a match it
allows a unit conversion) and finally prepare the two different multidimensional arrays to be
comparable (seasonal forecast dataset has several dimensions not present in the reference:
members, start months and leadtime months). For each variable and system, one only
netcdf file is created including all the computed metrics. Analogously to all modules, module
compute checks if input files in netcdf format are available and if so, checks if metrics are
already computed by looking for the corresponding file. Check section 3.4 for more details.

● Module plot is defined by script ​src/plot.py​. It plots all the previously computed metrics for
all the possible combinations of metrics, start dates and leadtime months. Again, it first
checks if the required file with the corresponding metrics is available, if so, it checks if
expected plots are available. It can be set that only missing plots are generated or the
generation of all plots should be generated no matter if they already exists. Check section
3.5 for more details.

3. Configuration file: conf.yaml

The seasonal forecast verification tool is controlled by the configuration file ​conf.yaml​. In this
section most important parameters of the configuration file will be described.

3.1 Dataset parameters

Section ‘​dataset_parameters’​ (figure 2) of the configuration file specifies all the attributes needed
to identify the corresponding datasets. This is the only section to be modified when a different

Author: Jesús Peña-Izquierdo 7 of 19
 07/31/2020

Copernicus Climate Change Service

variable or system is to be evaluated. Values for most of these parameters should be taken from the
CDS download form since they will be used by the cdsapi to download the data.

● ‘dataset_sf’​: Dataset name of the seasonal forecast. Corresponds to the cdsapi field
‘dataset’.

● ‘variable’​: Name of the variable. Corresponds to the cdsapi field ‘variable’.
● ‘originating_centre’​: Institution of the seasonal forecast model system. Corresponds to the

cdsapi field ‘originating_centre’.
● ‘system’​: Version of the seasonal forecast model system. Corresponds to the cdsapi field

‘system’.
● ‘years’​: A list of two elements defining the temporal verification period, the initial and final

years, both included; e.g. [1993, 2016] or for one sole year [1993, 1993].
● ‘start_months’​: A list defining the start months including the initial and final start months;

e.g. [1, 12] for the all the months.
● ‘leadtime_months’​: A list defining the leadtime months now including all the required

elements; e.g. [1, 2, 3, 4, 5, 6]
● ‘leadtime_periods’​: A list of lists defining forecast periods as a combination of several

leadtime months. Each list within the list corresponds to a period. All the required leadtime
months should be specified; e.g. [[2, 3, 4], [4, 5, 6]].

● ‘levels’​: In case a dataset with pressure levels is indicated, a list of the different levels. It
corresponds to the cdsapi field ‘pressure_level’. This parameter is only used if the dataset
has pressure levels. It is neglected otherwise.

● ‘product_type_sf’​: It specifies the type of seasonal product (mean, maximum, minimum…).
It corresponds to the cdsapi ‘product_type’. The value by default is ‘monthly_mean’.

● ‘dataset_ref’​: Dataset name of the reference, for the moment ERA5. Corresponds to the
cdsapi field ‘dataset’. Note that ‘dataset_sf’ should agree with the one specified in
‘dataset_ref’, for example if the first one corresponds to a pressure level dataset, the second
should be a pressure level dataset as well.

● ‘variable_ref’​: Name of the variable in the reference dataset. Corresponds to the cdsapi
field ‘variable’. This parameter is optional. By default tt should be left empty what implies
that the names of the variable in the seasonal forecast and in the reanalysis datasets are
exactly the same. Otherwise, the variable name of the reference dataset should be specified
here.

● ‘reference_name’​: This parameter refers to the name of the reference. It is used as an
identifier in some of the generated files or plots.

● ‘product_type_ref’​: It specifies the type of reanalysis product. It corresponds to the cdsapi
‘product_type’. For the case of ERA5 the default value is ‘monthly_averaged_reanalysis’.

Author: Jesús Peña-Izquierdo 8 of 19
 07/31/2020

Copernicus Climate Change Service

Figure 2. Example of the ‘dataset_parameters’ section of the configuration file conf.yaml

3.2 Download parameters

Module ​‘download_parameters’​ includes all the required parameters related with the download of
the data from the CDS.

● ‘execute’​: ‘True’ or ‘False’. This parameter enables or disables the download of files from the
CDS

● ‘force_download’​: ‘True’ or ‘False’. This parameter enables or disables the re-download of
files. Value ‘True’ removes already downloaded files and re-download them.

● ‘retry_download’​: ‘True’ or ‘False’. This parameters enables or disables a download loop to
avoid download timeouts. If a download fails, a new request is made until the download is
successful. Recommended value is ‘False’ to avoid an infinite loop in case of an incorrect
download.

● ‘download_aggregation_sf’​: ‘monthly’ or ‘start_month’. This parameter specifies the
temporal aggregation of the downloaded seasonal forecast files. ‘monthly_files’ refers to 1
file per start month and year (recommended), ‘start_month’ refers to 1 file per start month
for all years (not recommended.

● ‘file_format_sf’​: ‘grib’ or ‘netcdf’. This parameter specifies the file format of the
downloaded files. ‘grib’ is recommended to avoid corrupted conversion from the CDS.

● ‘download_aggregation_ref’​: ‘monthly’ or ‘start_month’. This parameter specifies the
temporal aggregation of the downloaded files of the reference. ‘monthly_files’ refers to 1
file per start month and year (recommended), ‘start_month’ refers to 1 file per start month
for all years (not recommended.

Author: Jesús Peña-Izquierdo 9 of 19
 07/31/2020

Copernicus Climate Change Service

Figure 3. Example of the ‘download_parameters’ section of the configuration file conf.yaml

3.3. Transfer parameters

Module ​‘transfer_parameters’​ includes all the required parameters related with the extraction,
conversion and transfer of files from the CDS downloaded files or from previously archived files. In
general, this task is done from grib files to netcdf files.

It is also important to note that reference dataset will not be in general in the grid used by the
seasonal forecast dataset. Thus, the reference fields should be interpolated from their original grid
to the one of the seasonal forecast. This procedure is also done by this module. Furthermore,
different seasonal forecast system may have the same spatial resolution but different grids. For this
reason, for each of these seasonal forecast grid there should be an interpolated field of the
reference dataset.

● ‘execute’​: ‘True’ or ‘False’. This parameter enables or disables the transfer of files from
downloaded folder or previously downloaded archive.

● ‘force_transfer’​: ‘True’ or ‘False’. This parameter enables or disables the repetition of
transfer of files. Value ‘True’ removes already transferred files and transfer them again.

● ‘downloaded’​: ‘True’ or ‘False’. This parameter specific if archive files are obtained through
the download module (‘True’) or they were previously downloaded (‘False’) with a specific
folder tree and file name convention. In case of False, ​transfer.py​ should be updated to
include the corresponding structure of folders and file name convention. By default, value is
‘False’ and the convention specified corresponds to the one used in the datachecker archive.

● ‘compression’​: ‘True’ or ‘False’. This parameter indicates if netcdf transferred files are
compressed. Compressed files are smaller but performance is low. Recommended value is
‘False’.

● ‘file_format_read’​: ‘grib’ or ‘netcdf’. This parameters indicates the file format of the
downloaded or archived files. Default is ‘grib’.

● ‘file_format_used’​: ‘grib’ or ‘netcdf’. This parameters indicates the file format generated by
the transfer. Default is ‘netcdf’.

● ‘data_aggregation_sf’​: ‘monthly’ or ‘start_month’. It specifies how the seasonal forecast
files are or will be stored when transferred; ‘monthly’ refers to 1 file per start month and
year (recommended), ‘start_month’ refers to 1 file per start month for all years.

Author: Jesús Peña-Izquierdo 10 of 19
 07/31/2020

Copernicus Climate Change Service

● ‘data_aggregation_ref’​: ‘monthly’ or ‘start_month’. It specifies how the files of the
reference dataset are or will be stored when transferred; ‘monthly’ refers to 1 file per start
month and year (recommended), ‘start_month’ refers to 1 file per start month for all years.

Figure 4. Example of the ‘transfer_parameters’ section of the configuration file conf.yaml

3.4. Compute parameters

Module ​‘compute_parameters’​ includes all the required parameters related with the computation
of metrics. Currently 4 different metrics are computed; mean bias, mean correlation, fRPSS and
fCRPSS. These metrics are computed for each start month (12) and each leadtime (6 +2). The
workflow is such that metrics are successively computed for each start month including all
leadtimes. Alll fields computed corresponding to a given start month are stored in one specific file.
Thus, for a given variable 12 different files are generated, one per start month, including the 4
metrics with all the corresponding leadtimes.

Before the start of the computation, different procedures are performed to guarantee seasonal
forecast and the reference dataset are comparable:

- Reference data do not present ensemble members, start months either leadtime months
dimensions. During these preprocessing, reference fields are manipulated in order to have
the corresponding and expected dimensions of the seasonal forecast.

- Units of the two datasets are checked; If units do not match an ERROR message appears and
the computation cannot be done. If a unit conversion is possible, it should be indicated in an
additional configuration file, ​src/units_conversion.yaml​.

- Nan’s are also checked. The numbers of nan’s are expected to be constant for all start
months, leadtime months and ensemble members. If not, a WARNING or an ERROR
(depending on the case) will appear. Nan’s can cause problems during the computation of
different metrics, for this reason during these preprocessing nan’s are filled with dummy
values that are later masked with nan’s in the last step when storing the results.

The following parameters can be adjusted in the ‘compute_module’.

● ‘execute’​: ‘True’ or ‘False’. This parameter enables or disables the computation of metrics.
● ‘recompute’​: ‘True’ or ‘False’. This parameter enables or disables the recomputation of

metrics. Value ‘True’ removes existing files with computed metrics, compute them again and
save them.

Author: Jesús Peña-Izquierdo 11 of 19
 07/31/2020

Copernicus Climate Change Service

● ‘stop_different_number_nans’​: ‘True’ or ‘False’. This parameter enables or disables the
break of the execution in case a different number of nan’s are present at different time steps
or members or leadtimes. Default is ‘False’.

● ‘metrics’​:
○ ‘bias’​: ‘True’ or ‘False’: This parameter enables or disables the computation of the

metric mean bias.
○ ‘correlation’​: ‘True’ or ‘False’: This parameter enables or disables the computation of

the metric mean correlation.
○ frpss​: ‘True’ or ‘False’: This parameter enables or disables the computation of the

metric fRPSS.
○ fcrpss​: ‘True’ or ‘False’: This parameter enables or disables the computation of the

metric fcrpss.
● ‘xarray_parameters’​:

○ ‘chunks’​:
■ ‘latitude’​: A number. This parameter indicates size of the chunks in the

latitude dimension. This is a very important parameter since it greatly affects
the performance; a large number leads to a higher performance but also to a
greater use of the memory that can lead to exceed the available memory.
Recommended value 100.

■ ‘longitude’​: A number. This parameter indicates size of the chunks in the
longitude dimension. This is a very important parameter since it greatly
affects the performance; a large number leads to a higher performance but
also to a greater use of the memory that can lead to exceed the available
memory. Recommended value 200.

○ ‘dask_distribution’​: ‘True’ or ‘False’. This parameter specified how dask works under
the hood of xarray. ‘True’ starts a dask.distributed server and ‘False’ a single machine
scheduler. This may have a large impact on performance when using tens of cores.
But configuration is not easy. Single machine scheduler works fine enough,
recommendation is ‘False’.

○ ‘n_workers’​: A number. This is only used when ‘dask_distributed’ is ‘True’.
○ ‘thread_per_worker’​. A number. This is only used when ‘dask_distributed’ is ‘True’.
○ ‘n_cores’​: A number. This is only used when ‘dask_distributed’ is ‘True’.
○ ‘split_factor’​: A number. It is used in multiApply when computing fRPSS and fCRPSS

to indirectly indicate the number of chunks. It does not seem to work properly.
Recommended value is 1.

○ ‘n_leadtimes’​: A number. It indicates the number of leadtimes used at the same time
when computing fRPSS and fCRPSS. It does not improve performance since
multiApply does not seem vectorize here. Recommended values is 1

○ ‘memory_limit’​: A number. This parameter indicates the maximum number of RAM
GB are available. A larger number than reality allows avoid constant warning.
Recommended ‘20GB’.

○ ‘processes’​: ‘True’ or ‘False’. It indicates to dask what type of process is to be done.
Recommended for array computations is ‘False’.

○ ‘silence_logs’​: ‘True’ or ‘False’. It indicates the level of message the dask scheduler
shows. It does not seem to work properly.

Author: Jesús Peña-Izquierdo 12 of 19
 07/31/2020

Copernicus Climate Change Service

○ ‘dashboard_address’​: A port number for the dask dashbord. Set to NONE to
deactivate since it does not seem to work properly.

○ ‘time_dimname’​: Name of the temporal dimension: ‘time’.
○ ‘starttime_dimname’​: Name of the start month dimension: ‘start_time’.
○ ‘leadtime_dimname’​: Name of the leadtime dimension: ‘step’.
○ ‘member_dimname’​: Name of the ensemble members dimension: ‘number’.
○ ‘lon_dimname’​: Name of the longitude dimension: ‘longitude’.
○ ‘lat_dimname’​: Name of the latitude dimension: ‘latitude’.
○ ‘pressure_dimname’​: Name of the pressure levels dimension: ‘isobaricInhPa’.

Figure 5. Example of the ‘compute_parameters’ section of the configuration file conf.yaml

3.5. Plot parameters

Module ​‘plot_parameters’​ includes all the required parameters related with the plotting of figures.
For each variable, in general, 4 different metrics, 12 start months and 6 + 2 leadtimes leads to a
total of 384 figures. All these figures are plot maps. The only difference between each figure is the
field plotted. The following parameters can be set in the ‘plot_module’:

● ‘execute’​: ‘True’ or ‘False’. This parameter enables or disables the plotting of figures.
● ‘replot’​: ‘True’ or ‘False’. This parameter enables or disables the re-plotting of existing

figures. Value ‘True’ leads to the removal of existing figures files and generation of new
ones.

Author: Jesús Peña-Izquierdo 13 of 19
 07/31/2020

Copernicus Climate Change Service

● ‘bias’​ / ​‘correlation’​ / ​‘frpss’​ / ​‘fcrpss’​:
○ ‘plot_figure’​: ‘True’ or ‘False’. This parameter enables or disables the generation of

plots for the corresponding metric
○ ‘metric_longname’​: This is the name of the metric used in the title of the

corresponding figure. Should be formatted to be read properly.
○ ‘metric_shortname’​: This is the name of the metric to be used in the corresponding

figure file name. This should be short and without containing spaces.
○ ‘cbar_nlevels’​: Number of levels in the colorbar/colormap. Recommended is 11.
○ ‘ ​cbar_minmax’​: This list with two numbers indicates the minimum and maximum of

the colorbar [min, max]. If a number is specified it will appear in the corresponding
figure.If None is specified it will use the percentile indicated in parameter
‘cbar_pminmax’​. Depending on the metric, different values should be used. bias =>
[None, None], correlation => [-1, -1], frpss => [0, 1], fcrpss => [0, 1].

○ ‘cbar_pminmax’​: A list with two numbers (0<numbers<1) specifying the percentiles
used in the minimum and maximum of the colorbar [pmin, pmax]. These percentiles
are only used when None is correspondingly indicated in ‘cbar_minmax’. For the bias,
recommended is [0.02, 0.98]. For the other metrics is [None, None]

○ ‘cmap_type’​: ‘sequential’ or ‘diverging’. This parameter specifies if the colormap
used in the corresponding metric should be ‘sequential’ or ‘diverging’.

○ ‘cmap_double_white’​: ‘True’ or ‘False’. This parameters specifies if the a diverging
colormap uses 2 white intervals (around 0) or 1 white interval (centred in 0). True
recommended for correlation. False recommended for bias

○ ‘cbar_ndigits’​: A number indicating the number of digits in the colorbar axis.
Recommended 2.

○ ‘cbar_extend’​: ‘neither’, ‘min’, ‘max’ or ‘both’. This parameters specifies if the
colorbar should indicate smaller/larger values exist show a triangle in the
lower/upper edge of the colorbar. For ‘neither’ a flat edge is shown in both sides.
Recommended is bias => ‘both’, correlation => ‘neither’, frpss => ‘min’, fcrpss =>
‘min’.

○ ‘conf_level’​: A number (0<number<1) indicating the confidence interval used in the
statistical significance test (t-test). It is only used for the correlation plots.
Recommended is 0.05 (i.e. 95% confidence interval).

○ ‘hatches’​: A list with a number of punctuation marks used for plotting the statistical
significant field. This is only used for the correlation plots. Recommended [‘....’]. Any
punctuation mark can be used. More elements implies smaller/more detailed fields.

○ ‘lines_colors’​: A list of strings or list of RGB numbers indicating the color of the lines
in plots with latitudinal zonal means. Recommended ['k', 'b', 'c', 'y', [1,0.5,0],
[1,0.5,0.7],'r']

○ ‘line_style’​: A string indicating the style of the lines in time series plots.
Recommended '-'

○ ‘lines_widths’​: A number indicating the width of the lines for zonal means of
latitudinal regions in time series plots. Recommended 2

○ ‘line_width’​: A number indicating the width for line of global mean in time series
plots. Recommended 4

Author: Jesús Peña-Izquierdo 14 of 19
 07/31/2020

Copernicus Climate Change Service

○ ‘cmap_double_white’: ‘True’ or ‘False’. This parameters indicates if a double white
interval around 0 is required in the colorbar/colormap. Recommended ‘False’.

Figure 6a. Example of the ‘plot_parameters’ section of the configuration file conf.yaml. It continues in fig. 6b

Figure 6b. Example of the ‘plot_parameters’ section of the configuration file conf.yaml.

● ‘projection’​: ‘rectangular’ or ‘robinson’. This parameter specifies the map projection used in

the plots. Recommended is ‘robinson’.
● ‘colorbar_fraction’​: A number (0<number<1). This parameter indicates the width of the

colorbar. Recommended 0.024.
● ‘colorbar_pad’​: A number (0<number<1). This parameter indicates the distance between the

colorbar and the axes. Recommended 0.02.
● ‘figure_size’​: A list with two numbers [dx, dy]. This parameter indicates the size of the figure.

Recommended [12, 12].
● ‘figure_dpi’​: A number. This parameter indicates the resolution of printed/saved figure in

dots per inch (dpi). Recommended 300.

Author: Jesús Peña-Izquierdo 15 of 19
 07/31/2020

Copernicus Climate Change Service

● ‘file_format’​: A string indicating the file format of the generated figures. Recommended is
‘png’.

● ‘cmap’​:
○ ‘sequential’​: A string indicating the colormap used for sequential fields.

Recommended is ‘OrRd’.
○ ‘diverging’​: A string indicating the colormap used for diverging fields. Recommended

is ‘PuOr_r’.
● ‘nans_color’​: A string. This indicates the color used for nan’s. Recommended ‘lightgrey’. If

empty color is white.
● ‘axis_fontsize’​: A number indicating the size of the axis fonts
● ‘title_fontsize’​: A number indicating the size of the title font.
● ‘text_fontsize_F’​: A number indicating the size of the footnote font.
● ‘text_fontsize_D’​: A number indicating the size of the generation date font.
● ‘xticks’​: A list with three numbers defining the location of the ticks in the x-axis (longitude).

Recommended is [-150, 150, 30] => 150ºW, 120ºW,...0º,...120ºE, 150ºE
● ‘yticks’​: A list with three numbers defining the location of the ticks in the y-axis (latitude).

Recommended is [-60, 60, 30] => 60ºS, 30ºS, 0º, 30ºN, 60ºN.

3.6. Folders parameters

Module ​‘folder_parameters’​ specifies all the required folder paths. The following parameters can
be set in the ‘plot_module’:

● ‘base_dataOUT_path’​: This parameter specifies the base path of the folder that contains the
data generated by the transfer module. Currently it is ‘/data/cds_downloads’.

● ‘base_dataIN_path’​: This parameter specifies the base path of the folder that contains the
data downloaded by the download module or previously downloaded and archived.
Currently it is ‘/shared/cds_downloads/’ for the datachecker downloads or
‘/data/cds_downloads_grib/’ for the download module.

● ‘logs_path’​: This parameter indicates where the error logs are stored. They are currently
stored in ‘/data/suso/LOGS’. This should be modified by each user.

● ‘figures_path’​: This parameter specifies where the generated plots are stored. They are
currently stored at ‘/shared/plots_scientific_assessment’

● ‘metrics_data_path’​: This parameter specifies where files with computed metrics are stored.
They are currently stored at ‘/shared/netcdfs_scientific_assessment’.

Figure 7. Example of the ‘folders_parameters’ section of the configuration file conf.yaml.

Author: Jesús Peña-Izquierdo 16 of 19
 07/31/2020

Copernicus Climate Change Service

4. Additional tool files

In addition to the main module scripts described above, there are other several scripts containing
relevant functions or necessary information. A short description is explained below:

● src/tools.py​: This script includes several generic functions used in the different main
modules.

● src/grib_conventions.yaml​: This configuration file contains different grib file key required for
different types of variables

● src/unit_conversions.yaml​: This configuration file contains different unit conversions used to
convert the reference dataset to the seasonal forecast dataset units.

● src/naming_convention.yaml​: This configuration file contains different name conventions
used in the plots and file names.

● src/plot_element_locations.yaml​: This configuration file contains different parameters for
correctly location text and footnote in the figures.

● src/varsys2assess.yaml​: This configuration file allows to run the verification tool for more
than one variable. Lists of different ‘variable’, ‘originating_centre’ and ‘system’ can be
provided so the execution of the tool is looped including all the possible combinations.

● src/packages_list.txt​: This text file includes all the python packages versions required to
replicate a working conda environment simply following the instruction explained in section
6.

5. How to run the tool.

The main script of the verification tool is ​eqc.py​. This script can be converted to executable running
the following command.

$ chmod +x eqc.py

Once it is executable, the tool can be run simply with:

$./eqc.py

The main script will automatically load the configuration file ​conf.yaml​ and all the corresponding
parameters. The execution of the tool will provide a detailed log of the ongoing tasks. Also, if any
unexpected error appears, an error log will be generated with an unequivocal file name and stored
at the path specified in the ‘logs_path’ parameter of the configuration file.

Additionally, as briefly explained in section 4., the additional file ​varsys2assess.yaml​ can be passed
to ​eqc.py​ in order to allow the computation of multiple combinations of ‘variable’ +
‘originating_centre’ + ‘system’. Different values for ‘variable’, ‘originating_centre’ and ‘system’ can

Author: Jesús Peña-Izquierdo 17 of 19
 07/31/2020

Copernicus Climate Change Service

be provided as lists so the execution of the tool is looped including all the possible combinations.
This is run executing:

$./eqc.py varsys2assess.yaml

Finally, to run the tool in the background when running the tool in a remote machine (allowing
disconnection from the server) command ​nohup​ can be used and a log file will be stored in the
specified log file. For example:

$ nohup ./eqc.py &>/data/suso/LOGS/log_ecmwfs5_2m_temp.log &

or

$ nohup ./eqc.py varsys2assess.yaml &>/data/suso/LOGS/log_ecmwfs5_dwd2_wind_vars.log &

6. Installation

The seasonal forecast verification tool can be installed by cloning the repository from the BSC gitlab.

$ git clone ​https://earth.bsc.es/gitlab/external/c3s512-seasonal-forecast-eqc.git

A complete list of the required packages can be found at ​src/packages_list.txt​. In order to install all
these python packages using anaconda create a new python 3 environment (called for example
‘eqc’) running the following command.

$ conda create --name eqc --file ./src/packages_list.txt

Additional packages may require the installation via pip. For example the ​cdsapi​ and the cds
downloader version developed for the C3S_512 (which allows monitoring the download requests
statistics).

$ pip install cdsapi

and

$ pip install C3S512

R software also needs to be installed together with two specific R packages; ​SpecsVerification​ and
multiApply​. To install these packages, open R in a terminal and simply run:

> ​install​.packages("​SpecsVerification​")

and

Author: Jesús Peña-Izquierdo 18 of 19
 07/31/2020

https://earth.bsc.es/gitlab/external/c3s512-seasonal-forecast-eqc.git

Copernicus Climate Change Service

> ​install​.packages("​multiApply​")

7. Possible future improvements

Some possible future improvements are listed here:

● The module donwload.py works fine, however the integration with the transfer.py has not
been tested intensively since until now data used has been from the datachecker archive, so
download.py has been very little used. A workflow including download + transfer modules
may easily require some debugging.

● Dask library is a very powerful package for multi-core parallel computation. The current
working implementation is using a single-machine (multi-core) scheduler which works fine.
However Dask allows a cluster scheduler for supercomputer architectures. This more
complicated type of process are already implemented in the verification tool but it required
a profound investigation to work properly.

● In order to improve performance, the use of zarr file format instead of netcdf appears to
provide very significant benefits in terms of computing performance (between x2 and x5
increase) and in terms of storing space (a factor of 3 reduction).

Author: Jesús Peña-Izquierdo 19 of 19
 07/31/2020

