
HEAT EQUATION

Okke van Eck
okke.vaneck@bsc.es

June 19, 2024

Heat Equation June 19, 2024

1 Introduction
Welcome to the BSC Heat Equation assignment! The goal of this assignment is

to briefly give you hands-on experience with the basic tools required to asses the
performance of your GPU porting. In the examples, we will look at the effects of poor
memory management, which is the most common bottleneck for GPU performance.
Can you figure out what limits performance and when to use which profiling tool?

We will use the heat equation as our toy problem. It is a partial differential
equation used to model the transfer and diffusion of heat. No need to know the
specifics, we provide you with a full model that works straight out of the box.

2 Code repository
You can find the code on Lumi at the following path:

/scratch/project_465000527/ovaneck/heat_equation_assignment
Please copy the code to your personal environment before proceeding, like:

cp -r /scratch/project_465000527/ovaneck/heat_equation_assignment \
$HOME/heat_equation_assignment

Before you can work with the model, it is good to understand the structure of
the repository. We can see the following structure:

heat_equation_assignment/
bin/ ..Contains binaries.
debug/Contains runtime debug output.
info/Contains compilation output.
profiling/......................................Contains profiling tools.

res-<platform>-<binary>/Profiling results directory.
gpu_modelfactors.py................Visualizer for hardware counters.
profile.sh..Script for profiling.
rocprof_counters.txt......Contains the hardware counters to collect.
requirements.txtPython requirements for gpu_modelfactors.py.
select_gpuRequired script for using GPUs on Lumi.
workloads.txtDefines the experiments to run.

src/...Contains the source code.
core/................................Contains files with computations.
helpers/.....................................Contains model helpers.
main/..Contains main functions.
Makefile.......................Compiles the source code into binaries.

allocate_gpu_node.sh..................Script for acquiring a GPU node.
helpers.sh...................................Script only used internally.
load_modules.sh..........................Script for loading the modules.
README.md..................................Instruction for the repository.

1

Heat Equation June 19, 2024

The red directories are ones that will be created in the process of compiling the
application and collecting performance related data. The other directories and fields
will be discussed along the way during this assignment. There are 3 versions of the
heat equation model:

1. heat_sequential: non-paralellized version
2. heat_gpu_good: a proper GPU enabled version
3. heat_gpu_sloppy: a sloppy GPU enabled version

You will profile the two GPU versions and compare the output to see what are
exactly the differences. The src/ directory contains all the source files of all versions,
separated in 3 sub-folders: core/, helpers/, and main/:

• core/: contains the time step functions for updating the model
• helpers/: contains some boilerplate code for the model
• main/: the program definitions with main functions

Take a look at the main and core source files of the heat_sequential version.
Can you see how the program works, where the model is updated, and how the
algorithm for updating works?

3 Building and executing the model
Next, we will take a look at how to compile the model and execute it. First and

foremost, we have to specify the platform we are operating on. Since we are working
on Lumi, we can simply set PLATFORM via:

export PLATFORM=lumi

Once you have set the platform, it is time to acquire a GPU node to perform the
assignment on. This can easily be done by executing the allocate_gpu_node.sh
script:

./allocate_gpu_node.sh

This might take some time depending on how busy the supercomputer is. After
the script is done, you will be automatically be SSH-ed into the allocated GPU node.
So from now onwards, everything executed happens inside the GPU node.

Before executing the model, we have to compile it. The compilation procedure
depends on some modules that need to be loaded. This can be done by sourcing
the load_modules.sh script. Next, we can compile the source. Go into the src/
directory and compile the source code using the Makefile by running make. These
three steps should look like:

source load_modules.sh
cd src
make

2

Heat Equation June 19, 2024

If everything went successfully, you should now have the bin/ folder in the root
of the repository. This folder contains all 3 binaries of the previously discussed
versions. You can try them out by simply executing them. Each binary takes 3
optional arguments: nx and ny specifying the size of the grid, and nsteps indicating
the number of time steps to take. Their defaults are 2000, 2000, and 500 respectively.
You can execute for example the heat_sequential version, providing (roughly) the
following output:

cd ../bin
./heat_sequential 2000 2000 500
> Average temperature at start: 59.763305
> Iterations took: 1.092 seconds.
> Average temperature: 59.281239
> Reference value for default: 59.281239

Try the GPU versions as well and see if you notice any differences between them!

4 Profiling the model
Now that we have working models, it is time to profile their performance. This

is done from the profile/ folder. In this folder, you can see 4 files: profile.sh,
rocprof_counters.txt, select_gpu, and workloads.txt. Both rocprof_coun-
ters.txt and select_gpu can be ignored for this assignment. The profile.sh
script handles all the complexities of profiling with tools, and thus provides an easy
interface for you to use. It uses rocprof1 under the hood. For more detailed infor-
mation on how to use them, we redirect you to its documentation pages as linked in
the footnote. Lastly, there is the workloads.txt file in which you can specify the
experiments you want to run for your analysis.

There are 3 ways in which we can collect information of an application’s perfor-
mance:

1. Collect a trace and hardware counters during execution
2. Investigate the compiler runtime environment information
3. Investigate the compilation information

Each of the subsections below will investigate one of the ways using our two
binaries heat_gpu_good and heat_gpu_sloppy. It will give you insight in what
each method has to offer and what could be useful for you in the future. Note that
all steps assume you are still inside your allocated GPU node!

4.1 Collecting a trace and hardware counters
First and foremost, you should know that collecting a trace and hardware coun-

ters are two separate steps. However, often both are collected with the same tool
1https://github.com/ROCm/rocprofiler

3

https://github.com/ROCm/rocprofiler

Heat Equation June 19, 2024

(like rocprof) and thus we discuss them together. The profile.sh script is essen-
tially an easy interface for rocprof and collects the trace and hardware counters for
you. This can simply be done by running the script with the binary name as a first
argument. So to profile the heat_gpu_good version, we would run:

cd profiling
./profile.sh heat_gpu_good

This will run the profiling tools on the provided binary and store the trace and
hardware counters in a results folder. The folder will be named res-<platform>-
<binary>/, where the platform and binary name are replaced.

To fully understand the performance of a GPU application, we need to profile the
application under multiple workloads. This can be specified in the workloads.txt
file, where each line is a configuration that will be profiled by the profile.sh script.
It is difficult to say in the beginning what workloads are sufficient to fully load the
GPU, so you just have to try some and see! An extended workloads.txt file could
look something like:

nx ny nsteps

1000 1000 500
2000 2000 500
...

You will see that adding more lines adds sub-folders in the results directory with
the pattern <nx>_<ny>_<nsteps>/ after you run the profile.sh script. In this
folder you will find the output and error messages in separate log files, as well as a
sub-folder with the profile results. Feel free to explore the created files, however, in
Section 5 we will provide you with automated tools for a detailed analysis.

4.2 Compiler runtime environment information
The compiler runtime environment is also capable of providing us with informa-

tion on the application. It can output information on every offloading operation,
where the amount of detail can be controlled. This is regulated through an environ-
ment variable which is different for each platform. Please read the subsection below
that is for the platform you are using.

4.2.1 Lumi - Cray CCE
On Lumi, you can set the CRAY_ACC_DEBUG environment variable to either 1, 2,

or 3. With CRAY_ACC_DEBUG=1, you can see the data transfers with source lines, as
well as kernel executions. An example of one iteration is:

4

Heat Equation June 19, 2024

CRAY_ACC_DEBUG=1 ./heat_gpu_good 2000 2000 3
> ACC: Transfer 2 items (to acc 64128320 bytes, to host 0 bytes)

from main/main_gpu_good.F90:34
> ACC: Transfer 2 items (to acc 0 bytes, to host 0 bytes)

from main/main_gpu_good.F90:37
> ACC: Execute kernel heat_solve_gpu_good_$ck_L37_1_cce$noloop$form

async(auto) from main/main_gpu_good.F90:37
> ACC: Wait async(auto) from main/main_gpu_good.F90:37
> ...

When setting CRAY_ACC_DEBUG=2, you also see the transferred variables, memory
operations, and the GPU setup for a kernel execution:

CRAY_ACC_DEBUG=2 ./heat_gpu_good 2000 2000 3
> ...
> ACC: Start transfer 2 items from main/main_gpu_good.F90:34
> ACC: allocate, copy to acc 'current' (128 bytes)
> ACC: allocate, copy to acc 'current%data' (32064032 bytes)
> ACC: attach pointer 'current%data' (96 bytes)
> ACC: allocate, copy to acc 'previous' (128 bytes)
> ACC: allocate, copy to acc 'previous%data' (32064032 bytes)
> ACC: attach pointer 'previous%data' (96 bytes)
> ACC: End transfer (to acc 64128320 bytes, to host 0 bytes)
> ACC: Start transfer 2 items from main/main_gpu_good.F90:37
> ACC: present 'currdata(:,:)' (32064032 bytes)
> ACC: present 'prevdata(:,:)' (32064032 bytes)
> ACC: End transfer (to acc 0 bytes, to host 0 bytes)
> ACC: Execute kernel heat_solve_gpu_good_$ck_L37_1_cce$noloop$form

blocks:2000 threads:256 async(auto) from
main/main_gpu_good.F90:37

> ACC: Wait async(auto) from main/main_gpu_good.F90:37
> ...

Lastly, setting CRAY_ACC_DEBUG=3 gives us the most detailed information possible
on offloading operations. For transfer operations, we now also see the pointers,
flags, detailed memory operations, detailed data structure information, and meta
data transfers. For kernel executions we also have more information on the resource
usage, as well as flags, cache pointers, and caching behavior. All this information is
too big to show in an assignment, so we encourage you to play around and see for
yourselves!

4.3 Compilation information
It is also possible to acquire information on the GPU porting during compile

time. The compiler performs all kinds of optimizations, which it can report on

5

Heat Equation June 19, 2024

by specifying some flags. These flags are different for each compiler. The output
is a list of optimizations, which also contain information on GPU offloading. The
subsections below will show you how to filter this information per platform.

4.3.1 Lumi - Cray ftn
Within the Cray environment, we use the ftn compiler. The ftn compiler out-

puts optimization information through the -hmsgs flag, like so:

ftn -hmsgs -c gpu_heat_good.F90 -o gpu_heat_good

Our heat equation assignment is a bit more complex, and thus we added an
option to the Makefile which produces and stores this output for you. Simply go
back into the source directory, clean the current installation, and then re-make with
info specified:

cd src
make clean
make info

This created an info/ folder in the top level heat_equation_assignment folder
with the compilation steps of all three binaries in separate files. Please open the
file and see for your self what it provides! You could for example take a look at the
different information types that are reported through:

cat gpu_good_compiler_info.txt | grep ftn-

As you can see, the compiler does many optimizations for us. The heat wave
equation code is fairly small, but for real life applications specialized tools are re-
quired for filtering out useful information.

5 Analyzing the performance data
In the previous steps we have collected information on the performance of our

GPU porting using a variety of methods. Now it is time to analyze those findings
and make conclusions on the performance of our applications. The subsections below
give an overview of how to analyze the data, but it will be up to you to come to a
conclusion!

For the trace and hardware counters, it is required to pull the results from the
supercomputer to your local device. This can be done with a couple simple steps.
First, you need to get the path to your heat_equation_assignment/ folder. The
easiest way is to go to the folder and echo your working directory, for example:

echo $PWD
> /users/vaneckok/heat_equation_assignment/

6

Heat Equation June 19, 2024

We will refer to this path as <heat_equation_path> below. Next step is to pull
the results from collecting the traces and hardware counters. This can simply be
done with the following scp command in your local terminal:

scp -r <platform>:<heat_equation_path>/profiling/res-* .
scp -r <platform>:<heat_equation_path>/profiling/gpu_modelfactors.py .
scp -r <platform>:<heat_equation_path>/profiling/requirements.txt .

Note that you need to replace <platform> with the hostname you use to connect
with the supercomputer!

5.1 Analyze a trace
The profile.sh script collected a trace of the execution and stored it in the

results folder. To view traces, you need to use a separate program like Perfetto2.
Each GPU platform has its own tool for viewing their traces, and thus we will cover
each platform separately.

5.1.1 AMD - Lumi
To analyze an AMD trace, we use an external tool called Perfetto2. Simply go

to their website as put in the footnotes, and click on "Open trace file" in the menu.
Then select the rocprof.json file in the rocprof folder of the results that you
previously copied over using scp. This should open the trace, which roughly looks
like the one below in Figure 1.

Figure 1: Example Rocprof trace visualized using Perfetto2.

You can navigate the trace with the a, w, s, and d keys. Clicking on an item that
has your interest will provide you with more details in the windows below. What
differences do you see between the heat_gpu_good and heat_gpu_sloppy versions?
Is it possible to see what part of the source code causes these differences?

2https://ui.perfetto.dev/

7

https://ui.perfetto.dev/

Heat Equation June 19, 2024

5.2 Analyze hardware counters
Hardware counters are performance metrics that are collected for each kernel

execution. This means that for an application with 1 kernel, like our heat equation,
the number of measurements is equal to the number of time steps. You can see this
is in the rocprof.csv file.

To make your lives easier we also offer a Python script for making easy to under-
stand tables of the performance counters. It parses the result folders automatically
and creates a column per workload. We listed all required modules in a require-
ments.txt file, which we recommend installing in a fresh Python virtual environ-
ment. Afterwards, you can simply run the script with the binary version as an
argument. The total flow will look something like:

python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python gpu_modelfactors.py heat_gpu_good

This saves the hardware counter table as scaling.png in the results folder. Per-
forming a good analysis of the kernel at hand requires knowing the internal structure
as well. This table will provide you with a starting point of potential bottlenecks,
which can be verified by looking at the source code or runtime environment. It
might be that your workloads are not big enough to reach the limits of the machine
and thus see differences. Don’t be afraid to significantly increase them! What can
you say about the kernels when looking at the table?

5.3 Analyze the compiler runtime environment
You can get runtime information from the compiler runtime environment as

described in Section 4.2. To make it a bit easier for you, we automatised this
through the Makefile as well with a debug target:

cd src/
make debug

This will create a debug/ folder in the top level heat_equation_assignment
folder with a file per binary and CRAY_ACC_DEBUG level. The contain the output
of executing each binary for 3 time steps. Can you figure out why the sloppy
implementation is so much slower than the good one? Try different levels of debug
to see what works for this problem at hand. Remember that the number of time
steps multiplies the length of the output!

5.4 Analyze the compiler output
If you have compiled the code with make info, you should have an info/ folder

in the top level heat_equation_assignment folder with files containing compilation

8

Heat Equation June 19, 2024

output. Looking at their contents, you can see the many optimizations the compiler
has performed. The ones starting with ACCEL are related to the GPU porting. You
can filter them out through grep, where the -A1 flag also shows the line after a
match:

cat gpu_good_compiler_info.txt | grep -A1 ACCEL > good.txt
cat gpu_sloppy_compiler_info.txt | grep -A1 ACCEL > sloppy.txt

Can you spot the differences between the sloppy and good implementation?
Don’t forget to look into the source code to see the exact implementation differ-
ences!

6 Final notes to the reader
The code base of the assignment is an adapted version from the heat equation

assignment of the CSC summer school3. Please take a look there if you want to get
a broader experience with OpenMP GPU offloading.

In this assignment you have experienced how performance analysis of GPU ap-
plications roughly goes. However, do take in mind that our heat equation only
had 1 GPU kernel. Real world climate models can have hundreds. This compli-
cates the analysis significantly, and usually you also need to have a pre-analysis
of the different kernels and their relative duration. This can be derived from the
rocprof.stats.csv file in the profiling results.

3https://github.com/csc-training/summerschool/tree/master/gpu-openmp

9

https://github.com/csc-training/summerschool/tree/master/gpu-openmp

	Introduction
	Code repository
	Building and executing the model
	Profiling the model
	Collecting a trace and hardware counters
	Compiler runtime environment information
	Lumi - Cray CCE

	Compilation information
	Lumi - Cray ftn

	Analyzing the performance data
	Analyze a trace
	AMD - Lumi

	Analyze hardware counters
	Analyze the compiler runtime environment
	Analyze the compiler output

	Final notes to the reader

