
Computational
performance for Python
applications
Victor Correal, Ivan Alsina, Xavier Yepes-Arbós

November 14, 2024 victor.correal@bsc.es

Session overview

• Process to request a profiling and performance evaluation study of a data consumer
application

• Basics concepts of parallel computation
• Computational aspects of Python applications
• Introduction to profiling analysis
• Hands-on: flat profiling of a Python application
• Concluding remarks

A3 performance assessment services

• New to phase II: HPC services upon request
• What kind of services? Profiling and performance assessment of data consumer

applications
• Suggestion of optimizations for potential bottlenecks
• To be implemented by developers

• Services provided by BSC and CSC in A3
• Resources are limited

• Developers should elaborate a prioritised list based on the bottlenecks they have
previously identified

A3 performance assessment services

• Formally submit a request by opening an issue in the BSC DE 340 GitLab and tag the
A3 leaders (Mario Acosta and Tuomas Lunttila)

• Essential information should be included to make a good estimation of the effort
needed to address the request:

• Purpose of the use case
• Why do you think there is a bottleneck and an initial estimation of its impact
• Computational cost (time and resources used)
• Documentation and diagram of the code
• Repository, use case, etc
• Programming languages used, e.g. MPI
• ...

A3 performance assessment services

• Based on the information provided in the request, A3 leaders will determine:
• Feasibility
• Assign responsibilities
• Priority level

• Task coordination will be via Gitlab
• If the request is rejected, feedback will be provided to reconsider or adapt the

request
• More details can be found in deliverable D340.15.1.1.

Programming paradigms

Introduction to computational performance

Three factors define the computational
performance:

1. Number of instructions
2. Instructions executed per cycle
3. Clock frequency

Concurrency versus Parallelism

Concurrency versus Parallelism

Multi-node parallelism: Message-passing interface (MPI)

Computing accelerators

In summary

• Concurrent execution: Several programs share hardware resources.
• Parallel execution: 1 program splits the workload among the available hardware

resources, sharing resources (i.e. memory, files, disk).
• Multi-node: 1 program, split the workload among several machines sharing resources

(memory, files, disk) at each machine.

Always...
All the executions of the same program need to ensure the same results.

Computational aspects
of Python

Python environment

I/O-bound applications

Using threading or asyncio Python modules you can optimize a reading or writing
process

https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/asyncio.html

CPU-bound applications

The module multiprocessing can help with speed-up in computing operations

https://docs.python.org/3/library/multiprocessing.html

Example

Example at https://earth.bsc.es/gitlab/ialsina/python-benchmarks/
1. Read data vectors Ai, Bi from binary files
2. Compute α · Ai + Bi
3. Write results to binary files

python3 main.py <mode> --nums-per-file 1000000 --files 50

<mode> Processes Time
sequential 1 10.48 s
concurrent 4 4.59 s

Table: Executing a toy Python Application concurrently and sequentially

https://earth.bsc.es/gitlab/ialsina/python-benchmarks/-/tree/main/benchmarks

Profiling basics

Profiling state-of-the-art: Amdahl’s law

”The overall performance improvement gained by optimizing a single part of a system is
limited by the fraction of time that the improved part is actually used”

Profiling state-of-the-art: Best practices

• Profile real-world scenarios.
• Premature optimization can be useless.
• Validate optimizations with test.
• Stick to Amdahl’s law
• Use appropriate tools (and make the correct measures).

Python generic optimizations

Unfortunately, almost all optimization problems require an ad-hoc solution, but...
• Always use already-optimized libraries that matches your requirements. Don’t

re-invent the wheel.
• Split your application workload using concurrency or parallelism.
• Overlap I/O and computation.
• Hide latency of heavy tasks with other tasks.

Python profiling utils

828758 function calls (795087 primitive calls) in 0.529 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)

7/1 0.000 0.000 0.527 0.527 .../one_pass/opa.py:466(compute)

7/1 0.000 0.000 0.447 0.447 .../one_pass/opa.py:342(_finished_no_append)

6/1 0.000 0.000 0.446 0.446 .../one_pass/opa.py:280(_call_recursive)

7 0.000 0.000 0.412 0.059 .../one_pass/statistics/update_statistics.py:755(update_statistics)

7 0.000 0.000 0.399 0.057 .../one_pass/statistics/update_statistics.py:705(update)

7 0.001 0.000 0.399 0.057 .../one_pass/statistics/update_statistics.py:90(update_mean)

...

Hands-on

Python profiling: cProfile

Python is equipped with the standard library modules profile and cProfile.
1. Command line interface

$ python -m cProfile my_script.py

2. Programmatically
import cProfile

cProfile.run("my_function()")

3. Programmatically, to file
import cProfile

cProfile.run("my_function()", "my_benchmark.prof")

https://docs.python.org/3/library/profile.html

Python profiling: cProfile

4. Via a profiler instance
import cProfile

profiler = cProfile.Profile()

profiler.enable()

my_function()

profiler.disable()

profiler.dump_stats("my_benchmark.prof")

Python profiling: cProfile
5. Via a wrapper

import cProfile

import functools

def profile(func):

@functools.wraps(func)

def wrapper(*args, **kwargs):

profiler = cProfile.Profile()

profiler.enable()

result = func(*args, **kwargs)

profiler.disable()

profiler.dump_stats(f"benchmark_func.__name__.prof")

return result

return wrapper

@profile

def my_function():

...

Python profiling: pstats

1. Write to io.StringIO

from pstats import Stats, SortKey

from io import StringIO

sortby = SortKey.CUMULATIVE

s = StringIO()

stats = Stats("my_benchmark.prof", stream=s).sort_stats(sortby)

"my_benchmark.prof" can be a profiler instance instead.

stats.print_stats()

print(s.getvalue())

2. Write to file stream: Pass a file object as a stream argument.

KCacheGrind

Tool that allows graphical visualization of the profiler.
• Absolute or relative times
• Cycle detection
• Sortable caller and callees lists and maps
• Graph call
• Need external Python package: pyprof2calltree

Install

sudo apt install kcachegrind

pip install pyprof2calltree

Launch

pyprof2calltree -i my_benchmark.prof -k

KCacheGrind

KCacheGrind

To take away

• You are developing for an HPC computer, use it correctly
• Consider basic profiling to develop your application
• Don’t re-invent the wheel!
• Contact A3 if you have any doubt

Concluding remarks

• Do not hesitate to make use of the A3 peformance assessment service!
• Make a preliminary basic profiling of the application
• Request support by opening a Gitlab issue and tag A3 leaders
• Attach to your request all necessary infomration to help us to process it properly.

• Any question?

Thank you for your
attention

Victor Correal, Ivan Alsina, Xavier Yepes-Arbós

victor.correal@bsc.es

	Introduction
	Programming paradigms
	Computational aspects of Python
	Profiling basics
	Hands-on

