SPATIAL | 1\ e
VATA \ \#,
JImPLIFIED.

-

S‘flck e°M€‘rief~.

{Orjr?O?le wl,-\o

love their maps
and .\'am{*Y

(lllustration (c) 2018 by Allison Horst)

The “Sf,, PaCkage

What is the “sf” package
“sf” stands for Simple Features - a set of standards that specify a common storage
and access model of geographic features e.g., point, line, polygon

It represents natively in R all 17 simple feature types for all dimensions (XY, XYZ,
XYM, XYZM)

Other related packages: dplyr, raster, terra, sp
It is a package for handling and processing spatial data

It is good for processing shapefiles in particular

Why | use it

Like most of us, | have had to match multiple data sources to one common spatial
scale for covariate selection and model fitting.

Most of the time this involves matching points (my data) to shapefiles (my spatial
scale want to use).

“sf” helps you to match different data streams and combinations of points and
polygons.

My concerns of the package use

The package is excellent, its functionality is amazing, | recommend checking out
it's documentation for just how much it can do:

https://cran.r-project.org/web/packaqes/sf/sf.pdf

It is very well documented and used, and my experience is that people just blindly
trust it, because it's the used packaged.

But it does make mistakes, nearly every time

Concerningly, if you have multiple millions of points, you can't check them all, and
| think there must be a lot of epi studies which are wrong because people aren't
checking.

https://cran.r-project.org/web/packages/sf/sf.pdf

Setting up my points and shapes

Here and in the markdown | am using an example of matching a NUTS shapefile to the
ERAS-Land grid centroid coordinates.

" {r set up}

Flatten my polygons

nuts <- nuts %% st_cast("MULTIPOLYGON") %>% st_cast("POLYGON")

The NUTS file here is multiple admin units, so I am just filtering to admin 3 to reduce multiple matches
nuts3 <- nuts %% filter(LEVL_CODE == 3)

Set projection

nuts3 <- st_transform(nuts3, crs = 4326)

" *{r no of units}
length(unique(nuts3$NUTS_ID))

[1] 1514
To avoid some issues:
1. Go from MUTLIPOLYS to POLYS
2. Check projections

3. Check the number of spatial units you want to join to

Option 1: Using st_within

st_join is the sf package's join function and operates similar to the join functions in dplyr.
You can select your join within st_join, here | am using st_within

You need to convert your dataframe of x and y coordinates to an sf object, or POINT

U {r st_within}

coords_sf <- st_as_sf(era5, coords = c("x", "y"), crs = st_crs(nuts3))
Join within st_within
coords_within <- st_join(coords_sf, nuts3, join = st_within)

Options 2: Using st_box

Instead of using one of the join
functions within sf, it can be easier
to troubleshoot issues if you
convert your polygons to bounding
boxes and match them using dplyr
instead.

Don't do this if you have Issue 2

" {r st_bbox}
Extract the bbox for each NUTS3

bbox <- map(nuts3$geometry, st_bbox)

bbox <- bind_rows(bbox)

NUTS_ID <- nuts3SNUTS_ID

bbox <- cbind(bbox, NUTS_ID)

As some NUTS3 had MULTIPOLYGONS, some have >1 bbox, to solve this
bbox <- bbox %>% group_by(NUTS_ID) #>%

mutate(xmin = min(xmin)) %>%
mutate(ymin = minCymin)) #>%
mutate(xmax = max(xmax)) %>%
mutate(ymax = max(ymax)) %>%

ungroup(NUTS_ID) %>% distinct()
Convert my boxes to a list
box_list <- bbox #%>% group_split(NUTS_ID, .keep = T)
names <- box_list %>% map(~ .x %>% pull(NUTS_ID) %>% unique)
box_list <- box_list #>% set_names(names)
Bind each boxes to your coordinates
box_list <- box_list ¥>% map(~ .x %>% cbind(era5))
Identify which points land in which boxes
pts_boxes <- box_list #>%
map(~ .x %>%
mutate(in_box = if_else(
X > xmin & x < xmax & y > ymin & y < ymax, 1, 0)) %%
filter(in_box == 1) %%
dplyr::select(NUTS_ID, x , y)
)
Bind the matched points and NUTS3 names
coords_withinZ <- bind_rows(pts_boxes, .id = "NUTS_ID")

. . . For st_within:
Testing st_within vs st_bbox ——
F?vgth(unique(coords_withinSNUTS_ID))

There should be 1,514 admin 3 units

[1] 1302

To explore these | usually plot those missing, " {r st_bbox test}
length(unique(coords_withinZ2$NUTS_ID))

extract the area, and the size of the bounding
[1] 1362
box.

*""{r explore missing}

Lets learn more about these NUTS regions

Explore the area size, in km2

not_within <- left_join(not_within, nuts3)

not_within$nuts_area <- as.numeric(st_area(not_within$geometry))/le6

not_within <- not_within %>% mutate(ydiff = ymax - ymin) ¥>% mutate(xdiff = xmax - xmin)

Here, those which did not match were for two
reasons:

1. The bounding box was smaller than 0.25

2. They were European territories not in Europe
such as Guadeloupe and La Réunion

FID

DE254
DE255
DE261
DE262
DE263
DE271
DE272
DE273
DE274
CHO64
CHO65
CHO66
DE117
DE125
DE241
DE242
DE243
DE244
DE24D
DE251

geometry

POLYGON ((11.03021 49.53537...
POLYGON ((11.07981 49.33928... '

POLYGON ((9.2378 49.9348, 9...

POLYGON ((10.13147 50.02517...
POLYGON ((9.86845 49.82448,...
POLYGON ((10.91075 48.25831... “*
POLYGON ((10.53303 47.88574...
POLYGON ((10.2396 47.710789,...
POLYGON ((10.11422 47.93263...
POLYGON ((8.47199 46.85535,...
POLYGON ((8.46816 46.99652,...
POLYGON ((8.69248 47.16362,...
POLYGON ((9.11181 49.19092,...
POLYGON ((8.62561 49.41835,...
POLYGON ((10.82835 49.89578...
POLYGON ((11.52415 49.93935...
POLYGON ((10.86769 50.28837...
POLYGON ((11.83209 50.29972... '
POLYGON ((11.90369 49.97902...
POLYGON ((10.49179 49.30658...

nuts_area
208.031869
33.880475
42.440612
64.074468
84.438933
111.044643
66.931444
67.106003
66.803468
443.645526
267.824549
215.462120
82.491360
92.213051
64.260261
64.218173
63.795436
63.730238
496.631355
85.841302

ydiff

xdiff

0.19751
0.07461
0.06315
0.09647
0.12843
0.20013
0.09749
0.09432
0.12905
0.20863
0.17107
0.14784
0.11417
0.10505
0.11820
0.08478
0.08715
0.10403
0.24083
0.10216

0.19025
0.09960
0.13056
0.14374
0.12421
0.12948
0.13639
0.14757
0.09519
0.42290
0.34033
0.28176
0.17543
0.16994
0.13341
0.13347
0.13948
0.15013
0.47169
0.16697

Issue 1: Small admin units

If your admin units are smaller than your grid where your centroids are taken from,
you may struggle to match some points in any of the polygons

Here is an example of a NUTS3 region in Germany
‘‘‘‘‘ (DE261), along with the ERAS centroids.
44444 As you can see, the polygon is smaller than the grid
o o o size, and therefore, you don’t get any matches.

444444

Issue 2: Funky shapes

If your shapefile is an odd shape, it struggles to match points and polygons

Using an example from Vietham

The plots is VNM.34.1_1, with its
bounding box, a 0.1x0.1 centroid grid,
and neighbouring admin units

Some of the points, particularly those
near the border, can be picked up as part
of VNM.34.1_1 because they are in the
bbox

1111111

Solution: Using st_intersect

To solve these issues, | match in two stages. | first go for st_within, and then | use
st_intersection. There were 213 missing NUTS after st_within

no_nuts <- nuts3 #>% filter(NUTS_ID %in% not_within)

' {r to grid}
era5_grid <- eraS %%
mutate(xmin = x-0.125) %>%
mutate(xmax = x+0.125) %>%
mutate(ymin = y-0.125) %>%
mutate(ymax = y+0.125)
era5_grid <- eraS_grid %% dplyr::select(-x, -y)

"*"{r check projections}
""""""""""""""" no_nuts <- st_set_crs(no_nuts, 4326)
***{r to polys} eraS_polys <- st_set_crs(eraS_polys, 4326)

eraS_polys <- map(l:nrow(eraS_grid), function(i) {
coords <- matrix(c(

eraS_grid$xmin[i], eraS_grid$ymin[i],
eraS_grid$xmax[i], eraS_grid$ymin[i], sf_use_sZ(FALSE)
eras gricsmaxfi],ferad gricsymax(il, overlaps <- st_join(no_nuts, era5_polys, join = st_intersects)

era5_grid$xmin[i], era5_grid$ymax[i],
era5_grid$xmin[i], eraS_grid$ymin[i]
), ncol = 2, byrow = TRUE) length(unique(overlaps$NUTS_ID))
st_polygon(list(coords)) “aa
b
Convert the list of polygons to an 'sf' object
eraS_polys <- st_sfc(eraS_polys)
era5S_polys <- st_sf(era5, geometry = eraS5_polys) [1] 213

Extra Step: st _area and max overlap

For some larger grid cells that you want to do this with, you might get a lot of
overlap with multiple places.

So you can use a max overlap function to filter and reduce repeats

" {r st_area}

sf_use_s2(FALSE)

no_nuts$nuts_area <- st_area(no_nutsSgeometry)
era5_polys$eraS_area <- st_area(eraS_polys$geometry)

*""{r max_overlap}
overlaps$overlap_percent <- as.numeric(overlaps$nuts_area/overlapsieraS_area*100)
overlaps <- overlaps %>% group_by(x, y) %>¥ filter(overlap_percent == max(overlap_percent)) %>% ungroup()

Thanks!

| have a cheatsheet provided by sf

| also have an R Markdown if people would find the code snippets useful

