#'Forecast Calibration #' #'@author VerĂ³nica Torralba, \email{veronica.torralba@bsc.es} #'@author Bert Van Schaeybroeck, \email{bertvs@meteo.be} #'@description Five types of ensemble-by-ensemble bias correction can be performed. #'The \code{"bias"} method corrects the bias only, the \code{"evmos"} method #'applies a variance inflation technique to ensure the correction of the bias #'and the correspondence of variance between forecast and observation (Van #'Schaeybroeck and Vannitsem, 2011). The ensemble calibration methods #'\code{"mse_min"} and \code{"crps_min"} correct the bias, the overall forecast #'variance and the ensemble spread as described in Doblas-Reyes et al. (2005) #'and Van Schaeybroeck and Vannitsem (2015), respectively. While the #'\code{"mse_min"} method minimizes a constrained mean-squared error using three #'parameters, the \code{"crps_min"} method features four parameters and #'minimizes the Continuous Ranked Probability Score (CRPS). The #'\code{"rpc-based"} method adjusts the forecast variance ensuring that the #'ratio of predictable components (RPC) is equal to one, as in Eade et al. #'(2014). It is equivalent to function \code{Calibration} but for objects #'of class \code{s2dv_cube}. #' #'@param exp An object of class \code{s2dv_cube} as returned by \code{CST_Start} #' function with at least 'sdate' and 'ensemble' dimensions, containing the #' seasonal hindcast experiment data in the element named \code{data}. The #' hindcast is used to calibrate the forecast in case the forecast is provided; #' if not, the same hindcast will be calibrated instead. #'@param obs An object of class \code{s2dv_cube} as returned by \code{CST_Start} #' function with at least 'sdate' dimension, containing the observed data in #' the element named \code{$data}. #'@param exp_cor An optional object of class \code{s2dv_cube} as returned by #' \code{CST_Start} function with at least 'sdate' and 'ensemble' dimensions, #' containing the seasonal forecast experiment data in the element named #' \code{data}. If the forecast is provided, it will be calibrated using the #' hindcast and observations; if not, the hindcast will be calibrated instead. #' If there is only one corrected dataset, it should not have dataset dimension. #' If there is a corresponding corrected dataset for each 'exp' forecast, the #' dataset dimension must have the same length as in 'exp'. The default value #' is NULL. #'@param cal.method A character string indicating the calibration method used, #' can be either \code{bias}, \code{evmos}, \code{mse_min}, \code{crps_min} or #' \code{rpc-based}. Default value is \code{mse_min}. #'@param eval.method A character string indicating the sampling method used, it #' can be either \code{in-sample} or \code{leave-one-out}. Default value is the #' \code{leave-one-out} cross validation. In case the forecast is provided, any #' chosen eval.method is over-ruled and a third option is used. #'@param multi.model A boolean that is used only for the \code{mse_min} #' method. If multi-model ensembles or ensembles of different sizes are used, #' it must be set to \code{TRUE}. By default it is \code{FALSE}. Differences #' between the two approaches are generally small but may become large when #' using small ensemble sizes. Using multi.model when the calibration method is #' \code{bias}, \code{evmos} or \code{crps_min} will not affect the result. #'@param na.fill A boolean that indicates what happens in case calibration is #' not possible or will yield unreliable results. This happens when three or #' less forecasts-observation pairs are available to perform the training phase #' of the calibration. By default \code{na.fill} is set to true such that NA #' values will be returned. If \code{na.fill} is set to false, the uncorrected #' data will be returned. #'@param na.rm A boolean that indicates whether to remove the NA values or not. #' The default value is \code{TRUE}. See Details section for further #' information about its use and compatibility with \code{na.fill}. #'@param apply_to A character string that indicates whether to apply the #' calibration to all the forecast (\code{"all"}) or only to those where the #' correlation between the ensemble mean and the observations is statistically #' significant (\code{"sign"}). Only useful if \code{cal.method == "rpc-based"}. #'@param alpha A numeric value indicating the significance level for the #' correlation test. Only useful if \code{cal.method == "rpc-based" & apply_to #' == "sign"}. #'@param memb_dim A character string indicating the name of the ensemble dimension. #' By default, it is set to 'ensemble'. #'@param sdate_dim A character string indicating the name of the start date #' dimension. By default, it is set to 'sdate'. #'@param dat_dim A character string indicating the name of dataset dimension. #' The length of this dimension can be different between 'exp' and 'obs'. #' The default value is NULL. #'@param ncores An integer that indicates the number of cores for parallel #' computations using multiApply function. The default value is one. #' #'@return An object of class \code{s2dv_cube} containing the calibrated #'forecasts in the element \code{data} with the dimensions nexp, nobs and same #'dimensions as in the 'exp' object. nexp is the number of experiment #'(i.e., 'dat_dim' in exp), and nobs is the number of observation (i.e., #''dat_dim' in obs). If dat_dim is NULL, nexp and nobs are omitted. If 'exp_cor' #'is provided the returned array will be with the same dimensions as 'exp_cor'. #' #'@details Both the \code{na.fill} and \code{na.rm} parameters can be used to #'indicate how the function has to handle the NA values. The \code{na.fill} #'parameter checks whether there are more than three forecast-observations pairs #'to perform the computation. In case there are three or less pairs, the #'computation is not carried out, and the value returned by the function depends #'on the value of this parameter (either NA if \code{na.fill == TRUE} or the #'uncorrected value if \code{na.fill == TRUE}). On the other hand, \code{na.rm} #'is used to indicate the function whether to remove the missing values during #'the computation of the parameters needed to perform the calibration. #' #'@references Doblas-Reyes F.J, Hagedorn R, Palmer T.N. The rationale behind the #'success of multi-model ensembles in seasonal forecasting-II calibration and #'combination. Tellus A. 2005;57:234-252. \doi{10.1111/j.1600-0870.2005.00104.x} #'@references Eade, R., Smith, D., Scaife, A., Wallace, E., Dunstone, N., #'Hermanson, L., & Robinson, N. (2014). Do seasonal-to-decadal climate #'predictions underestimate the predictability of the read world? Geophysical #'Research Letters, 41(15), 5620-5628. \doi{10.1002/2014GL061146} #'@references Van Schaeybroeck, B., & Vannitsem, S. (2011). Post-processing #'through linear regression. Nonlinear Processes in Geophysics, 18(2), #'147. \doi{10.5194/npg-18-147-2011} #'@references Van Schaeybroeck, B., & Vannitsem, S. (2015). Ensemble #'post-processing using ensemble-by-ensemble approaches: theoretical aspects. #'Quarterly Journal of the Royal Meteorological Society, 141(688), 807-818. #'\doi{10.1002/qj.2397} #' #'@seealso \code{\link{CST_Start}} #' #'@examples #'# Example 1: #'mod1 <- 1 : (1 * 3 * 4 * 5 * 6 * 7) #'dim(mod1) <- c(dataset = 1, ensemble = 3, sdate = 4, time = 5, latitude = 6, longitude = 7) #'obs1 <- 1 : (1 * 1 * 4 * 5 * 6 * 7) #'dim(obs1) <- c(dataset = 1, ensemble = 1, sdate = 4, time = 5, latitude = 6, longitude = 7) #'longitude <- seq(0, 30, 5) #'latitude <- seq(0, 25, 5) #'coords <- list(latitude = latitude, longitude = longitude) #'exp <- list(data = mod1, coords = coords) #'obs <- list(data = obs1, coords = coords) #'attr(exp, 'class') <- 's2dv_cube' #'attr(obs, 'class') <- 's2dv_cube' #'a <- CST_Calibration(exp = exp, obs = obs, cal.method = "mse_min", eval.method = "in-sample") #' #'# Example 2: #'mod1 <- 1 : (1 * 3 * 4 * 5 * 6 * 7) #'mod2 <- 1 : (1 * 3 * 1 * 5 * 6 * 7) #'dim(mod1) <- c(dataset = 1, member = 3, sdate = 4, time = 5, latitude = 6, longitude = 7) #'dim(mod2) <- c(dataset = 1, member = 3, sdate = 1, time = 5, latitude = 6, longitude = 7) #'obs1 <- 1 : (1 * 1 * 4 * 5 * 6 * 7) #'dim(obs1) <- c(dataset = 1, member = 1, sdate = 4, time = 5, latitude = 6, longitude = 7) #'longitude <- seq(0, 30, 5) #'latitude <- seq(0, 25, 5) #'coords <- list(latitude = latitude, longitude = longitude) #'exp <- list(data = mod1, coords = coords) #'obs <- list(data = obs1, coords = coords) #'exp_cor <- list(data = mod2, latitude = latitude, longitude = longitude) #'attr(exp, 'class') <- 's2dv_cube' #'attr(obs, 'class') <- 's2dv_cube' #'attr(exp_cor, 'class') <- 's2dv_cube' #'a <- CST_Calibration(exp = exp, obs = obs, exp_cor = exp_cor, cal.method = "evmos") #' #'@importFrom s2dv InsertDim Reorder #'@import multiApply #'@importFrom ClimProjDiags Subset #'@export CST_Calibration <- function(exp, obs, exp_cor = NULL, cal.method = "mse_min", eval.method = "leave-one-out", multi.model = FALSE, na.fill = TRUE, na.rm = TRUE, apply_to = NULL, alpha = NULL, memb_dim = 'member', sdate_dim = 'sdate', dat_dim = NULL, ncores = NULL) { # Check 's2dv_cube' if (!inherits(exp, "s2dv_cube") || !inherits(obs, "s2dv_cube")) { stop("Parameter 'exp' and 'obs' must be of the class 's2dv_cube'.") } if (!is.null(exp_cor)) { if (!inherits(exp_cor, "s2dv_cube")) { stop("Parameter 'exp_cor' must be of the class 's2dv_cube'.") } } Calibration <- Calibration(exp = exp$data, obs = obs$data, exp_cor = exp_cor$data, cal.method = cal.method, eval.method = eval.method, multi.model = multi.model, na.fill = na.fill, na.rm = na.rm, apply_to = apply_to, alpha = alpha, memb_dim = memb_dim, sdate_dim = sdate_dim, dat_dim = dat_dim, ncores = ncores) if (is.null(exp_cor)) { exp$data <- Calibration exp$attrs$Datasets <- c(exp$attrs$Datasets, obs$attrs$Datasets) exp$attrs$source_files <- c(exp$attrs$source_files, obs$attrs$source_files) return(exp) } else { exp_cor$data <- Calibration exp_cor$attrs$Datasets <- c(exp_cor$attrs$Datasets, exp$attrs$Datasets, obs$attrs$Datasets) exp_cor$attrs$source_files <- c(exp_cor$attrs$source_files, exp$attrs$source_files, obs$attrs$source_files) return(exp_cor) } } #'Forecast Calibration #' #'@author VerĂ³nica Torralba, \email{veronica.torralba@bsc.es} #'@author Bert Van Schaeybroeck, \email{bertvs@meteo.be} #'@description Five types of ensemble-by-ensemble bias correction can be performed. #'The \code{"bias"} method corrects the bias only, the \code{"evmos"} method #'applies a variance inflation technique to ensure the correction of the bias #'and the correspondence of variance between forecast and observation (Van #'Schaeybroeck and Vannitsem, 2011). The ensemble calibration methods #'\code{"mse_min"} and \code{"crps_min"} correct the bias, the overall forecast #'variance and the ensemble spread as described in Doblas-Reyes et al. (2005) #'and Van Schaeybroeck and Vannitsem (2015), respectively. While the #'\code{"mse_min"} method minimizes a constrained mean-squared error using three #'parameters, the \code{"crps_min"} method features four parameters and #'minimizes the Continuous Ranked Probability Score (CRPS). The #'\code{"rpc-based"} method adjusts the forecast variance ensuring that the #'ratio of predictable components (RPC) is equal to one, as in Eade et al. #'(2014). Both in-sample or our out-of-sample (leave-one-out cross #'validation) calibration are possible. #' #'@param exp A multidimensional array with named dimensions (at least 'sdate' #' and 'ensemble') containing the seasonal hindcast experiment data. The hindcast #' is used to calibrate the forecast in case the forecast is provided; if not, #' the same hindcast will be calibrated instead. #'@param obs A multidimensional array with named dimensions (at least 'sdate') #' containing the observed data. #'@param exp_cor An optional multidimensional array with named dimensions (at #' least 'sdate' and 'ensemble') containing the seasonal forecast experiment #' data. If the forecast is provided, it will be calibrated using the hindcast #' and observations; if not, the hindcast will be calibrated instead. If there #' is only one corrected dataset, it should not have dataset dimension. If there #' is a corresponding corrected dataset for each 'exp' forecast, the dataset #' dimension must have the same length as in 'exp'. The default value is NULL. #'@param cal.method A character string indicating the calibration method used, #' can be either \code{bias}, \code{evmos}, \code{mse_min}, \code{crps_min} #' or \code{rpc-based}. Default value is \code{mse_min}. #'@param eval.method A character string indicating the sampling method used, #' can be either \code{in-sample} or \code{leave-one-out}. Default value is #' the \code{leave-one-out} cross validation. In case the forecast is #' provided, any chosen eval.method is over-ruled and a third option is #' used. #'@param multi.model A boolean that is used only for the \code{mse_min} #' method. If multi-model ensembles or ensembles of different sizes are used, #' it must be set to \code{TRUE}. By default it is \code{FALSE}. Differences #' between the two approaches are generally small but may become large when #' using small ensemble sizes. Using multi.model when the calibration method #' is \code{bias}, \code{evmos} or \code{crps_min} will not affect the result. #'@param na.fill A boolean that indicates what happens in case calibration is #' not possible or will yield unreliable results. This happens when three or #' less forecasts-observation pairs are available to perform the training phase #' of the calibration. By default \code{na.fill} is set to true such that NA #' values will be returned. If \code{na.fill} is set to false, the uncorrected #' data will be returned. #'@param na.rm A boolean that indicates whether to remove the NA values or #' not. The default value is \code{TRUE}. #'@param apply_to A character string that indicates whether to apply the #' calibration to all the forecast (\code{"all"}) or only to those where the #' correlation between the ensemble mean and the observations is statistically #' significant (\code{"sign"}). Only useful if \code{cal.method == "rpc-based"}. #'@param alpha A numeric value indicating the significance level for the #' correlation test. Only useful if \code{cal.method == "rpc-based" & apply_to == #' "sign"}. #'@param memb_dim A character string indicating the name of the ensemble #' dimension. By default, it is set to 'ensemble'. #'@param sdate_dim A character string indicating the name of the start date #' dimension. By default, it is set to 'sdate'. #'@param dat_dim A character string indicating the name of dataset dimension. #' The length of this dimension can be different between 'exp' and 'obs'. #' The default value is NULL. #'@param ncores An integer that indicates the number of cores for parallel #' computation using multiApply function. The default value is NULL (one core). #' #'@return An array containing the calibrated forecasts with the dimensions #'nexp, nobs and same dimensions as in the 'exp' array. nexp is the number of #'experiment (i.e., 'dat_dim' in exp), and nobs is the number of observation #'(i.e., 'dat_dim' in obs). If dat_dim is NULL, nexp and nobs are omitted. #'If 'exp_cor' is provided the returned array will be with the same dimensions as #''exp_cor'. #' #'@details Both the \code{na.fill} and \code{na.rm} parameters can be used to #'indicate how the function has to handle the NA values. The \code{na.fill} #'parameter checks whether there are more than three forecast-observations pairs #'to perform the computation. In case there are three or less pairs, the #'computation is not carried out, and the value returned by the function depends #'on the value of this parameter (either NA if \code{na.fill == TRUE} or the #'uncorrected value if \code{na.fill == TRUE}). On the other hand, \code{na.rm} #'is used to indicate the function whether to remove the missing values during #'the computation of the parameters needed to perform the calibration. #' #'@references Doblas-Reyes F.J, Hagedorn R, Palmer T.N. The rationale behind the #'success of multi-model ensembles in seasonal forecasting-II calibration and #'combination. Tellus A. 2005;57:234-252. doi:10.1111/j.1600-0870.2005.00104.x #'@references Eade, R., Smith, D., Scaife, A., Wallace, E., Dunstone, N., #'Hermanson, L., & Robinson, N. (2014). Do seasonal-to-decadal climate #'predictions underestimate the predictability of the read world? Geophysical #'Research Letters, 41(15), 5620-5628. \doi{10.1002/2014GL061146} #'@references Van Schaeybroeck, B., & Vannitsem, S. (2011). Post-processing #'through linear regression. Nonlinear Processes in Geophysics, 18(2), #'147. \doi{10.5194/npg-18-147-2011} #'@references Van Schaeybroeck, B., & Vannitsem, S. (2015). Ensemble #'post-processing using ensemble-by-ensemble approaches: theoretical aspects. #'Quarterly Journal of the Royal Meteorological Society, 141(688), 807-818. #'\doi{10.1002/qj.2397} #' #'@seealso \code{\link{CST_Start}} #' #'@examples #'mod1 <- 1 : (1 * 3 * 4 * 5 * 6 * 7) #'dim(mod1) <- c(dataset = 1, ensemble = 3, sdate = 4, time = 5, latitude = 6, longitude = 7) #'obs1 <- 1 : (1 * 1 * 4 * 5 * 6 * 7) #'dim(obs1) <- c(dataset = 1, ensemble = 1, sdate = 4, time = 5, latitude = 6, longitude = 7) #'a <- Calibration(exp = mod1, obs = obs1) #' #'@importFrom s2dv InsertDim Reorder #'@import multiApply #'@importFrom ClimProjDiags Subset #'@export Calibration <- function(exp, obs, exp_cor = NULL, cal.method = "mse_min", eval.method = "leave-one-out", multi.model = FALSE, na.fill = TRUE, na.rm = TRUE, apply_to = NULL, alpha = NULL, memb_dim = 'member', sdate_dim = 'sdate', dat_dim = NULL, ncores = NULL) { # Check inputs ## exp, obs if (!is.array(exp) || !is.numeric(exp)) { stop("Parameter 'exp' must be a numeric array.") } if (!is.array(obs) || !is.numeric(obs)) { stop("Parameter 'obs' must be a numeric array.") } expdims <- names(dim(exp)) obsdims <- names(dim(obs)) if (is.null(expdims)) { stop("Parameter 'exp' must have dimension names.") } if (is.null(obsdims)) { stop("Parameter 'obs' must have dimension names.") } if (any(is.na(exp))) { warning("Parameter 'exp' contains NA values.") } if (any(is.na(obs))) { warning("Parameter 'obs' contains NA values.") } ## exp_cor if (!is.null(exp_cor)) { # if exp_cor is provided, it will be calibrated: "calibrate forecast instead of hindcast" # if exp_cor is provided, eval.method is overruled (because if exp_cor is provided, the # train data will be all data of "exp" and the evalutaion data will be all data of "exp_cor"; # no need for "leave-one-out" or "in-sample") eval.method <- "hindcast-vs-forecast" expcordims <- names(dim(exp_cor)) if (is.null(expcordims)) { stop("Parameter 'exp_cor' must have dimension names.") } if (any(is.na(exp_cor))) { warning("Parameter 'exp_cor' contains NA values.") } } ## dat_dim if (!is.null(dat_dim)) { if (!is.character(dat_dim) | length(dat_dim) > 1) { stop("Parameter 'dat_dim' must be a character string.") } if (!dat_dim %in% names(dim(exp)) | !dat_dim %in% names(dim(obs))) { stop("Parameter 'dat_dim' is not found in 'exp' or 'obs' dimension.", " Set it as NULL if there is no dataset dimension.") } } ## sdate_dim and memb_dim if (!is.character(sdate_dim)) { stop("Parameter 'sdate_dim' should be a character string indicating the", "name of the dimension where start dates are stored in 'exp'.") } if (length(sdate_dim) > 1) { sdate_dim <- sdate_dim[1] warning("Parameter 'sdate_dim' has length greater than 1 and only", " the first element will be used.") } if (!is.character(memb_dim)) { stop("Parameter 'memb_dim' should be a character string indicating the", "name of the dimension where members are stored in 'exp'.") } if (length(memb_dim) > 1) { memb_dim <- memb_dim[1] warning("Parameter 'memb_dim' has length greater than 1 and only", " the first element will be used.") } target_dims_exp <- c(memb_dim, sdate_dim, dat_dim) target_dims_obs <- c(sdate_dim, dat_dim) if (!all(target_dims_exp %in% expdims)) { stop("Parameter 'exp' requires 'sdate_dim' and 'memb_dim' dimensions.") } if (!all(target_dims_obs %in% obsdims)) { stop("Parameter 'obs' must have the dimension defined in sdate_dim ", "parameter.") } if (memb_dim %in% obsdims) { if (dim(obs)[memb_dim] != 1) { warning("Parameter 'obs' has dimension 'memb_dim' with length larger", " than 1. Only the first member dimension will be used.") } obs <- Subset(obs, along = memb_dim, indices = 1, drop = "selected") } if (!is.null(exp_cor)) { if (!memb_dim %in% names(dim(exp_cor))) { exp_cor <- InsertDim(exp_cor, posdim = 1, lendim = 1, name = memb_dim) exp_cor_remove_memb <- TRUE } else { exp_cor_remove_memb <- FALSE } } else { exp_cor_remove_memb <- FALSE } ## exp, obs, and exp_cor (2) name_exp <- sort(names(dim(exp))) name_obs <- sort(names(dim(obs))) name_exp <- name_exp[-which(name_exp == memb_dim)] if (!is.null(dat_dim)) { name_exp <- name_exp[-which(name_exp == dat_dim)] name_obs <- name_obs[-which(name_obs == dat_dim)] } if (!identical(length(name_exp), length(name_obs)) | !identical(dim(exp)[name_exp], dim(obs)[name_obs])) { stop("Parameter 'exp' and 'obs' must have same length of all ", "dimensions except 'memb_dim' and 'dat_dim'.") } if (!is.null(exp_cor)) { name_exp_cor <- sort(names(dim(exp_cor))) name_exp <- sort(names(dim(exp))) if (!is.null(dat_dim)) { if (dat_dim %in% expcordims) { if (!identical(dim(exp)[dat_dim], dim(exp_cor)[dat_dim])) { stop("If parameter 'exp_cor' has dataset dimension, it must be", " equal to dataset dimension of 'exp'.") } name_exp_cor <- name_exp_cor[-which(name_exp_cor == dat_dim)] target_dims_cor <- c(memb_dim, sdate_dim, dat_dim) } else { target_dims_cor <- c(memb_dim, sdate_dim) } } else { target_dims_cor <- c(memb_dim, sdate_dim) } name_exp <- name_exp[-which(name_exp %in% target_dims_exp)] name_exp_cor <- name_exp_cor[-which(name_exp_cor %in% target_dims_cor)] if (!identical(length(name_exp), length(name_exp_cor)) | !identical(dim(exp)[name_exp], dim(exp_cor)[name_exp_cor])) { stop("Parameter 'exp' and 'exp_cor' must have the same length of ", "all common dimensions except 'dat_dim', 'sdate_dim' and 'memb_dim'.") } } ## ncores if (!is.null(ncores)) { if (!is.numeric(ncores) | ncores %% 1 != 0 | ncores <= 0 | length(ncores) > 1) { stop("Parameter 'ncores' must be either NULL or a positive integer.") } } ## na.rm if (!inherits(na.rm, "logical")) { stop("Parameter 'na.rm' must be a logical value.") } ## na.fill if (!inherits(na.fill, "logical")) { stop("Parameter 'na.fill' must be a logical value.") } ## cal.method, apply_to, alpha if (!any(cal.method %in% c('bias', 'evmos', 'mse_min', 'crps_min', 'rpc-based'))) { stop("Parameter 'cal.method' must be a character string indicating the calibration method used.") } if (cal.method == 'rpc-based') { if (is.null(apply_to)) { apply_to <- 'sign' warning("Parameter 'apply_to' cannot be NULL for 'rpc-based' method so it ", "has been set to 'sign', as in Eade et al. (2014).") } else if (!apply_to %in% c('all','sign')) { stop("Parameter 'apply_to' must be either 'all' or 'sign' when 'rpc-based' ", "method is used.") } if (apply_to == 'sign') { if (is.null(alpha)) { alpha <- 0.1 warning("Parameter 'alpha' cannot be NULL for 'rpc-based' method so it ", "has been set to 0.1, as in Eade et al. (2014).") } else if (!is.numeric(alpha) | alpha <= 0 | alpha >= 1) { stop("Parameter 'alpha' must be a number between 0 and 1.") } } } ## eval.method if (!any(eval.method %in% c('in-sample', 'leave-one-out', 'hindcast-vs-forecast'))) { stop(paste0("Parameter 'eval.method' must be a character string indicating ", "the sampling method used ('in-sample', 'leave-one-out' or ", "'hindcast-vs-forecast').")) } ## multi.model if (!inherits(multi.model, "logical")) { stop("Parameter 'multi.model' must be a logical value.") } if (multi.model & !(cal.method == "mse_min")) { warning(paste0("The 'multi.model' parameter is ignored when using the ", "calibration method '", cal.method, "'.")) } ## data sufficiently large data.set.sufficiently.large.out <- Apply(data = list(exp = exp, obs = obs), target_dims = list(exp = target_dims_exp, obs = target_dims_obs), fun = .data.set.sufficiently.large, dat_dim = dat_dim, ncores = ncores)$output1 if (!all(data.set.sufficiently.large.out)) { if (na.fill) { warning("Some forecast data could not be corrected due to data lack", " and is replaced with NA values.") } else { warning("Some forecast data could not be corrected due to data lack", " and is replaced with uncorrected values.") } } if (is.null(exp_cor)) { calibrated <- Apply(data = list(exp = exp, obs = obs), dat_dim = dat_dim, cal.method = cal.method, eval.method = eval.method, multi.model = multi.model, na.fill = na.fill, na.rm = na.rm, apply_to = apply_to, alpha = alpha, target_dims = list(exp = target_dims_exp, obs = target_dims_obs), ncores = ncores, fun = .cal)$output1 } else { calibrated <- Apply(data = list(exp = exp, obs = obs, exp_cor = exp_cor), dat_dim = dat_dim, cal.method = cal.method, eval.method = eval.method, multi.model = multi.model, na.fill = na.fill, na.rm = na.rm, apply_to = apply_to, alpha = alpha, target_dims = list(exp = target_dims_exp, obs = target_dims_obs, exp_cor = target_dims_cor), ncores = ncores, fun = .cal)$output1 } if (!is.null(dat_dim)) { pos <- match(c(names(dim(exp))[-which(names(dim(exp)) == dat_dim)], 'nexp', 'nobs'), names(dim(calibrated))) calibrated <- aperm(calibrated, pos) } else { pos <- match(c(names(dim(exp))), names(dim(calibrated))) calibrated <- aperm(calibrated, pos) } if (exp_cor_remove_memb) { dim(calibrated) <- dim(calibrated)[-which(names(dim(calibrated)) == memb_dim)] } dims <- dim(calibrated) if (is.logical(calibrated)) { calibrated <- array(as.numeric(calibrated), dim = dims) } return(calibrated) } .data.set.sufficiently.large <- function(exp, obs, dat_dim = NULL) { amt.min.samples <- 3 if (is.null(dat_dim)) { amt.good.pts <- sum(!is.na(obs) & !apply(exp, c(2), function(x) all(is.na(x)))) return(amt.good.pts > amt.min.samples) } else { nexp <- as.numeric(dim(exp)[dat_dim]) nobs <- as.numeric(dim(obs)[dat_dim]) amt.good.pts <- NULL for (i in 1:nexp) { for (j in 1:nobs) { agp <- sum(!is.na(obs[, j, drop = FALSE]) & !apply(exp[, , i, drop = FALSE], c(2), function(x) all(is.na(x)))) amt.good.pts <- c(amt.good.pts, agp) } } return(amt.good.pts > amt.min.samples) } } .make.eval.train.dexes <- function(eval.method, amt.points, amt.points_cor) { if (eval.method == "leave-one-out") { dexes.lst <- lapply(seq(1, amt.points), function(x) return(list(eval.dexes = x, train.dexes = seq(1, amt.points)[-x]))) } else if (eval.method == "in-sample") { dexes.lst <- list(list(eval.dexes = seq(1, amt.points), train.dexes = seq(1, amt.points))) } else if (eval.method == "hindcast-vs-forecast") { dexes.lst <- list(list(eval.dexes = seq(1,amt.points_cor), train.dexes = seq(1, amt.points))) } else { stop(paste0("unknown sampling method: ", eval.method)) } return(dexes.lst) } .cal <- function(exp, obs, exp_cor = NULL, dat_dim = NULL, cal.method = "mse_min", eval.method = "leave-one-out", multi.model = FALSE, na.fill = TRUE, na.rm = TRUE, apply_to = NULL, alpha = NULL) { # exp: [memb, sdate, (dat)] # obs: [sdate (dat)] # exp_cor: [memb, sdate, (dat)] or NULL if (is.null(dat_dim)) { nexp <- 1 nobs <- 1 exp <- InsertDim(exp, posdim = 3, lendim = 1, name = 'dataset') obs <- InsertDim(obs, posdim = 2, lendim = 1, name = 'dataset') } else { nexp <- as.numeric(dim(exp)[dat_dim]) nobs <- as.numeric(dim(obs)[dat_dim]) } if (is.null(exp_cor)) { # generate a copy of exp so that the same function can run for both cases exp_cor <- exp cor_dat_dim <- TRUE } else { if (length(dim(exp_cor)) == 2) { # exp_cor: [memb, sdate] cor_dat_dim <- FALSE } else { # exp_cor: [memb, sdate, dat] cor_dat_dim <- TRUE } } expdims <- dim(exp) expdims_cor <- dim(exp_cor) memb <- expdims[1] # memb sdate <- expdims[2] # sdate sdate_cor <- expdims_cor[2] var.cor.fc <- array(dim = c(dim(exp_cor)[1:2], nexp = nexp, nobs = nobs)) for (i in 1:nexp) { for (j in 1:nobs) { exp_data <- exp[, , i] dim(exp_data) <- dim(exp)[1:2] obs_data <- as.vector(obs[, j]) if (!.data.set.sufficiently.large(exp = exp_data, obs = obs_data)) { if (!na.fill) { exp_subset <- exp[, , i] var.cor.fc[, , i, j] <- exp_subset } } else { # Subset data for dataset dimension if (cor_dat_dim) { expcor_data <- exp_cor[, , i] dim(expcor_data) <- dim(exp_cor)[1:2] } else { expcor_data <- exp_cor } eval.train.dexeses <- .make.eval.train.dexes(eval.method = eval.method, amt.points = sdate, amt.points_cor = sdate_cor) amt.resamples <- length(eval.train.dexeses) for (i.sample in seq(1, amt.resamples)) { # defining training (tr) and evaluation (ev) subsets # fc.ev is used to evaluate (not train; train should be done with exp (hindcast)) eval.dexes <- eval.train.dexeses[[i.sample]]$eval.dexes train.dexes <- eval.train.dexeses[[i.sample]]$train.dexes fc.ev <- expcor_data[, eval.dexes, drop = FALSE] fc.tr <- exp_data[, train.dexes] obs.tr <- obs_data[train.dexes, drop = FALSE] if (cal.method == "bias") { var.cor.fc[, eval.dexes, i, j] <- fc.ev + mean(obs.tr, na.rm = na.rm) - mean(fc.tr, na.rm = na.rm) # forecast correction implemented } else if (cal.method == "evmos") { # forecast correction implemented # ensemble and observational characteristics quant.obs.fc.tr <- .calc.obs.fc.quant(obs = obs.tr, fc = fc.tr, na.rm = na.rm) # calculate value for regression parameters init.par <- c(.calc.evmos.par(quant.obs.fc.tr, na.rm = na.rm)) # correct evaluation subset var.cor.fc[, eval.dexes, i, j] <- .correct.evmos.fc(fc.ev , init.par, na.rm = na.rm) } else if (cal.method == "mse_min") { quant.obs.fc.tr <- .calc.obs.fc.quant(obs = obs.tr, fc = fc.tr, na.rm = na.rm) init.par <- .calc.mse.min.par(quant.obs.fc.tr, multi.model, na.rm = na.rm) var.cor.fc[, eval.dexes, i, j] <- .correct.mse.min.fc(fc.ev , init.par, na.rm = na.rm) } else if (cal.method == "crps_min") { quant.obs.fc.tr <- .calc.obs.fc.quant.ext(obs = obs.tr, fc = fc.tr, na.rm = na.rm) init.par <- c(.calc.mse.min.par(quant.obs.fc.tr, na.rm = na.rm), 0.001) init.par[3] <- sqrt(init.par[3]) # calculate regression parameters on training dataset optim.tmp <- optim(par = init.par, fn = .calc.crps.opt, gr = .calc.crps.grad.opt, quant.obs.fc = quant.obs.fc.tr, na.rm = na.rm, method = "BFGS") mbm.par <- optim.tmp$par var.cor.fc[, eval.dexes, i, j] <- .correct.crps.min.fc(fc.ev , mbm.par, na.rm = na.rm) } else if (cal.method == 'rpc-based') { # Ensemble mean ens_mean.ev <- Apply(data = fc.ev, target_dims = names(memb), fun = mean, na.rm = na.rm)$output1 ens_mean.tr <- Apply(data = fc.tr, target_dims = names(memb), fun = mean, na.rm = na.rm)$output1 # Ensemble spread ens_spread.tr <- Apply(data = list(fc.tr, ens_mean.tr), target_dims = names(sdate), fun = "-")$output1 # Mean (climatology) exp_mean.tr <- mean(fc.tr, na.rm = na.rm) # Ensemble mean variance var_signal.tr <- var(ens_mean.tr, na.rm = na.rm) # Variance of ensemble members about ensemble mean (= spread) var_noise.tr <- var(as.vector(ens_spread.tr), na.rm = na.rm) # Variance in the observations var_obs.tr <- var(obs.tr, na.rm = na.rm) # Correlation between observations and the ensemble mean r.tr <- cor(x = ens_mean.tr, y = obs.tr, method = 'pearson', use = ifelse(test = isTRUE(na.rm), yes = "pairwise.complete.obs", no = "everything")) if ((apply_to == 'all') || (apply_to == 'sign' && cor.test(ens_mean.tr, obs.tr, method = 'pearson', alternative = 'greater')$p.value < alpha)) { ens_mean_cal <- (ens_mean.ev - exp_mean.tr) * r.tr * sqrt(var_obs.tr) / sqrt(var_signal.tr) + exp_mean.tr var.cor.fc[, eval.dexes, i, j] <- Reorder(data = Apply(data = list(exp = fc.ev, ens_mean = ens_mean.ev, ens_mean_cal = ens_mean_cal), target_dims = names(sdate), fun = .CalibrationMembersRPC, var_obs = var_obs.tr, var_noise = var_noise.tr, r = r.tr)$output1, order = names(expdims)[1:2]) } else { # no significant -> replacing with observed climatology var.cor.fc[, eval.dexes, i, j] <- array(data = mean(obs.tr, na.rm = na.rm), dim = dim(fc.ev)) } } } } } } if (is.null(dat_dim)) { dim(var.cor.fc) <- dim(exp_cor)[1:2] } return(var.cor.fc) } # Function to calculate different quantities of a series of ensemble forecasts and corresponding observations .calc.obs.fc.quant <- function(obs, fc, na.rm) { if (is.null(dim(fc))) { dim(fc) <- c(length(fc), 1) } amt.mbr <- dim(fc)[1] obs.per.ens <- InsertDim(obs, posdim = 1, lendim = amt.mbr, name = 'amt.mbr') fc.ens.av <- apply(fc, c(2), mean, na.rm = na.rm) cor.obs.fc <- cor(fc.ens.av, obs, use = "complete.obs") obs.av <- mean(obs, na.rm = na.rm) obs.sd <- sd(obs, na.rm = na.rm) return( append( .calc.fc.quant(fc = fc, na.rm = na.rm), list( obs.per.ens = obs.per.ens, cor.obs.fc = cor.obs.fc, obs.av = obs.av, obs.sd = obs.sd ) ) ) } # Extended function to calculate different quantities of a series of ensemble forecasts and corresponding observations .calc.obs.fc.quant.ext <- function(obs, fc, na.rm){ amt.mbr <- dim(fc)[1] obs.per.ens <- InsertDim(obs, posdim = 1, lendim = amt.mbr, name = 'amt.mbr') fc.ens.av <- apply(fc, c(2), mean, na.rm = na.rm) cor.obs.fc <- cor(fc.ens.av, obs, use = "complete.obs") obs.av <- mean(obs, na.rm = na.rm) obs.sd <- sd(obs, na.rm = na.rm) return( append( .calc.fc.quant.ext(fc = fc, na.rm = na.rm), list( obs.per.ens = obs.per.ens, cor.obs.fc = cor.obs.fc, obs.av = obs.av, obs.sd = obs.sd ) ) ) } # Function to calculate different quantities of a series of ensemble forecasts .calc.fc.quant <- function(fc, na.rm) { amt.mbr <- dim(fc)[1] fc.ens.av <- apply(fc, c(2), mean, na.rm = na.rm) fc.ens.av.av <- mean(fc.ens.av, na.rm = na.rm) fc.ens.av.sd <- sd(fc.ens.av, na.rm = na.rm) fc.ens.av.per.ens <- InsertDim(fc.ens.av, posdim = 1, lendim = amt.mbr, name = 'amt.mbr') fc.ens.sd <- apply(fc, c(2), sd, na.rm = na.rm) fc.ens.var.av.sqrt <- sqrt(mean(fc.ens.sd^2, na.rm = na.rm)) fc.dev <- fc - fc.ens.av.per.ens fc.dev.sd <- sd(fc.dev, na.rm = na.rm) fc.av <- mean(fc, na.rm = na.rm) fc.sd <- sd(fc, na.rm = na.rm) return( list( fc.ens.av = fc.ens.av, fc.ens.av.av = fc.ens.av.av, fc.ens.av.sd = fc.ens.av.sd, fc.ens.av.per.ens = fc.ens.av.per.ens, fc.ens.sd = fc.ens.sd, fc.ens.var.av.sqrt = fc.ens.var.av.sqrt, fc.dev = fc.dev, fc.dev.sd = fc.dev.sd, fc.av = fc.av, fc.sd = fc.sd ) ) } # Extended function to calculate different quantities of a series of ensemble forecasts .calc.fc.quant.ext <- function(fc, na.rm) { amt.mbr <- dim(fc)[1] repmat1.tmp <- InsertDim(fc, posdim = 1, lendim = amt.mbr, name = 'amt.mbr') repmat2.tmp <- aperm(repmat1.tmp, c(2, 1, 3)) spr.abs <- apply(abs(repmat1.tmp - repmat2.tmp), c(3), mean, na.rm = na.rm) spr.abs.per.ens <- InsertDim(spr.abs, posdim = 1, lendim = amt.mbr, name = 'amt.mbr') return( append(.calc.fc.quant(fc, na.rm = na.rm), list(spr.abs = spr.abs, spr.abs.per.ens = spr.abs.per.ens)) ) } # Below are the core or elementary functions to calculate the regression parameters for the different methods .calc.mse.min.par <- function(quant.obs.fc, multi.model = F, na.rm) { par.out <- rep(NA, 3) if (multi.model) { par.out[3] <- with(quant.obs.fc, obs.sd * sqrt(1. - cor.obs.fc^2) / fc.ens.var.av.sqrt) } else { par.out[3] <- with(quant.obs.fc, obs.sd * sqrt(1. - cor.obs.fc^2) / fc.dev.sd) } par.out[2] <- with(quant.obs.fc, abs(cor.obs.fc) * obs.sd / fc.ens.av.sd) par.out[1] <- with(quant.obs.fc, obs.av - par.out[2] * fc.ens.av.av, na.rm = na.rm) return(par.out) } .calc.evmos.par <- function(quant.obs.fc, na.rm) { par.out <- rep(NA, 2) par.out[2] <- with(quant.obs.fc, obs.sd / fc.sd) par.out[1] <- with(quant.obs.fc, obs.av - par.out[2] * fc.ens.av.av, na.rm = na.rm) return(par.out) } # Below are the core or elementary functions to calculate the functions necessary for the minimization of crps .calc.crps.opt <- function(par, quant.obs.fc, na.rm){ return( with(quant.obs.fc, mean(abs(obs.per.ens - (par[1] + par[2] * fc.ens.av.per.ens + ((par[3])^2 + par[4] / spr.abs.per.ens) * fc.dev)), na.rm = na.rm) - mean(abs((par[3])^2 * spr.abs + par[4]) / 2., na.rm = na.rm) ) ) } .calc.crps.grad.opt <- function(par, quant.obs.fc, na.rm) { sgn1 <- with(quant.obs.fc,sign(obs.per.ens - (par[1] + par[2] * fc.ens.av.per.ens + ((par[3])^2 + par[4] / spr.abs.per.ens) * fc.dev))) sgn2 <- with(quant.obs.fc, sign((par[3])^2 + par[4] / spr.abs.per.ens)) sgn3 <- with(quant.obs.fc,sign((par[3])^2 * spr.abs + par[4])) deriv.par1 <- mean(sgn1, na.rm = na.rm) deriv.par2 <- with(quant.obs.fc, mean(sgn1 * fc.dev, na.rm = na.rm)) deriv.par3 <- with(quant.obs.fc, mean(2* par[3] * sgn1 * sgn2 * fc.ens.av.per.ens, na.rm = na.rm) - mean(spr.abs * sgn3, na.rm = na.rm) / 2.) deriv.par4 <- with(quant.obs.fc, mean(sgn1 * sgn2 * fc.ens.av.per.ens / spr.abs.per.ens, na.rm = na.rm) - mean(sgn3, na.rm = na.rm) / 2.) return(c(deriv.par1, deriv.par2, deriv.par3, deriv.par4)) } # Below are the core or elementary functions to correct the evaluation set based on the regression parameters .correct.evmos.fc <- function(fc, par, na.rm) { quant.fc.mp <- .calc.fc.quant(fc = fc, na.rm = na.rm) return(with(quant.fc.mp, par[1] + par[2] * fc)) } .correct.mse.min.fc <- function(fc, par, na.rm) { quant.fc.mp <- .calc.fc.quant(fc = fc, na.rm = na.rm) return(with(quant.fc.mp, par[1] + par[2] * fc.ens.av.per.ens + fc.dev * par[3])) } .correct.crps.min.fc <- function(fc, par, na.rm) { quant.fc.mp <- .calc.fc.quant.ext(fc = fc, na.rm = na.rm) return(with(quant.fc.mp, par[1] + par[2] * fc.ens.av.per.ens + fc.dev * abs((par[3])^2 + par[4] / spr.abs))) } # Function to calibrate the individual members with the RPC-based method .CalibrationMembersRPC <- function(exp, ens_mean, ens_mean_cal, var_obs, var_noise, r) { member_cal <- (exp - ens_mean) * sqrt(var_obs) * sqrt(1 - r^2) / sqrt(var_noise) + ens_mean_cal return(member_cal) }