
Supercomputing for Climate
Workflows

Enric Millán Iglesias

Final Report



Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 2 of 18

REVISION HISTORY AND APPROVAL RECORD

Revision Date Purpose
0 21/06/2024 Document creation
1 12/08/2024 Document revision
2 22/08/2024 Document revision

DOCUMENT DISTRIBUTION LIST

Name E-mail
ENRIC MILLÁN IGLESIAS enric.millan.iglesias@estudiantat.upc.edu

MANUEL GIMÉNEZ DE CASTRO MARCIANI manuel.gimenez@bsc.es
ALBERTO ABELLO GAMAZO alberto.abello@upc.edu

WRITTEN BY: REVIEWED AND APPROVED BY:

Date 22/08/2024 Date dd/mm/yyyy

Name Enric Millán Iglesias Name Zzzzzzz Wwwwwww

Position Project Author Position Project Supervisor



Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 3 of 18

0. CONTENTS

0. Contents
1. Time Plan updated
2. Project description
3. Conclusions
4. Reflection documents



Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 4 of 18

1. TIME PLAN UPDATED

A posteriori real Time Plan
Work packages remain the same as the ones in the Critical Report, there only was a change

in scheduling due to some issues explained in the section 2.5- Unplanned Issues. The change

consists of extending the second work package one more week, and as a consequence, delaying

one week the third work package. Below is a summarized (with the dates updated, the content did

not change) version of the work packages and the updated Gantt chart:

WP1: Context for the project and thesis definition - From 17/06/24 to 12/07/24 (4 weeks)

Get to know the people from the department (from the Computational Earth Sciences group), the
basics of working at BSC, and get context for the project. Install software dependencies and define
thesis.

WP2: Experiments Execution - From 15/07/24 to 02/08/24 (3 weeks)

Learn how to automate and parallelize experiment executions and start performing them.

WP3: Results Analysis - From 05/08/24 to 16/08/24 (2 weeks)

Develop a script to perform data analysis, explore data fittings, and test the hypotheses.

WP4: Write Critical Review and Final Report - From 15/07/24 to 23/08/24 (6 weeks)

Write both reports, review all the work done and set everything up for submission.



Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 5 of 18

2. PROJECT DESCRIPTION

Contents:

2.1- Context

2.2- Motivation

2.3- Objective

2.4- Methodology

2.4.1- Workload Modification

2.4.2- Execution of Simulations

2.4.3- Automation and parallelization of simulations using Nextflow

2.4.4- Analysis of results

2.5- Unplanned issues

2.1- Context

This project builds from Manuel Giménez de Castro Marciani’s thesis

(https://upcommons.upc.edu/handle/2117/404041). In his thesis, Manuel studied the relative impact

of task aggregation, or wrapping, which is a technique meant for computational workflows that

bundles jobs into a single submission to be sent to remote schedulers. Manuel is a PhD student at

the BSC, working in the Models and Workflows team of the Computational Earth Sciences group.

2.2- Motivation
Experiments inside the Earth Science community, which include all kinds of climate models

and simulations, can be lengthy and comprise several steps with many dependencies. The

community has traditionally focused on increasing the performance of the models, but the overall

execution of the workflow, including the queue time, has received little interest. Aiming to reduce the

time spent in queue, the developers of Autosubmit, a workflow manager developed by BSC for

climate simulations, weather forecast simulations, and air quality simulations, came up with task

aggregating, or wrapping. It is believed that this technique reduces queue time, and it has so far

been utilized indiscriminately.

https://upcommons.upc.edu/handle/2117/404041


Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 6 of 18

2.3- Objective
The objective of this project is to analyze the impact of wrappers on the queue time by

performing a statistical analysis and finding the most significant variables or factors from the

workflow geometry and the scheduling algorithm of supercomputers.

More specifically, the objective is to test the theses originally proposed in the Critical Review

document:

1.- The impact of the wrapper should be less significant the smaller the resources required

(allocated CPUs and runtime) by the workflow (set of jobs) is.

2.- The bigger the fair share value of the user sending the jobs (fair share is an important

factor to determine priority), the less impact wrappers should have.

For this task, we successfully completed basic guides on how to use different tools, from version

control systems such as Git (using GitLab), to running containerized applications with Docker (a set

of platform as a service products that use OS-level virtualization to deliver software in packages

called containers) and, finally, automatizing and parallelizing the executions of the experiments

using Nextflow, a workflow management tool.

2.4- Methodology
To evaluate the impact of wrappers, we performed several experiments. These experiments

consist of simulations of workloads of a real supercomputer. The BSC version of Slurm Simulator

was used to simulate the logs of real machines provided by Dr. Dror G. Feitelson in the Parallel

Workloads Archive (https://www.cs.huji.ac.il/labs/parallel/workload/), specifically the CEA Curie

machine logs (https://www.cs.huji.ac.il/labs/parallel/workload/l_cea_curie/index.html).

This workload was chosen because it is one of the largest publicly available logs, with more

than 20 months worth of data, from a scientific general-purpose platform. But we selected only a

week of it because the system was not normally utilized to the fullest as opposed to modern

systems such as MareNostrum 4 and LUMI.

In this section we explain how we set up the experiments, how simulations are executed,

how we automate and parallelize these executions and how we perform an analysis of the resutls.

https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/l_cea_curie/index.html


Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 7 of 18

2.4.1- Workload modification

To execute the simulations, the original workload of the selected week is altered by adding a

synthetic workflow (group of jobs). This workflow is made of identical jobs which request 96 cores

and have a runtime of 30 minutes..

We added a total of 48 different workflows for this study (each one individually). These

workflows were submitted in 6 different times of the original workload, with the criteria of deploying

the same workflow in different moments to avoid being misled by abnormal utilization.

The 48 workflows were designed so that they would vary on different features, such as size

(number of jobs of the workflow), type (vertical, jobs with dependencies, or horizontal, without

dependencies), fair share value of the user launching the job (fair share is an important factor for

the scheduler when computing priority) and aggregation condition: wrapped (aggregated as a single

job) or not wrapped. This made up for a total of 288 experiments performed during this project.

Specifically, we chose the 48 experiments’ configurations to make all possible combinations

of the previously mentioned variables for the following values:

- Size: 2, 8, 14, 20.

- Type: vertical or horizontal.

- Fair share: 0.1, 0.5, 1.0.

- Aggregation condition: wrapped or not wrapped.

We selected these values of size and fair share to have a diverse set of experiments while

keeping it possible to run in the 10 week period available for the project (the number of possible

experiments to perform was determined considering time limitations, as explained later).

To add these workflow configurations to the original portion of the workload, we developed a

Python script during this work that generated a total of 288 trace, or workload, files ready to be used

as input by the SLURM simulator.

These trace files contain information about all the jobs submitted during the selected week

plus the added workflow jobs of each experiment, and are codified in Standard Workload Format

(SWF). SWF was chosen in order to ease the use of workload logs and models. With it, programs

that analyze workloads or simulate system scheduling need only be able to parse a single format,

and can be applied to multiple workloads.



Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 8 of 18

This format comprises a lot of parameters for each job, from identifiers such as Job Number,

User ID or Group ID to detailed information about the execution of each job with variables such as

Submit Time, Wait Time, Run Time, Requested Time, Number of Allocated Processors, Requested

Number of Processors, Used Memory or Requested Memory among many others. More information

on the Standard Workflow Format can be found in Dror G. Feitelson’s repository

(https://www.cs.huji.ac.il/labs/parallel/workload/swf.html).

To be able to identify and control the fair share, the added workflow in the output files, we

set the User ID and Group ID to 723. We checked that the selected week of the whole workload did

not have any users (or groups) sending jobs with this ID.

For the experiments where the fair share is not 1, the usage of user 723 (the one sending

the added workflows) had to be altered to meet the selected fair share value (0.1 or 0.5). To fulfill

this requirement, our script adds an initial job, before the workload starts, sent by user 723. The

resources requested by this job are meant to control the fair share value of the user.

2.4.2- Execution of simulations

Once the workload files for all experiments are ready, that is with its workflow included, it is

time to run the simulations with the aforementioned SLURM simulator. To use the simulator with the

generated trace files, we used the available Python script called launcher.py. This script takes as

input the path of the input trace file, the path of the output file where the simulation output should be

printed on, and the total simulated time in seconds for the simulation to run.

By default, the time used was 10,000,000 (1e7) seconds, which is approximately 3 months

of simulation time. This value was deemed satisfactory because it allowed the included workflow to

run in its entirety. It was used by Manuel and tested by us.

The input files are those previously generated trace files in the Standard Workflow Format, a

total of 288.

The output files consist of a text file recording all executed jobs in order, where each job is

depicted as a line with several identifiers and variables, many which are present in the SWF. As

mentioned in the previous subsection, for experiments where the user has a fair share different than

1, this output file will have an extra job of the user executing the workflow (besides the workflow of

https://www.cs.huji.ac.il/labs/parallel/workload/swf.html


Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 9 of 18

the experiment) being the first of the whole simulation to control the fair share of user 723 for the

given experiment. This job has to be disregarded in the analysis.

With respect to the simulation itself, the SLURM simulator is executed in a Docker

container, which is launched by the launcher.py script. Docker allows to run containerized

applications in an easy way. Additionally, we used Docker Desktop to ease the monitoring of

experiments, since the launcher.py runs one container for each experiment that at the same time is

running the SLURM simulator with the trace file inputted. This made Docker Desktop ideal to

supervise these container runs when parallelizing different executions. Moreover, this application’s

guides and tutorials were used during this project to understand what a container is and how

Docker works.

2.4.3- Automation and parallelization of simulations using Nextflow

When executing a simulation individually, the total amount of time required often was

between 1 and 1.5 hours of wall time. This meant that executing the 288 simulations would take

around 400 hours. This posed a problem regarding the viability of performing the experiments,

given that the work plan designated a total of 2 weeks (10 days * 8 hours/day = 80 hours), so not

only automation but also parallelization became a need.

For this task, we considered several options. When automatizing executions, Manuel used

Cylc, a workflow manager (https://cylc.github.io/). However, the experiments were not executed in

parallel. Moreover, Cylc is specially designed for cyclic workflows, and the workflow for this project

consists of 288 independent executions of a script with varying parameters. Therefore, we

developed a novel workflow utilizing Nextflow, a scientific workflow system which automatically

parallelized the processes defined.

This decision was heavily influenced by the addition of a new member to the Models and

Workflows Team by the time this project was being developed, who is a former developer of this tool

and helped during the design of the Nextflow code used in this project.

https://cylc.github.io/


Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 10 of 18

The code itself is a script called “automate_experiments.nf” (.nf is the extension of Nextflow

codes) of less than 100 lines. The code is open-source and available in the GitLab repository of the

project, and it follows the next structure:

1.- Definition of global variables such as the output path where results of each experiment

are saved into, or the path where the launcher python script is among others.

2.- Definition of the first process, called update_status, which receives the path of an trace

file (.swf) and executes a python script called check_completed.py that checks if the

experiment of the corresponding file is completed or not based on how many times the

userId 723 appears in the output text file of the corresponding experiment. The script then

updates a csv file containing all experiments names and their status (completed or not)

called experiments_status.csv.

3.- Definition of the second process, called execute_simulation, which again receives the

path of a trace file and a “True” boolean value from the previous process (this is to ensure

that no instance of the second process starts before all instances of the first process are

done). The process first checks the previously updated csv with the status of every

experiment. If the trace file received corresponds to a completed experiment, the process

ends. If not, the process sets up a Docker container and runs the BSC Slurm Simulator

using the launcher.py script.

4.- Definition of the workflow that Nextflow will execute. First, we define a channel, that is, a

list of inputs, containing all .swf files. Then, Nextflow checks this channel and executes the

process update_status and then the execute_simulation, once its dependency is met.

Additionally, the first process is limited to run one of each instance at a time (no

parallelization) to avoid race conditions. On the other hand, the second process is limited to 6

parallel executions at a time. We chose this number of parallel executions, after some testing,

because it was the highest number of parallel executions we could make with the available

hardware.

Besides the simulator’s maximum simulated time, we set up another for Nextflow of 1.25h

(1:15). This was due to two reasons: firstly, since we only needed the simulation to run until the last

job of the workflow to study in each experiment, 1.25 was enough time for all experiments;

secondly, as explained in the next section, some simulations got stuck and this also allowed us to

stop them.

https://earth.bsc.es/gitlab/emillan/auto_nf/-/blob/master/automate_experiments.nf


Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 11 of 18

2.4.4- Analysis of results

For the task of analyzing the results, we developed an IPython Notebook. The IPython

Notebook, also known as the Jupyter Notebook, is an interactive computational environment which

combines code execution, rich text, mathematics, plots and rich media.

The complete notebook can be found in this GitLab repository. The notebook follows the

next structure:

1.- Data Loading

2.- Data Cleaning and Pre-processing

3.- Plot Based Analysis

3.1- Response Time Analysis

3.2- Normalized Response Time Analysis

3.3- Speedup Analysis

4.- Feature Importance Analysis

4.1- Random Forest Regression

4.2- Linear Regression

4.3- Correlation Based Importance

During this subsection we will review the most interesting insights obtained from the analysis

with respect to our original theses. Extra information can be found in the notebook, which is fully

commented. Note that when talking about response time, we are referring to the time the workflow

takes to end from submission (queue time plus execution time), and when talking about normalized

response time we are referring to the response time divided by the execution time.

https://earth.bsc.es/gitlab/emillan/wrapper_analysis


Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 12 of 18

First of all, with regard to the first thesis of this project, which states that the less resources

(CPUs and runtime) needed by the workflow the less impact wrappers will have, we have the

following plot:

As we can see, this is supported by the horizontal workflows, where we see that the smaller

size (2) is the one with the least difference (on average) between wrapped and unwrapped

response time. However, we can’t claim this yet for vertical workflows, where wrappers seem to

have a pretty similar impact for all sizes. The next plots gives us a more detailed view of the same

information:

Now, we can see that also for vertical workflows our thesis seems to be consistent. We can

see that variability, and thus impact of wrappers, apparently increases with size. It is important to

note that in this project, size equates with resources because the workflow is made of identical jobs,

which is not normally true in real cases.



Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 13 of 18

Our second thesis states that the larger the fair share (of the user sending the workflows),

the less impact wrappers will have. We will analyze the following plot, which shows the mean

speedup (unwrapped response time divided by wrapped response time for the same experiment)

obtained by wrapping the workflows with different sizes and fair share values:

A speedup value of 1 (dashed red line) means that the response time is the same for both

the wrapped and unwrapped version of an experiment. As we can see, on average, all vertical

workflows have a speedup above 1. For vertical workflows too, except for the ones of size 2. We

can see that the lowest fair share value does indeed get the best speedup, which seems to be

consistent with both our theses. In the case of the workflow of size 2 we have that the smaller the

workflow, the more it benefits from backfill (backfill scheduling allows other jobs to use the reserved

job slots, as long as these jobs do not delay the start of another job) and therefore less from

wrapping. With respect to the horizontal workflows, we have inconclusive results. As seen in the

previous plots, and explained in the notebook, horizontal workflows have much more variability and

wrappers tend to worsen or have no impact for this type of workflow.



Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 14 of 18

The following plots show this and help reinforce our two theses, although only for vertical

workflows:

It is clear that vertical workflows are the ones that benefit from wrappers. Now, we check

these percentages with more detail and see if they are consistent with our two theses with the next

plot, where we have in the x-axis the workflow size and in the y-axis the fair share. Within each of

the blocks we have the percentage of experiments that the speedup was greater than one.

We can see that vertical workflows are the type of workflow which is mostly consistent with

both our theses. The highest percentages of improvement can be found in the column of largest

size, fitting with the first thesis, and in the row of lowest fair share, fitting with the second thesis.



Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 15 of 18

Additional plots and analyses regarding the content previously mentioned can be found in

the python notebook of the project.

2.5- Unplanned issues

During the project, we faced several unplanned issues, especially related with the

execution of the simulations.

A bug was introduced which made the Slurm simulator not take into account the fair

share. Around 30 simulations were executed with a configuration that did not take into

account the fair share value, so those were not useful for this project, meaning that we had

to change the configuration and rerun these simulations.

Also, with respect to the automation of simulations, some minor issues arised. As

explained in a previous section, the Nextflow script was set to execute 6 simultaneous

executions, and it did without posing any problems related with the resources of the laptop.

However, on average, on about half of the executions the simulator did not finish.

To try to solve this problem, the time limit for the Nextflow process was gradually

increased up to 2 hours, without getting any better results. Seeing this, the time limit was

set again to 1.25 hours, since this time allowed to run all executions on schedule even if

half of them got stuck every time.

These two issues combined caused the second work package (execution of

experiments) to need an extra week and consequently the third work package (analysis of

results) to be delayed one week. This did not imply any major problems since there were

two weeks destined to writing the report, a task that was done simultaneously with other

tasks.

https://earth.bsc.es/gitlab/emillan/wrapper_analysis


Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 16 of 18

Finally, after running all the simulations, and during the analysis with the IPython

Notebook. We realized that the priority values for jobs with fair share value 0.1 were around

40,000 (Data Cleaning and Pre-processing section). This priority value could only be

obtained with a fair share value around 0.4, implying that the methodology to control the

fair share using an initial job is wrong. Solving this issue would be a priority in future related

work, however, the general insights obtained in the analysis are still maintained, since we

mostly refer to smaller or bigger fair share values and not the exact values (0.4 is still lower

than 0.5 and 1.0).



Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 17 of 18

3. CONCLUSIONS

The main conclusions of this project can be summarized in the following points:

- Vertical workflows seem to benefit in most cases from the use of wrappers, and in
most of the cases where they can be perjudicial, the negative impact is really small.

- Horizontal workflows have a much higher variability and it is unclear under which
circumstances they could benefit from wrappers. This indicates the necessity of
more experimentation.

- The positive impact of wrappers for vertical workflows is most noticeable for the
larger workflows and for the users with lowest fair share values, fitting with our two
initial theses.



Document: final_report_Enric_Millan
Final Report:

Supercomputing for
Climate Workflows

Date: 22/08/2024
Rev: 02

Page 18 of 18

4. REFLECTION DOCUMENT

- Things that could have been done better by the company staff or supervisor

- Things that could have been done better by Telecom-BCN staff or supervisor

- Things that could have been done better by the author

- Learning outcomes

I learned what wrappers are and the potential they have to save queue time (and
therefore resources) from workflows being submitted to supercomputers. I learned the
basics about the SLURM scheduler and the SLURM simulator. I also learned the basics
about workflow managers, specifically learning how to use Nextflow to automate and
parallelize the simulations. In order to run Manuel’s scripts and the simulator I learned what
containers are and how to use Docker. To do version control for all the code developed, I
improved my knowledge of git and the GitLab interface. I learned the groups and teams
organization used at BSC, as well as team collaboration methodologies by attending
several meetings. Finally, I also attended some optional “Writing Parties”, where coworkers
wrote essays, papers, reports, etc, and shared tips and advice on writing.

- Self assessment
I stuck to the work plan and completed the tasks on schedule. Even though some

issues arose during the internship, Manuel and I quickly addressed them and we were able
to continue progressing on the project without any major delays.


