#'Save objects of class 's2dv_cube' to data in NetCDF format #' #'@author Perez-Zanon Nuria, \email{nuria.perez@bsc.es} #' #'@description This function allows to divide and save a object of class #''s2dv_cube' into a NetCDF file, allowing to reload the saved data using #'\code{CST_Start} or \code{CST_Load} functions. It also allows to save any #''s2dv_cube' object that follows the NetCDF attributes conventions. #' #'@param data An object of class \code{s2dv_cube}. #'@param destination A character string containing the directory name in which #' to save the data. NetCDF file for each starting date are saved into the #' folder tree: 'destination/Dataset/variable/'. By default the function #' saves the data into the working directory. #'@param sdate_dim A character string indicating the name of the start date #' dimension. By default, it is set to 'sdate'. It can be NULL if there is no #' start date dimension. #'@param ftime_dim A character string indicating the name of the forecast time #' dimension. If 'Dates' are used, it can't be NULL. If there is no forecast #' time dimension, 'Dates' will be set to NULL and will not be used. By #' default, it is set to 'time'. #'@param dat_dim A character string indicating the name of dataset dimension. #' It can be NULL if there is no dataset dimension. By default, it is set to #' 'dataset'. #'@param var_dim A character string indicating the name of variable dimension. #' It can be NULL if there is no variable dimension. By default, it is set to #' 'var'. #'@param memb_dim A character string indicating the name of the member #' dimension. It can be NULL if there is no member dimension. By default, it is #' set to 'member'. #'@param startdates A vector of dates that will be used for the filenames #' when saving the data in multiple files (single_file = FALSE). It must be a #' vector of the same length as the start date dimension of data. It must be a #' vector of class \code{Dates}, \code{'POSIXct'} or character with lenghts #' between 1 and 10. If it is NULL, the coordinate corresponding the the start #' date dimension or the first Date of each time step will be used as the name #' of the files. It is NULL by default. #'@param single_file A logical value indicating if all object is saved in a #' single file (TRUE) or in multiple files (FALSE). When it is FALSE, #' the array is separated for datasets, variable and start date. When there are #' no specified time dimensions, the data will be saved in a single file by #' default. The output file name when 'single_file' is TRUE is a character #' string containing: '__.nc'; when it is FALSE, #' it is '_.nc'. It is FALSE by default. #'@param drop_dims (optional) A vector of character strings indicating the #' dimension names of length 1 that need to be dropped in order that they don't #' appear in the netCDF file. Only is allowed to drop dimensions that are not #' used in the computation. The dimensions used in the computation are the ones #' specified in: sdate_dim, ftime_dim, dat_dim, var_dim and memb_dim. It is #' NULL by default. #'@param extra_string (Optional) A character string to be included as part of #' the file name, for instance, to identify member or realization. When #' single_file is TRUE, the 'extra_string' will substitute all the default #' file name; when single_file is FALSE, the 'extra_string' will be added #' in the file name as: '__.nc'. It is NULL by #' default. #'@param units_hours_since (Optional) A logical value only available for the #' case: Dates have forecast time and start date dimension, single_file is #' TRUE and 'time_bounds' are not used. When it is TRUE, it saves the forecast #' time with units of 'hours since'; if it is FALSE, the time units will be a #' number of time steps with its corresponding frequency (e.g. n days, n months #' or n hours). It is TRUE by default. #'@param global_attrs (Optional) A list with elements containing the global #' attributes to be saved in the NetCDF. #' #'@return Multiple or single NetCDF files containing the data array.\cr #'\item{\code{single_file is TRUE}}{ #' All data is saved in a single file located in the specified destination #' path with the following name (by default): #' '__.nc'. Multiple variables #' are saved separately in the same file. The forecast time units #' are calculated from each start date (if sdate_dim is not NULL) or from #' the time step. If 'units_hours_since' is TRUE, the forecast time units #' will be 'hours since '. If 'units_hours_since' is FALSE, #' the forecast time units are extracted from the frequency of the time steps #' (hours, days, months); if no frequency is found, the units will be ’hours #' since’. When the time units are 'hours since' the time ateps are assumed to #' be equally spaced. #'} #'\item{\code{single_file is FALSE}}{ #' The data array is subset and stored into multiple files. Each file #' contains the data subset for each start date, variable and dataset. Files #' with different variables and datasets are stored in separated directories #' within the following directory tree: 'destination/Dataset/variable/'. #' The name of each file will be by default: '_.nc'. #' The forecast time units are calculated from each start date (if sdate_dim #' is not NULL) or from the time step. The forecast time units will be 'hours #' since '. #'} #' #'@seealso \code{\link[startR]{Start}}, \code{\link{as.s2dv_cube}} and #'\code{\link{s2dv_cube}} #' #'@examples #'data <- lonlat_temp_st$exp #'CST_SaveExp(data = data, ftime_dim = 'ftime', var_dim = 'var', #' dat_dim = 'dataset', sdate_dim = 'sdate') #' #'@export CST_SaveExp <- function(data, destination = "./", startdates = NULL, sdate_dim = 'sdate', ftime_dim = 'time', memb_dim = 'member', dat_dim = 'dataset', var_dim = 'var', drop_dims = NULL, single_file = FALSE, extra_string = NULL, global_attrs = NULL, units_hours_since = TRUE) { # Check 's2dv_cube' if (!inherits(data, 's2dv_cube')) { stop("Parameter 'data' must be of the class 's2dv_cube'.") } # Check object structure if (!all(c('data', 'attrs') %in% names(data))) { stop("Parameter 'data' must have at least 'data' and 'attrs' elements ", "within the 's2dv_cube' structure.") } if (!inherits(data$attrs, 'list')) { stop("Level 'attrs' must be a list with at least 'Dates' element.") } # metadata if (!is.null(data$attrs$Variable$metadata)) { if (!inherits(data$attrs$Variable$metadata, 'list')) { stop("Element metadata from Variable element in attrs must be a list.") } } # Dates if (is.null(data$attrs$Dates)) { stop("Element 'Dates' from 'attrs' level cannot be NULL.") } if (is.null(dim(data$attrs$Dates))) { stop("Element 'Dates' from 'attrs' level must have time dimensions.") } # sdate_dim if (!is.null(sdate_dim)) { if (!is.character(sdate_dim)) { stop("Parameter 'sdate_dim' must be a character string.") } } # startdates if (is.null(startdates)) { if (is.character(data$coords[[sdate_dim]])) { startdates <- data$coords[[sdate_dim]] } } SaveExp(data = data$data, destination = destination, coords = data$coords, Dates = data$attrs$Dates, time_bounds = data$attrs$time_bounds, startdates = startdates, varname = data$attrs$Variable$varName, metadata = data$attrs$Variable$metadata, Datasets = data$attrs$Datasets, sdate_dim = sdate_dim, ftime_dim = ftime_dim, memb_dim = memb_dim, dat_dim = dat_dim, var_dim = var_dim, drop_dims = drop_dims, single_file = single_file, extra_string = extra_string, global_attrs = global_attrs, units_hours_since = units_hours_since) } #'Save a multidimensional array with metadata to data in NetCDF format #'@description This function allows to save a data array with metadata into a #'NetCDF file, allowing to reload the saved data using \code{Start} function #'from StartR package. If the original 's2dv_cube' object has been created from #'\code{CST_Load()}, then it can be reloaded with \code{Load()}. #' #'@author Perez-Zanon Nuria, \email{nuria.perez@bsc.es} #' #'@param data A multi-dimensional array with named dimensions. #'@param destination A character string indicating the path where to store the #' NetCDF files. #'@param coords A named list with elements of the coordinates corresponding to #' the dimensions of the data parameter. The names and length of each element #' must correspond to the names of the dimensions. If any coordinate is not #' provided, it is set as an index vector with the values from 1 to the length #' of the corresponding dimension. #'@param Dates A named array of dates with the corresponding sdate and forecast #' time dimension. If there is no sdate_dim, you can set it to NULL. #' It must have ftime_dim dimension. #'@param time_bounds (Optional) A list of two arrays of dates containing #' the lower (first array) and the upper (second array) time bounds #' corresponding to Dates. Each array must have the same dimensions as Dates. #' It is NULL by default. #'@param startdates A vector of dates that will be used for the filenames #' when saving the data in multiple files (single_file = FALSE). It must be a #' vector of the same length as the start date dimension of data. It must be a #' vector of class \code{Dates}, \code{'POSIXct'} or character with lenghts #' between 1 and 10. If it is NULL, the coordinate corresponding the the start #' date dimension or the first Date of each time step will be used as the name #' of the files. It is NULL by default. #'@param varname A character string indicating the name of the variable to be #' saved. #'@param metadata A named list where each element is a variable containing the #' corresponding information. The information must be contained in a list of #' lists for each variable. #'@param Datasets A vector of character string indicating the names of the #' datasets. #'@param sdate_dim A character string indicating the name of the start date #' dimension. By default, it is set to 'sdate'. It can be NULL if there is no #' start date dimension. #'@param ftime_dim A character string indicating the name of the forecast time #' dimension. By default, it is set to 'time'. It can be NULL if there is no #' forecast time dimension. #'@param dat_dim A character string indicating the name of dataset dimension. #' By default, it is set to 'dataset'. It can be NULL if there is no dataset #' dimension. #'@param var_dim A character string indicating the name of variable dimension. #' By default, it is set to 'var'. It can be NULL if there is no variable #' dimension. #'@param memb_dim A character string indicating the name of the member #' dimension. By default, it is set to 'member'. It can be NULL if there is no #' member dimension. #'@param drop_dims (optional) A vector of character strings indicating the #' dimension names of length 1 that need to be dropped in order that they don't #' appear in the netCDF file. Only is allowed to drop dimensions that are not #' used in the computation. The dimensions used in the computation are the ones #' specified in: sdate_dim, ftime_dim, dat_dim, var_dim and memb_dim. It is #' NULL by default. #'@param single_file A logical value indicating if all object is saved in a #' single file (TRUE) or in multiple files (FALSE). When it is FALSE, #' the array is separated for datasets, variable and start date. When there are #' no specified time dimensions, the data will be saved in a single file by #' default. The output file name when 'single_file' is TRUE is a character #' string containing: '__.nc'; when it is FALSE, #' it is '_.nc'. It is FALSE by default. #'@param extra_string (Optional) A character string to be included as part of #' the file name, for instance, to identify member or realization. When #' single_file is TRUE, the 'extra_string' will substitute all the default #' file name; when single_file is FALSE, the 'extra_string' will be added #' in the file name as: '__.nc'. It is NULL by #' default. #'@param global_attrs (Optional) A list with elements containing the global #' attributes to be saved in the NetCDF. #'@param units_hours_since (Optional) A logical value only available for the #' case: Dates have forecast time and start date dimension, single_file is #' TRUE and 'time_bounds' is NULL. When it is TRUE, it saves the forecast time #' with units of 'hours since'; if it is FALSE, the time units will be a number #' of time steps with its corresponding frequency (e.g. n days, n months or n #' hours). It is TRUE by default. #' #'@return Multiple or single NetCDF files containing the data array.\cr #'\item{\code{single_file is TRUE}}{ #' All data is saved in a single file located in the specified destination #' path with the following name (by default): #' '__.nc'. Multiple variables #' are saved separately in the same file. The forecast time units #' are calculated from each start date (if sdate_dim is not NULL) or from #' the time step. If 'units_hours_since' is TRUE, the forecast time units #' will be 'hours since '. If 'units_hours_since' is FALSE, #' the forecast time units are extracted from the frequency of the time steps #' (hours, days, months); if no frequency is found, the units will be ’hours #' since’. When the time units are 'hours since' the time ateps are assumed to #' be equally spaced. #'} #'\item{\code{single_file is FALSE}}{ #' The data array is subset and stored into multiple files. Each file #' contains the data subset for each start date, variable and dataset. Files #' with different variables and datasets are stored in separated directories #' within the following directory tree: 'destination/Dataset/variable/'. #' The name of each file will be by default: '_.nc'. #' The forecast time units are calculated from each start date (if sdate_dim #' is not NULL) or from the time step. The forecast time units will be 'hours #' since '. #'} #' #'@examples #'data <- lonlat_temp_st$exp$data #'lon <- lonlat_temp_st$exp$coords$lon #'lat <- lonlat_temp_st$exp$coords$lat #'coords <- list(lon = lon, lat = lat) #'Datasets <- lonlat_temp_st$exp$attrs$Datasets #'varname <- 'tas' #'Dates <- lonlat_temp_st$exp$attrs$Dates #'metadata <- lonlat_temp_st$exp$attrs$Variable$metadata #'SaveExp(data = data, coords = coords, Datasets = Datasets, varname = varname, #' Dates = Dates, metadata = metadata, single_file = TRUE, #' ftime_dim = 'ftime', var_dim = 'var', dat_dim = 'dataset') #' #'@import easyNCDF #'@importFrom s2dv Reorder #'@import multiApply #'@importFrom ClimProjDiags Subset #'@export SaveExp <- function(data, destination = "./", coords = NULL, Dates = NULL, time_bounds = NULL, startdates = NULL, varname = NULL, metadata = NULL, Datasets = NULL, sdate_dim = 'sdate', ftime_dim = 'time', memb_dim = 'member', dat_dim = 'dataset', var_dim = 'var', drop_dims = NULL, single_file = FALSE, extra_string = NULL, global_attrs = NULL, units_hours_since = TRUE) { ## Initial checks # data if (is.null(data)) { stop("Parameter 'data' cannot be NULL.") } dimnames <- names(dim(data)) if (is.null(dimnames)) { stop("Parameter 'data' must be an array with named dimensions.") } # destination if (!is.character(destination) | length(destination) > 1) { stop("Parameter 'destination' must be a character string of one element ", "indicating the name of the file (including the folder if needed) ", "where the data will be saved.") } # drop_dims if (!is.null(drop_dims)) { if (!is.character(drop_dims) | any(!drop_dims %in% names(dim(data)))) { warning("Parameter 'drop_dims' must be character string containing ", "the data dimension names to be dropped. It will not be used.") } else if (!all(dim(data)[drop_dims] %in% 1)) { warning("Parameter 'drop_dims' can only contain dimension names ", "that are of length 1. It will not be used.") } else if (any(drop_dims %in% c(ftime_dim, sdate_dim, dat_dim, memb_dim, var_dim))) { warning("Parameter 'drop_dims' contains dimensions used in the computation. ", "It will not be used.") drop_dims <- NULL } else { data <- Subset(x = data, along = drop_dims, indices = lapply(1:length(drop_dims), function(x) 1), drop = 'selected') dimnames <- names(dim(data)) } } # coords if (!is.null(coords)) { if (!all(names(coords) %in% dimnames)) { coords <- coords[-which(!names(coords) %in% dimnames)] } for (i_coord in dimnames) { if (i_coord %in% names(coords)) { if (length(coords[[i_coord]]) != dim(data)[i_coord]) { warning(paste0("Coordinate '", i_coord, "' has different lenght as ", "its dimension and it will not be used.")) coords[[i_coord]] <- 1:dim(data)[i_coord] } } else { coords[[i_coord]] <- 1:dim(data)[i_coord] } } } else { coords <- sapply(dimnames, function(x) 1:dim(data)[x]) } # varname if (is.null(varname)) { varname <- 'X' } else if (length(varname) > 1) { multiple_vars <- TRUE } else { multiple_vars <- FALSE } if (!all(sapply(varname, is.character))) { stop("Parameter 'varname' must be a character string with the ", "variable names.") } # single_file if (!inherits(single_file, 'logical')) { warning("Parameter 'single_file' must be a logical value. It will be ", "set as FALSE.") single_file <- FALSE } # extra_string if (!is.null(extra_string)) { if (!is.character(extra_string)) { stop("Parameter 'extra_string' must be a character string.") } } # global_attrs if (!is.null(global_attrs)) { if (!inherits(global_attrs, 'list')) { stop("Parameter 'global_attrs' must be a list.") } } ## Dimensions checks # Spatial coordinates if (!any(dimnames %in% .KnownLonNames()) | !any(dimnames %in% .KnownLatNames())) { lon_dim <- NULL lat_dim <- NULL } else { lon_dim <- dimnames[which(dimnames %in% .KnownLonNames())] lat_dim <- dimnames[which(dimnames %in% .KnownLatNames())] } # ftime_dim if (!is.null(ftime_dim)) { if (!is.character(ftime_dim)) { stop("Parameter 'ftime_dim' must be a character string.") } if (!all(ftime_dim %in% dimnames)) { stop("Parameter 'ftime_dim' is not found in 'data' dimension. Set it ", "as NULL if there is no forecast time dimension.") } } # sdate_dim if (!is.null(sdate_dim)) { if (!is.character(sdate_dim)) { stop("Parameter 'sdate_dim' must be a character string.") } if (!all(sdate_dim %in% dimnames)) { stop("Parameter 'sdate_dim' is not found in 'data' dimension.") } } # memb_dim if (!is.null(memb_dim)) { if (!is.character(memb_dim)) { stop("Parameter 'memb_dim' must be a character string.") } if (!all(memb_dim %in% dimnames)) { stop("Parameter 'memb_dim' is not found in 'data' dimension. Set it ", "as NULL if there is no member dimension.") } } # dat_dim if (!is.null(dat_dim)) { if (!is.character(dat_dim)) { stop("Parameter 'dat_dim' must be a character string.") } if (!all(dat_dim %in% dimnames)) { stop("Parameter 'dat_dim' is not found in 'data' dimension. Set it ", "as NULL if there is no Datasets dimension.") } n_datasets <- dim(data)[dat_dim] } else { n_datasets <- 1 } # var_dim if (!is.null(var_dim)) { if (!is.character(var_dim)) { stop("Parameter 'var_dim' must be a character string.") } if (!all(var_dim %in% dimnames)) { stop("Parameter 'var_dim' is not found in 'data' dimension. Set it ", "as NULL if there is no variable dimension.") } n_vars <- dim(data)[var_dim] } else { n_vars <- 1 } # minimum dimensions if (all(dimnames %in% c(var_dim, dat_dim))) { if (!single_file) { warning("Parameter data has only ", paste(c(var_dim, dat_dim), collapse = ' and '), " dimensions ", "and it cannot be splitted in multiple files. All data will ", "be saved in a single file.") single_file <- TRUE } } # Dates (1): initial checks if (!is.null(Dates)) { if (!any(inherits(Dates, "POSIXct"), inherits(Dates, "Date"))) { stop("Parameter 'Dates' must be of 'POSIXct' or 'Dates' class.") } if (is.null(dim(Dates))) { stop("Parameter 'Dates' must have dimension names.") } if (all(is.null(ftime_dim), is.null(sdate_dim))) { warning("Parameters 'ftime_dim' and 'sdate_dim' can't both be NULL ", "if 'Dates' are used. 'Dates' will not be used.") Dates <- NULL } # sdate_dim in Dates if (!is.null(sdate_dim)) { if (!sdate_dim %in% names(dim(Dates))) { warning("Parameter 'sdate_dim' is not found in 'Dates' dimension. ", "Dates will not be used.") Dates <- NULL } } # ftime_dim in Dates if (!is.null(ftime_dim)) { if (!ftime_dim %in% names(dim(Dates))) { warning("Parameter 'ftime_dim' is not found in 'Dates' dimension. ", "Dates will not be used.") Dates <- NULL } } } # time_bounds if (!is.null(time_bounds)) { if (!inherits(time_bounds, 'list')) { stop("Parameter 'time_bounds' must be a list with two dates arrays.") } time_bounds_dims <- lapply(time_bounds, function(x) dim(x)) if (!identical(time_bounds_dims[[1]], time_bounds_dims[[2]])) { stop("Parameter 'time_bounds' must have 2 arrays with same dimensions.") } name_tb <- sort(names(time_bounds_dims[[1]])) name_dt <- sort(names(dim(Dates))) if (!identical(dim(Dates)[name_dt], time_bounds_dims[[1]][name_tb])) { stop(paste0("Parameter 'Dates' and 'time_bounds' must have same length ", "of all dimensions.")) } } # Dates (2): Check dimensions if (!is.null(Dates)) { if (any(dim(Dates)[!names(dim(Dates)) %in% c(ftime_dim, sdate_dim)] != 1)) { stop("Parameter 'Dates' can have only 'sdate_dim' and 'ftime_dim' ", "dimensions of length greater than 1.") } # drop dimensions of length 1 different from sdate_dim and ftime_dim dim(Dates) <- dim(Dates)[names(dim(Dates)) %in% c(ftime_dim, sdate_dim)] # add ftime if needed if (is.null(ftime_dim)) { warning("A 'time' dimension of length 1 will be added to 'Dates'.") dim(Dates) <- c(time = 1, dim(Dates)) dim(data) <- c(time = 1, dim(data)) dimnames <- names(dim(data)) ftime_dim <- 'time' if (!is.null(time_bounds)) { time_bounds <- lapply(time_bounds, function(x) { dim(x) <- c(time = 1, dim(x)) return(x) }) } } # add sdate if needed if (is.null(sdate_dim)) { if (!single_file) { warning("A 'sdate' dimension of length 1 will be added to 'Dates'.") dim(Dates) <- c(dim(Dates), sdate = 1) dim(data) <- c(dim(data), sdate = 1) dimnames <- names(dim(data)) sdate_dim <- 'sdate' if (!is.null(time_bounds)) { time_bounds <- lapply(time_bounds, function(x) { dim(x) <- c(dim(x), sdate = 1) return(x) }) } if (!is.null(startdates)) { if (length(startdates) != 1) { warning("Parameter 'startdates' must be of length 1 if 'sdate_dim' is NULL.", "They won't be used.") startdates <- NULL } } } } } # startdates if (!is.null(Dates)) { # check startdates if (is.null(startdates)) { startdates <- Subset(Dates, along = ftime_dim, 1, drop = 'selected') } else if (any(nchar(startdates) > 10, nchar(startdates) < 1)) { warning("Parameter 'startdates' should be a character string containing ", "the start dates in the format 'yyyy-mm-dd', 'yyyymmdd', 'yyyymm', ", "'POSIXct' or 'Dates' class. Files will be named with Dates instead.") startdates <- Subset(Dates, along = ftime_dim, 1, drop = 'selected') } } else if (!single_file) { warning("Dates must be provided if 'data' must be saved in separated files. ", "All data will be saved in a single file.") single_file <- TRUE } # startdates if (is.null(startdates)) { if (is.null(sdate_dim)) { startdates <- 'XXX' } else { startdates <- rep('XXX', dim(data)[sdate_dim]) } } else { if (any(inherits(startdates, "POSIXct"), inherits(startdates, "Date"))) { startdates <- format(startdates, "%Y%m%d") } if (!is.null(sdate_dim)) { if (dim(data)[sdate_dim] != length(startdates)) { warning(paste0("Parameter 'startdates' doesn't have the same length ", "as dimension '", sdate_dim,"', it will not be used.")) startdates <- Subset(Dates, along = ftime_dim, 1, drop = 'selected') startdates <- format(startdates, "%Y%m%d") } } } # Datasets if (is.null(Datasets)) { Datasets <- rep('XXX', n_datasets ) } if (inherits(Datasets, 'list')) { Datasets <- names(Datasets) } if (n_datasets > length(Datasets)) { warning("Dimension 'Datasets' in 'data' is greater than those listed in ", "element 'Datasets' and the first element will be reused.") Datasets <- c(Datasets, rep(Datasets[1], n_datasets - length(Datasets))) } else if (n_datasets < length(Datasets)) { warning("Dimension 'Datasets' in 'data' is smaller than those listed in ", "element 'Datasets' and only the firsts elements will be used.") Datasets <- Datasets[1:n_datasets] } ## Unknown dimensions check alldims <- c(dat_dim, var_dim, sdate_dim, lon_dim, lat_dim, memb_dim, ftime_dim) if (!all(dimnames %in% alldims)) { unknown_dims <- dimnames[which(!dimnames %in% alldims)] memb_dim <- c(memb_dim, unknown_dims) alldims <- c(dat_dim, var_dim, sdate_dim, lon_dim, lat_dim, memb_dim, ftime_dim) } # Reorder if (any(dimnames != alldims)) { data <- Reorder(data, alldims) dimnames <- names(dim(data)) if (!is.null(attr(data, 'dimensions'))) { attr(data, 'dimensions') <- dimnames } } ## NetCDF dimensions definition defined_dims <- NULL extra_info_dim <- NULL if (is.null(Dates)) { filedims <- dimnames[which(!dimnames %in% c(dat_dim, var_dim))] } else { filedims <- dimnames[which(!dimnames %in% c(dat_dim, var_dim, sdate_dim, ftime_dim))] } for (i_coord in filedims) { # vals if (i_coord %in% names(coords)) {str if (is.numeric(coords[[i_coord]])) { coords[[i_coord]] <- as.vector(coords[[i_coord]]) } else { coords[[i_coord]] <- 1:dim(data)[i_coord] } } else { coords[[i_coord]] <- 1:dim(data)[i_coord] } dim(coords[[i_coord]]) <- dim(data)[i_coord] ## metadata if (i_coord %in% names(metadata)) { if ('variables' %in% names(attributes(metadata[[i_coord]]))) { # from Start: 'lon' or 'lat' attrs <- attributes(metadata[[i_coord]])[['variables']] attrs[[i_coord]]$dim <- NULL attr(coords[[i_coord]], 'variables') <- attrs } else if (inherits(metadata[[i_coord]], 'list')) { # from Start and Load: main var attr(coords[[i_coord]], 'variables') <- list(metadata[[i_coord]]) names(attributes(coords[[i_coord]])$variables) <- i_coord } else if (!is.null(attributes(metadata[[i_coord]]))) { # from Load attrs <- attributes(metadata[[i_coord]]) # We remove because some attributes can't be saved attrs <- NULL attr(coords[[i_coord]], 'variables') <- list(attrs) names(attributes(coords[[i_coord]])$variables) <- i_coord } } } # Reorder coords coords[c(names(coords)[!names(coords) %in% filedims])] <- NULL coords <- coords[filedims] if (!single_file) { for (i in 1:n_datasets) { path <- file.path(destination, Datasets[i], varname) for (j in 1:n_vars) { dir.create(path[j], recursive = TRUE) startdates <- gsub("-", "", startdates) dim(startdates) <- c(length(startdates)) names(dim(startdates)) <- sdate_dim if (is.null(dat_dim) & is.null(var_dim)) { data_subset <- data } else if (is.null(dat_dim)) { data_subset <- Subset(data, c(var_dim), list(j), drop = 'selected') } else if (is.null(var_dim)) { data_subset <- Subset(data, along = c(dat_dim), list(i), drop = 'selected') } else { data_subset <- Subset(data, c(dat_dim, var_dim), list(i, j), drop = 'selected') } if (is.null(Dates)) { input_data <- list(data_subset, startdates) target_dims <- list(c(lon_dim, lat_dim, memb_dim, ftime_dim), NULL) } else if (!is.null(time_bounds)) { input_data <- list(data_subset, startdates, Dates, time_bounds[[1]], time_bounds[[2]]) target_dims = list(c(lon_dim, lat_dim, memb_dim, ftime_dim), NULL, ftime_dim, ftime_dim, ftime_dim) } else { input_data <- list(data_subset, startdates, Dates) target_dims = list(c(lon_dim, lat_dim, memb_dim, ftime_dim), NULL, ftime_dim) } Apply(data = input_data, target_dims = target_dims, fun = .saveexp, destination = path[j], coords = coords, ftime_dim = ftime_dim, varname = varname[j], metadata_var = metadata[[varname[j]]], extra_string = extra_string, global_attrs = global_attrs) } } } else { # Datasets definition # From here if (!is.null(dat_dim)) { coords[[dat_dim]] <- array(1:dim(data)[dat_dim], dim = dim(data)[dat_dim]) attr(coords[[dat_dim]], 'variables') <- list(list(units = 'adim')) } # time_bnds if (!is.null(time_bounds)) { time_bnds <- c(time_bounds[[1]], time_bounds[[2]]) } # Dates if (!is.null(Dates)) { if (is.null(sdate_dim)) { sdates <- Dates[1] # ftime definition leadtimes <- as.numeric(difftime(Dates, sdates, units = "hours")) } else { # sdate definition sdates <- Subset(Dates, along = ftime_dim, 1, drop = 'selected') differ <- as.numeric(difftime(sdates, sdates[1], units = "hours")) dim(differ) <- dim(data)[sdate_dim] coords[[sdate_dim]] <- differ attrs <- list(units = paste('hours since', sdates[1]), calendar = 'proleptic_gregorian', longname = sdate_dim) attr(coords[[sdate_dim]], 'variables')[[sdate_dim]] <- attrs # ftime definition Dates <- Reorder(Dates, c(ftime_dim, sdate_dim)) differ_ftime <- array(dim = dim(Dates)) for (i in 1:length(sdates)) { differ_ftime[, i] <- as.numeric(difftime(Dates[, i], Dates[1, i], units = "hours")) } dim(differ_ftime) <- dim(Dates) leadtimes <- Subset(differ_ftime, along = sdate_dim, 1, drop = 'selected') if (!all(apply(differ_ftime, 1, function(x){length(unique(x)) == 1}))) { warning("Time steps are not equal for all start dates. Only ", "forecast time values for the first start date will be saved ", "correctly.") } } if (all(!units_hours_since, is.null(time_bounds))) { if (all(diff(leadtimes/24) == 1)) { # daily values units <- 'days' vals <- round(leadtimes/24) + 1 } else if (all(diff(leadtimes/24) %in% c(28, 29, 30, 31))) { # monthly values units <- 'months' vals <- round(leadtimes/(30.437*24)) + 1 } else { # other frequency units <- 'hours' vals <- leadtimes + 1 } } else { units <- paste('hours since', paste(sdates, collapse = ', ')) vals <- leadtimes } # Add ftime var dim(vals) <- dim(data)[ftime_dim] coords[[ftime_dim]] <- vals attrs <- list(units = units, calendar = 'proleptic_gregorian', longname = ftime_dim, unlim = TRUE) attr(coords[[ftime_dim]], 'variables')[[ftime_dim]] <- attrs # Add time_bnds if (!is.null(time_bounds)) { if (is.null(sdate_dim)) { sdates <- Dates[1] time_bnds <- c(time_bounds[[1]], time_bounds[[2]]) leadtimes_bnds <- as.numeric(difftime(time_bnds, sdates, units = "hours")) dim(leadtimes_bnds) <- c(dim(Dates), bnds = 2) } else { # assuming they have sdate and ftime time_bnds <- lapply(time_bounds, function(x) { x <- Reorder(x, c(ftime_dim, sdate_dim)) return(x) }) time_bnds <- c(time_bounds[[1]], time_bounds[[2]]) dim(time_bnds) <- c(dim(Dates), bnds = 2) differ_bnds <- array(dim = c(dim(time_bnds))) for (i in 1:length(sdates)) { differ_bnds[, i, ] <- as.numeric(difftime(time_bnds[, i, ], Dates[1, i], units = "hours")) } # NOTE: Add a warning when they are not equally spaced? leadtimes_bnds <- Subset(differ_bnds, along = sdate_dim, 1, drop = 'selected') } # Add time_bnds leadtimes_bnds <- Reorder(leadtimes_bnds, c('bnds', ftime_dim)) coords[['time_bnds']] <- leadtimes_bnds attrs <- list(units = paste('hours since', paste(sdates, collapse = ', ')), calendar = 'proleptic_gregorian', longname = 'time bounds', unlim = FALSE) attr(coords[['time_bnds']], 'variables')$time_bnds <- attrs } } # var definition extra_info_var <- NULL for (j in 1:n_vars) { varname_j <- varname[j] metadata_j <- metadata[[varname_j]] if (is.null(var_dim)) { coords[[varname_j]] <- data } else { coords[[varname_j]] <- Subset(data, var_dim, j, drop = 'selected') } if (!is.null(metadata_j)) { metadata_j$dim <- NULL attr(coords[[varname_j]], 'variables') <- list(metadata_j) names(attributes(coords[[varname_j]])$variables) <- varname_j } # Add global attributes if (!is.null(global_attrs)) { attributes(coords[[varname_j]])$global_attrs <- global_attrs } } if (is.null(extra_string)) { first_sdate <- startdates[1] last_sdate <- startdates[length(startdates)] gsub("-", "", first_sdate) file_name <- paste0(paste(c(varname, gsub("-", "", first_sdate), gsub("-", "", last_sdate)), collapse = '_'), ".nc") } else { nc <- substr(extra_string, nchar(extra_string)-2, nchar(extra_string)) if (nc == ".nc") { file_name <- extra_string } else { file_name <- paste0(extra_string, ".nc") } } full_filename <- file.path(destination, file_name) ArrayToNc(coords, full_filename) } } .saveexp <- function(data, coords, destination = "./", startdates = NULL, dates = NULL, time_bnds1 = NULL, time_bnds2 = NULL, ftime_dim = 'time', varname = 'var', metadata_var = NULL, extra_string = NULL, global_attrs = NULL) { if (!is.null(dates)) { differ <- as.numeric(difftime(dates, dates[1], units = "hours")) dim(differ) <- dim(data)[ftime_dim] coords[[ftime_dim]] <- differ attrs <- list(units = paste('hours since', dates[1]), calendar = 'proleptic_gregorian', longname = ftime_dim, unlim = TRUE) attr(coords[[ftime_dim]], 'variables')[[ftime_dim]] <- attrs } if (!any(is.null(time_bnds1), is.null(time_bnds2))) { time_bnds <- c(time_bnds1, time_bnds2) time_bnds <- as.numeric(difftime(time_bnds, dates[1], units = "hours")) dim(time_bnds) <- c(dim(data)[ftime_dim], bnds = 2) time_bnds <- Reorder(time_bnds, c('bnds', ftime_dim)) coords[['time_bnds']] <- time_bnds attrs <- list(units = paste('hours since', dates[1]), calendar = 'proleptic_gregorian', longname = 'time bounds', unlim = FALSE) attr(coords[['time_bnds']], 'variables')$time_bnds <- attrs } # Add data coords[[varname]] <- data if (!is.null(metadata_var)) { metadata_var$dim <- NULL attr(coords[[varname]], 'variables') <- list(metadata_var) names(attributes(coords[[varname]])$variables) <- varname } # Add global attributes if (!is.null(global_attrs)) { attributes(coords[[varname]])$global_attrs <- global_attrs } if (is.null(extra_string)) { file_name <- paste0(varname, "_", startdates, ".nc") } else { file_name <- paste0(varname, "_", extra_string, "_", startdates, ".nc") } full_filename <- file.path(destination, file_name) ArrayToNc(coords, full_filename) }