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Soiling related measurements

Solar field model and comparison parameter
Reinforced learning algorithms

Creation of synthetic data series
Performance of ANN strategies
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Concentrating Solar Power

Molten salt storage  Steam generator
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Provision of electricity (turbine cycle), process
heat, desalination

CSP uses only direct component of solar
irradiation (=> soiling impact higher as in PV)
Cost effective thermal storage option

» Grid stabilizing effect thanks to turbine
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Cleaning and soiling

» Cleaning operators have to find the best
trade-off between reduced cleaning costs
and increased optical solar field efficiency

» Cleaning performance has to be quantified
financially

» Time resolved analysis and realistic soiling
rate dataset is crucial

Soiled trough at PSA
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Cleaning optimization: solar field model

 Solar field model tracks cleaning vehicles and each troughs cleanliness
« Assumption: all troughs soil with same soiling rate
» Output: net profit = project's profit — cleaning cost
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Cleaning optimization: scenario & inputs

50 MW plant with 7.5 h storage
Water and brush based cleaning vehicles
Cleaning related technical and financial

parameters (see table)
Cleaning costs:

 Labor, water, fuel, depreciation of

cleaning vehicles

5 years of soiling rate measurement data

at PSA

>28 years of irradiance and weather data

Parameter Value
Nominal turbine power 49, 9MW
Number of loops in Solar Field 156
Aperture area of solar field 510.000 m?
Thermal storage 7.5h
Cooling water
Planned lifetime 25 years
DNI-yearly sum at PSA 2388 kWh/m?*/a
Equity ratio 30%
Specific operating costs 1.8 EUR/m%/a
Feed-in tariff 0.27 EUR/kWh
Cleaning velocity for one unit 9 loops / shift
Number of personnel per vehicle 1
Cleaning vehicle fuel consumption 6 — 8 /loop
Cleanliness after cleaning 0.986
Demin. water consumption of cleaning unit 1 m*/loop
Estimated lifetime of cleaning unit 15 years

A= ety
aal, R., & Ghennioui, A. (2018). I

. g
#Wolfertstetten F., Wilbert, S., Der: /
DLR and Cleaning Strategies in Yield Trough P

ants. Journal of Solar Energy

()




Cleaning optimization: policy comparison

» Areference cleaning strategy is chosen as a reference point: constant, daily
cleaning in one shift with 1 vehicle

» Cleaning policies are compared to reference by relative profit increase (RPI)

* Previous study: condition based cleaning policies:
» Vary number of vehicles and cleanliness threshold

.4 Can cleaning strategy be
improved by reinforced
1 2 3 4 5 6 Learning and forecast?
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Artificial Neural Networks: Reinforced learning

» Agent takes action depending on the environment
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Artificial Neural Networks: Reinforced learning

» Agent takes action depending on the environment
» Actions influence environment and creates a reward feedback

» Learning process: Agent is updated after each run => negative or positive
feedback on current policy according to reward

» The fully trained agent can be applied to any new environment to deliver high

reward /\
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Artificial Neural Networks: Reinforced learning

 agent = cleaning policy
* action = daily cleaning decision
« Clean with 0 — 2 vehicles in 1 or 2 shifts each

« state = solar field cleanliness, weather data, optional: forecast for irradiance
class and high/low soiling rate

» Reward = RPI
state reward
t Lt |
i action
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Reinforced Learning: Reward and training

« Each training run involves full simulation year, i.e. 365 states and cleaning
decisions

» Option to provide agent with soiling rate and weather forecast information
 Training of reinforced learning agent requires a large amount of data

» 5 years of soiling data and 28 years of weather data is not enough for
reinforced learning

=> need to increase database by synthetic data extension
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Synthetic data extension: weather

Average DNI variability class distribution over 28 years at PSA
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Synthetic data extension: soiling
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Learning progress

» Agent begins with random strategy

« Agent is updated after each training
year according to reward

» Repeat 10 times on each test year and
15 different years (training run)

» Validation set: fix dataset of 20 years

« Agent is tested on validation set after
each training run

* RPI increases with training run

« Exit condition: no RPI-improvement in
the last 20 training runs

» Resulting agent is the final cleaning
policy
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Application of soiling forecast in cleaning policy:
results

* Reinforcement learning strategy nearly doubles the RPI of the condition based
strategy if no forecast is provided

* Reinforcement learning strategies achieve RPI of 1.3 % if no forecast is
provided

* RPI of 1.4% with forecast information

* Note: PSA is not a heavy soiling location
* Much higher results are expected for regions with higher dust loads

Forecast Horizon in days RPI in [%]
@ 1.28
| 1.33
2 1.36
3 1.37
6 1.36
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Evolution of soiling and cleaning in solar field
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Conclusion

» Solar field model developed: add on to yield analysis software such as greenius

» Data extension algorithm developed for training of reinforcement learning
algorithms

* Reinforcement learning applied to cleaning optimization

» Reinforcement learning agent nearly doubles the profit increase compared to
condition based cleaning strategies

* Inclusion of forecast for high/low soiling rate and irradiance class can further
increase the profit

* Better results expected for sites with higher soiling load
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Thank you for your attention

fabian.wolfertstetter@dlr.de

Recommended literature on soiling model:
http://wascop.eu/wp-content/uploads/2018/06/WASCOP deliverable 3.2 final plainText.pdf
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