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Resumen

Los Modelos del Sistema Terrestre (ESMs, por sus siglas en inglés) son modelos
numéricos complejos que simulan tanto los distintos componentes del sistema terrestre
como las interacciones entre ellos. Los ESMs constituyen la base de la producción cient́ıfica
en el ámbito de las Ciencias de la Tierra, por lo que trabajar en su optimización computa-
cional constituye una tarea cŕıtica.

Estos modelos son sistemas complejos y su puesta en marcha normalmente conlleva
la ejecución de múltiples pasos asociados a los varios componentes que los integran, el
tratamiento de los datos, y la larga extensión temporal de las simulaciones climáticas. A
lo largo de este estudio, evaluaremos el impacto de la agregación de tareas en simulaciones
reales de estos modelos ejecutadas en varios supercomputadores europeos.

En este contexto, la agregación de tareas – o wrapping – es un mecanismo que nos
permite enviar varias tareas agrupadas en una sola a las plataformas remotas. Gracias a
estudios anteriores, sabemos que agrupar tareas en wrappers verticales – es decir, en los
que cada tarea depende de la anterior –, implica la reducción del tiempo que pasan las
distintas tareas en la cola del planificador, es decir, el tiempo que esperan a que el sistema
les conceda los recursos necesarios para ser ejecutadas. Al reducir los tiempos de cola, lo
que estaŕıamos consiguiendo en última instancia es reducir el tiempo total de ejecución
del flujo de tareas, o workflow.

Como base de nuestra investigación utilizaremos el modelo comunitario europeo EC-
Earth3, uno de los ESMs más reconocidos en Europa por sus contribuciones al proyecto
CMIP6. El workflow que lo implementa ha sido portado a múltiples supercomputadores
europeos como MeluXina de LuxProvide, HPC2020 de ECMWF o MareNostrum 4 y
MareNostrum 5 del Barcelona Supercomputing Center.

Los resultados experimentales de nuestro estudio muestran que para las tres platafor-
mas de supercomputación testadas los tiempos de cola agregados para un experimento de
simulación que utiliza wrappers verticales son de 11 a 12 veces más cortos en comparación
con los de un experimento que no los utiliza.
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Abstract

Earth System Models (ESMs) are complex numerical models that simulate both the
different components of the Earth and the interactions between them. The ESMs are the
basis of scientific production in the field of Earth Sciences, so working on their computa-
tional optimization is an essential endeavor.

These models are complex systems and their implementation usually involves the exe-
cution of multiple steps associated with the various components that integrate them, data
processing, and the long time extension of the climate simulations. Throughout this re-
search, we will assess the effects of task aggregation on real-life simulations of these models
conducted on various European supercomputers.

In this context, task aggregation, also known as wrapping, is a strategy that enables
us to bundle multiple tasks and submit them as a single job wrapper to remote platforms.
Previous research states that organizing tasks into vertical wrappers – where each task
is dependent on the preceding one – results in shorter waiting times in the scheduler
queue, which is the duration for which they wait for the system to allocate the required
resources for execution. Consequently, reducing queue times leads to a decrease in the
overall execution time of the workflow.

We will utilize the European community model EC-Earth3 as the basis of our re-
search, one of the best known ESMs in Europe. The workflow that executes it has been
ported for use on several European supercomputers, including MeluXina from LuxProvide
and HPC2020 from ECMWF together with MareNostrum 4 and MareNostrum 5 at the
Barcelona Supercomputing Center.

The experimental findings of our research indicate that across the three evaluated su-
percomputing platforms the total queue times for an experiment utilizing vertical wrappers
are 11 to 12 times shorter compared to an experiment without them.

∗ ∗ ∗
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Chapter 1

Introduction

In this chapter, we will go through the inspiration behind this research, the objectives
we aim to achieve, and the contributions this project will make to the Earth sciences field.

1.1 Motivation

Over the past few decades, the High Performance Computing (HPC) domain has expe-
rienced unprecedented expansion [1], with the current landscape featuring heterogeneous
systems that merge traditional highly parallel CPU-based architectures with increasingly
prominent GPU-accelerated partitions, alongside other emerging technologies. Advance-
ments in the processing capacity of these chips have made it possible to create the first
exascale supercomputer, named Frontier, at the Oak Ridge Leadership Computing Fa-
cility in the United States. It is capable of performing over a quintillion floating point
operations per second, or 1018 FLOPS, and continues to hold the number one position on
the TOP500 list [2].

An increasing number of businesses and institutions are working together and invest-
ing in the creation of machines that drive the progress of science, society, and industry.
Historically, Europe has been home to supercomputers that ranked highly in the TOP500
list, such as BSC’s MareNostrum. In 2018, in order to maintain Europe’s leadership in
supercomputing, the European Commission established the EuroHPC Joint Undertaking
alliance to coordinate the efforts of the member countries, with the aim of digitally trans-
form the economy, enhance industries, and reinforce digital sovereignty across the conti-
nent. As a result of this collective initiative, several supercomputers have been deployed
throughout Europe, emphasizing LUMI in Finland, Leonardo in Italy, and MareNostrum
5 in Spain, which are the three most powerful machines in Europe. [3]

The capabilities of these new heterogeneous supercomputers have enabled individuals
to broaden their applications to include large scale simulations, deep learning, artificial
intelligence, and even the development of digital twins [4] of the human body or our planet
[5], with the aim of enhancing our comprehension of our environment and nature.

This expansion drives researchers around the world to seek methods for maximizing
the capabilities of these machines as they incorporate emerging technologies, which have
a growing number of users demanding their resources. As a result, there is an aspiration
to find a balance between system performance and energy consumption [6]. This research
can be performed at different levels, such as by enhancing existing workload managers [7,
8] or refining current workflow managers to optimize the use of available resources during
task submission [9].

In the field of Earth sciences, the day-to-day work involves the development and con-

1



CHAPTER 1. INTRODUCTION 1.2. Objective

tinuous enhancing of different Earth System Models (ESMs). These models are numerical
representations of the different components of the Earth system, such as the atmosphere,
the ocean, the land, or the carbon cycle, and are executed on supercomputing platforms
organized in large workflows consisting of up to hundreds of thousands of interdependent
jobs. Optimizing the simulations of these Earth System Models is a critical task for the
Earth science community, as a significant portion of its scientific production relies on them.
These optimization tasks can be approached on several fronts. One of them is trying to
minimize the time that the jobs inside the workflow spend in the workload manager’s
queue, thus reducing the overall execution time of the entire model. Giménez de Castro et
al. [10] explored the task aggregation solution by conducting multiple experiments with
a Slurm Workload Manager simulator. They stated, among other findings, that applying
task aggregation to predominantly vertical workflows, i.e., where each job is dependent on
the previous one, which are also prevalent in most ESMs, improves overall queue durations.

One of these ESMs, which also be the objective of our study, is EC-Earth3 [11], a
highly modular model that makes it possible to simulate different configurations of climate
components. Developed by the European research consortium EC-Earth, it is renowned
for its significant contributions to the CMIP phase 6 project [12], with the subsequent
impact on the creation of the Sixth Assessment Report (AR6) [13], and consequently
influencing the design and implementation of climate policies.

1.2 Objective

Our research aims to evaluate the impact of task aggregation – or wrapping – in order
to reduce total queueing times in real climate simulations – thus, the overall execution
time –, using a workflow used in production to run one of the widely known Earth System
Models in Europe, EC-Earth3. Wrapping consists in grouping multiple tasks of these
workflows into a single larger job, which can then be dispatched to a remote scheduler like
Slurm at once. Slurm is a well-known workload manager utilized on the supercomputing
platforms in which we will execute our experiments throughout this project. The model
workflow will be executed on top-tier supercomputers across Europe using one of the best
known workflow managers in this field, Autosubmit [9].

This study seeks to determine whether task aggregation reduces queueing times in the
remote scheduler, thus reducing the overall execution time of the workflows.

1.3 Contribution

This study will contribute to the Earth sciences field as the first controlled assess-
ment of the impact on wrapper utilization within real-life workflows, requiring more than
half a million CPU hours on some state-of-the-art European supercomputers, including
MareNostrum 4, MareNostrum 5, or MeluXina.

This project has been developed in collaboration with the Computational Earth Sci-
ences group of the Department of Earth Sciences of the Barcelona Supercomputing Center-
Centro Nacional de Supercomputación, to which the author and co-director of this paper
belong.
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CHAPTER 1. INTRODUCTION 1.4. Working plan

1.4 Working plan

The initial step in the working plan for this project involves assessing existing research
by other authors regarding supercomputer workload and task aggregation.

After understanding the given context, we can proceed to set up our experiments.
This process involves selecting a workflow from the various ESMs available. The chosen
workflow will eventually be the EC-Earth3 workflow.

Each workflow operates on specific computing platforms, so we will have to decide
on which ones will be used for our experiments. Choosing multiple platforms is critical
because, first, it provides us with a broader range of cases for our subsequent analysis,
and second, there is a chance that experimentation on any single platform may encounter
issues and fail. From each platform, we will extract data on both queue times and the
various parameters that the scheduler considers when assigning task priorities. With these
data, we can determine whether, in the various scenarios analyzed, task aggregation in
vertical workflows contributes to improve queue times and the overall execution time of
the workflow.

1.5 Document organization

This document is structured into five chapters, with the present one being Chapter 1,
which introduces the project outline. The subsequent content is arranged as follows:

• Chapter 2 makes an overview of the previous research on the findings of other authors
who previously studied both workloads in HPC platforms and task aggregation as
a solution to reduce the job queuing times. Moreover, it provides an thorough
explanation on all the concepts that will be treated throughout this research, as the
aforementioned Earth System Models, Autosubmit, Slurm and wrappers.

• The Chapter 3 details all the experimentation process, from the workflow selection,
platform setup, and, finally, their execution.

• On Chapter 4 we present and discuss the execution results.

• And, lastly, on Chapter 5 we present all the conclusions we have extracted from
what we observed after finishing the experimentation.
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Chapter 2

Background

Throughout this chapter, we will walk through the findings of various authors who have
previously studied task dispatching to HPC platforms, focusing on how job size impacts
queuing times and the advantages of using task aggregation techniques. Subsequently, we
will introduce all the tools and concepts that will be systematically used in the different
stages of this research, which are crucial to our understanding.

2.1 State of the art

The increasing demand for computing resources in HPC centers, enterprise computing,
or cloud providers has driven increased investment in the research of new techniques to
achieve an optimal use of HPC resources. This motivates the paper by Patel et al. [1],
which focuses on the characterization of submitted jobs. The authors state that there is
a lack of characterization studies that leads researchers to base their developments on old
characteristics, and this results in system administrators being reluctant to apply it to new
machines. The main purpose of their research is to help other researchers find the latest
trends and aspects they may need to develop reliable strategies for resource management.

To do so, they examined workload on two leadership-class supercomputers hosted in the
Aragonne National Laboratory, Intrepid and Mira, analyzing “trends and characteristics
for over three billion compute hours, 750 thousand jobs, and spanning a decade”. Along
the way, they discovered some interesting insights, highlighting that jobs are becoming
larger and longer, and that medium-sized jobs consume most of the resources. They also
refer to the trend of utilization of resources, indicating that users keep overestimating the
run times of their jobs, requesting wider wallclock. Another conclusion on this last topic
is that user jobs tend to be similar, using similar resources, but users with similar resource
consumption may have different queue times for their jobs.

Exploring further methods to reduce the overall execution time of the jobs, Giménez
de Castro et al. [10] evaluated the impact of combining tasks into a single – that is, task
aggregation – to reduce the total execution time of the jobs by shortening the queueing
time. The objective of their study is to define a theoretical base that could lead to the
reduction of the total time of the execution of workflows applied to the Earth Sciences
use cases, and understanding how supercomputers are utilized fundamentally drive if this
technique is useful or not.

They performed an experiment using “dynamic workloads – where job arrival time
plays a role – with a workflow composed of multiple jobs and a static workload – where
all jobs in the workload are submitted at the same time – varying job and user factors
that play a role into the scheduling” utilizing a Slurm Workload Manager simulator.

4
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The conclusions they reached serve as the theoretical foundation of our project: task
aggregation is generally beneficial in most scenarios with vertically structured workflows,
whereas its effectiveness in horizontal workflows depends on the user’s previous usage and
the current state of the machine.

2.2 Earth System Models

Gettelman and Rood [14] explain in their book that “a model, in essence, is a repre-
sentation of a system”. Models can be physical or abstract, and abstract models often
are mathematical. Earth System Models (ESMs) [11], in particular, are complex numer-
ical models that integrate traditional elements of climate models, including atmospheric
and oceanic physical models, with additional components for simulating sea ice, land, and
optional elements such as biophysical and biogeochemical processes or the most advanced
treatment of aerosols.

The significance of ESMs stems from our need to understand the complex interaction
of the components in a changing climate environment [13]. According to Döscher et al.
[11], they are “the primary source of information for understanding the Earth’s climate
feedbacks, for attributing changes to specific drivers, for future climate projections and
predictions, and for the development of mitigation policies”. The extensive scale and
intricate nature of these models require collaboration between various research institutes
and universities for their development and maintenance. An example of this is EC-Earth3,
developed by the European research consortium EC-Earth. It is a comprehensive Earth
System Model that allows the integration of various climate models to create different
configurations.

The Earth Sciences Department at the BSC is heavily involved in the development of
EC-Earth3, but also makes use of other models such as MONARCH [15], HERMES [16],
and CALIOPE [17].

2.2.1 EC-Earth3

This study will focus on analyzing the impact of task aggregation within the EC-Earth3
model, in particular. This choice is primarily motivated by its significant contributions to
the CMIP6 project and the subsequent influence it has on the scientific community and
policy-making. In addition, its workflow is ideally suited for our research. In the next
chapter, we will provide a detailed discussion of its features.

EC-Earth3 [11] is a modular ESM that includes model components for the atmosphere,
ocean, sea ice, land surface, dynamic vegetation, atmospheric composition, ocean biogeo-
chemistry and the Greenland ice sheet. Table 2.1 outlines the individual components and
the domains they cover, according to Döscher et al. [11].

Component Domain

ECMWF’s IFS [18] It covers atomosphere and land, and includes a coupling interface
to facilitate boundary data exchange with other components.

NEMO [19] It models the ocean component. It integrates LIM [20] and
PISCES [21] to encompass both ice and biogeochemical processes
in the ocean, respectively.

Continued on next page
Table 2.1: Overview of the EC-Earth3 model components, according to Döscher et al. [11].
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LPJ-GUESS [22, 23] Dynamic vegetation, land use, and terrestrial biogeochemical
processes.

TM5 [24] Atmospheric chemical processes and aerosols.

PISM [25] Greenland ice sheet.

Table 2.1: Overview of the EC-Earth3 model components, according to Döscher et al. [11].
(Continued)

EC-Earth3 provides various parameters for different model configurations and different
HPC platforms during both build and run times. Additionally, it centralizes all the initial
and forcing data files for the entire EC-Earth community.

Executing any configuration based on those components in a concurrent way requires
message-passing with common data structures and a coupling interface. EC-Earth3 fol-
lows a Multiple Program Multiple Data (MPMD) approach, so it needs Message Passing
Interface (MPI) to synchronize the execution of its components. To facilitate coupling,
the OASIS3-MCT library [26] was created to enable the exchange of multidimensional
coupling fields among various models on their respective grids. The grid refers to how the
model segments the Earth into smaller parts for simulation. A finer grid, which means
having a higher resolution, generally implies a better accuracy [27], but demands more
computational resources.

Furthermore, it is necessary to standardize the results. To do so, EC-Earth3 employs
Climate Model Output Rewriter (CMOR) to convert the output of the models into a
“CF-compliant” (Climate and Forecast) netCDF format, ensuring that they meet the
requirements of the CMIP projects. The process of standardizing the output is referred
to cmorization.

2.3 Workflow Managers

HPC applications can be made up of a few to thousands of jobs with interdependencies
that must be dispatched in a specific order. Manually submitting every single task from a
workflow of such size to the HPC platforms, taking into account their dependencies, and
solving possible errors during execution is not viable without an automated processing
tool, referred to as a workflow manager.

The main purpose of a workflow manager is to coordinate the execution of a workflow,
minimizing human intervention as much as possible. Although there exist many workflow
engines, only a few of them are specially designed to meet the needs of climate research,
and some of the well-known in this field are Autosubmit [9], by BSC (Spain); Cylc [28],
by NIWA (New Zealand); and ecFlow [29], by ECMWF (international). Each of them has
its strengths and weaknesses and is implemented with particular use cases in mind.

2.3.1 Autosubmit Workflow Manager

The experiments in this project will be executed with Autosubmit 3, developed by
the Computational Earth Sciences (CES) group at BSC. Initially launched in 2011, it is
tailored for earth sciences applications, but serves as a versatile general-purpose workflow
manager.

Autosubmit consists in a Command Line Interface (CLI) application built in Python
that integrates the capabilities of an experiment manager, workflow orchestrator, and
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monitor in a self-contained application. The experiment manager allows the definition
and configuration of experiments, supported by a hierarchical database that ensures re-
producibility and traceability. The orchestrator is designed to run and monitor complex
workflows in research and operational mode by managing their dependencies and interfac-
ing with local and remote hosts. These workflows can involve many tasks that have to be
executed on one to multiple platforms. It is a robust software that can handle a variety
of setbacks, being able to recover automatically from, for example, punctual network or
I/O errors.

It is currently used in the Earth Sciences Department of BSC to run the majority of
models, such as EC-Earth3, MONARCH, and CALIOPE, and also operational toolchains
or data download workflows. Over the years, it has been used on external HPCs hosted at
centers including CESGA (Spain), CSC (Finland), LuxProvide (Luxembourg), ECMWF
(UK), OLCF (US), and KIT (Germany).

It has contributed to various European research projects and operates in different
operational systems. During the following years, its newer version (Autosubmit 4) will
support some of the Earth’s Digital Twins as the Digital Twin of the Ocean or the Cli-
mate Adaptation Digital Twin in the Destination Earth [4] initiative from the European
Commission.

In addition to the typical features of a workflow manager, Autosubmit integrates a
variety of tools aimed at developing and enhancing efficiency. We are especially inter-
ested in its wrapping capabilities and the possibility of using extended headers and
footers for our research. The first one, to submit multiple jobs at once to the remote
supercomputing platforms, and the latest, to stick a custom script to the simulation jobs
in order to collect status data from the scheduler.

2.3.2 Aggregation levels for climate research

As Autosubmit is specifically tailored for climate research, tasks within a workflow
adhere to a hierarchical structure that serves as an abstraction layer for this particular
application. Therefore, Autosubmit is capable of running climate simulations that include
various startdates and members. The process of executing a member involves running
multiple chunks, which can be subdivided into splits.

• Startdates represent the initial aggregation level within the Autosubmit workflow
hierarchy. They serve to group different instances of the simulation cycle differen-
tiated by the initial conditions. Each startdate encompasses as many elements as
startdates specified in the configuration.

• Members represent the second level of aggregation. They are used to group differ-
ent instances of the simulation cycle, which differ by minor changes in the initial
conditions, known as perturbations.

• The chunks represent individual sequential iterations within the Autosubmit simu-
lation cycle. Dividing the simulation into smaller sequential pieces aims to fit the
resource allocation limits provided by the underlying computer platform and to cre-
ate implicit checkpoints for restarting the simulation in case of execution errors.

• Splits represent the most granular level in the hierarchy, and are employed when
tasks at the chunk level require additional breakdown.

7



CHAPTER 2. BACKGROUND 2.3. Workflow Managers

2.3.3 Architecture of Autosubmit

Autosubmit is composed of three primary components: the Autosubmit CLI core, its
Application Programming Interface (API), and its Graphical User Interface (GUI) [30].
Figure 2.1 illustrates the particular distributed deployment at the CES group at BSC, and
how Autosubmit operates as an interface between its users and the other components of
the system.

The first components to be emphasized in that schema are the remote schedulers, where
Autosubmit dispatches the jobs in the user’s workflow. This workflow manager supports
submission to multiple platforms, from a single job to multiple at once. As mentioned
above, with its wrapping functionality, it also allows us to submit sets of jobs that will be
treated as a single unit by the scheduler in an automated way.

Autosubmit also requires a technical infrastructure to hold all the experiments. For
that, it has a SQLite [31] experiment database, where each experiment is uniquely iden-
tified by its expid, or experiment id. All data from the experiment will be stored on the
file system and all the resources with which the user normally interacts will be located
in a dedicated directory for each experiment. That directory will host the experiment
configuration files, the project itself – that is, the model files – along with automatically
generated logs and reports. All of this information is used to generate useful analytics for
both users and developers.

Users can check the progress and status of their experiments through the Autosubmit
GUI, which communicates with the Autosubmit API to handle all the requests.

Users

Remote Schedulers

Experiment Database File System

Reporting and Data Analytics

Figure 2.1: The distributed architecture of the Autosubmit Workflow Manager at the
CES group at BSC.

It is important to note that Autosubmit can be deployed locally in a non-distributed
way, thus the diagram above serves merely as reference.

2.3.4 Experiment logical organization

Autosubmit creates the directory structure shown in Figure 2.2 throughout the life
cycle of the experiment.
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The first folder to highlight is conf, which contains all the INI files [32], a kind of
configuration file that stores key-value pairs for attributes arranged in sections. The next
most important folder is proj. It is dynamically created while creating the experiment, a
process that involves cloning the project source, which contains user scripts and project
code. In our case, it will include the executables and templates of an ESM, along with a
custom script to monitor the scheduler’s status during workflow execution on the remote
platform.

Autosubmit uses the tmp directory to save logs and store the scripts that will be
submitted to the HPC machines, as well as other miscellaneous files. Additionally, the
status and pkl directories are used to store the status of the workflow jobs and information
about the experiment workflow. Lastly, plot contains all visualization output files, that
is, the workflow diagrams.

/autosubmit

/expid

/conf

/pkl

/plot

/proj

/status

/tmp

Figure 2.2: The directory tree of an Autosubmit experiment.

2.4 Auto-models

Auto-model is the term used in the Department of Earth Sciences at BSC to refer
to an Earth System Models that has been adapted for execution with the Autosubmit
workflow manager. For instance, the auto-model corresponding to EC-Earth3 is called
Auto-EC-Earth3. Each of these climate models has a dedicated team of auto-modelers
responsible for maintaining the workflow, porting it to different platforms, and analyzing
and enhancing its performance.

2.4.1 Auto-model configuration

While the most intricate aspect of the auto-model is located in the experiment’s proj
directory, regardless of the auto-model we select, our study will not require an in-depth
examination of it. However, it will be essential to thoroughly understand the specific
configuration files for the experiment found in the conf directory.

The configuration files for an experiment are autosubmit, expdef, jobs, platforms, and
proj. The details of their content are provided in Table 2.2.

INI file name Content

autosubmit [expid].conf Includes parameters to control the workflow behavior or en-
able additional features, such as wrappers or email alerts.

Continued on next page
Table 2.2: Description of Autosubmit configuration files.
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expdef [expid].conf Defines startdates, members, chunks (indicating number and
size), or even splits. It also contains the source of the experi-
ment (such as a Git repository or a local folder) and the path
of the project configuration file.

jobs [expid].conf Defines the workflow to be executed: the scripts to run, job
dependencies, computational resources required for the job on
the HPC (or local) platform, and the platform to which each
task will be submitted. Additionally, it allows to override pa-
rameters previously defined in the platforms configuration file,
and supports additional functionalities such as the extended
header and footers we will use later on.

platforms [expid].conf It hosts the configurations for each remote HPC platforms the
workflow will use, such as the hostname, username, scheduler,
account, QoS and other technical details.

proj [expid].conf Holds project-specific variables that Autosubmit will replace
in the job scripts that are submitted.

Table 2.2: Description of Autosubmit configuration files. (Continued)

2.5 Slurm Workload Manager

Slurm [33] is a widely recognized workload manager, notable for its open-source nature,
fault tolerance, high scalability and modularity. It is currently utilized by prominent
TOP500 [2] supercomputers such as Frontier, LUMI, Leonardo, and MareNostrum 5.

Among its features, Jette and Wickberg [33] emphasize its open-source nature and
user-friendliness for system administrators, its portability due to being written in C, and
its flexibility through the integration of numerous plugins thanks to its high modularity.
It is highly scalable, as it consists of highly concurrent daemons designed to support
large supercomputers with thousands of scheduled jobs. It includes some fault tolerance,
allowing jobs to continue even if some nodes fail. Slurm also incorporates security features
to authenticate each communication, ensuring that users or processes cannot impersonate
each other.

2.5.1 Scheduling

Depending on the plugin selected in the slurm.conf file [34], Slurm offers basic or
multifactor scheduling behavior. This affects how Slurm assigns priorities to jobs, which
are computed as integer values.

Basic scheduling

Slurm employs a First In, First Out (FIFO) scheduling strategy to serve the highest-
priority jobs within a queue sorted in reverse order based on their arrival time.

This algorithm can be particularly advantageous for High Throughput Computing
(HTC), where the objective is to complete the maximum number of tasks in the least
amount of time. Slurm, as noted by Jette and Wickberg [33], can get a throughput rate
of up to 100 jobs per second with an optimal setup and hardware. In contrast, if any
job is found unable to start, those with lower priority on the same partition will remain
pending. The FIFO scheduling approach may also introduce several issues, as highlighted
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by Almaaitah et al. [35] in their paper: one of these is the convoy effect, where smaller tasks
experience significant delays because they must wait for a larger task to release resources.
Another issue is fragmentation, which occurs when the availability of free resources, such
as processors or memory, is less than required by a job, causing the job to remain in queue
until sufficient resources are freed by other jobs or to reach a starvation [36], a situation of
indefinite blocking of a task. Moreover, they mention that if shorter tasks are prioritized
over longer ones, it would lead to inefficient resource utilization.

Multifactor scheduling

In HPC systems, it is typical to see the multifactor scheduling plugin activated. This
plugin is an implementation of an algorithm that considers various parameters when pri-
oritizing tasks or organizing the queue. Among the parameters considered when calcu-
lating priority are age, fairshare, job size, QoS, partition, niceness, association, and a
site-managed value. Each of these factors can be configured so that some have greater
influence than others in establishing priority. [33, 37]

The age factor determines the duration for which a job has been in the queue while
being qualified for schedule, and the size of the job is quantified as the amount of resources
required by the task.

The queue component is linked with each node partition, much like QoS is related
to the defined level of service quality, involving some parameters such as the maximum
number of jobs per user. Conversely, the user may wish to assign a task priority, known as
nice value, similar to the niceness in process scheduling within an operating system [36].
The determination of the site factor is assigned to the priority algorithm determined by
the system administrator.

Fairshare represents the discrepancy between the allocated – or promised – resources
and the consumed ones, ranging from 0 to 1. It seeks to measure if an association –
the tuple user, account, partition, cluster in Slurm – is receiving more or fewer services
compared to the resources allocated within a specified time frame. The objectives are to
ensure fairness and to maximize machine utilization, while avoiding rigid boundaries. The
standard algorithm used for fairshare calculation is the Fair Tree.

The main principle around which Fair Tree is to allow sharing responsiveness among
users of the same account, which are groups of users, normally on a per project basis. The
Fair Tree algorithm computes the Level Fair Share, which pertains to resource distribution
across the hierarchical tree levels, and considers factors as the Raw Usage, which concerns
the user’s historical machine usage, and Raw Share, which is related to the potential usage
by the user. The thesis by Giménez de Castro et al. [10] delves deeper into the behavior
of fair share algorithms in Slurm.

Backfill scheduling

Slurm integrates a pre-enabled backfill plugin. The purpose of this backfill mechanism
is to minimize fragmentation, allowing the initiation of lower-priority jobs as long as they
do not alter the anticipated start time of higher-priority tasks, allowing jobs to run out of
strict priority order when enough resources are available. [38]
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2.6 Wrappers

In the task aggregation domain, a wrapper is a larger job composed of smaller ones
that can be submitted to a workload manager, such as Slurm.

The most elemental types of wrapper are vertical and horizontal. Figures 2.3 and 2.4
represent how sets of black-box jobs are vertically and horizontally wrapped, respectively.
Jobs inside a vertical wrapper follow a hierarchy in which each one depends on its previous,
while in a horizontal wrapper, jobs have no dependencies between themselves. In the first
case, jobs must be executed sequentially to meet the dependencies, but in the latest, jobs
run concurrently.

Job 1

Job 2

Job 3

Figure 2.3: Vertical wrapper example.
Each job within the wrapper depends

on the one before it.

Job 1 Job 2 Job 3

Figure 2.4: Horizontal wrapper
example. Tasks inside the wrapper

execute independently and concurrently.

It is possible to merge these elemental types of wrapper to create more flexible wrapping
techniques: horizontal-vertical and vertical-horizontal.

The horizontal-vertical wrapper, shown in Figure 2.5, enables the concurrent submis-
sion of sets of tasks that must synchronize before advancing to the subsequent horizontal
stage. In other words, it allows for the dispatch of horizontal wrappers organized within
a vertical wrapper.

Job 1 Job 2

Job 3 Job 4

Job 5 Job 6

Figure 2.5: Horizontal-vertical wrapper, combining horizontal wrappers into a single
vertical wrapper.

The vertical-horizontal wrapper, depicted in Figure 2.6, enables the packaging of a
vertical sequence of tasks that are independent of the horizontal ones. Consequently, it
is not necessary for all horizontal tasks to be completed before moving on to the next
horizontal layer.
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Job 1 Job 2

Job 3 Job 4

Job 5 Job 6

Figure 2.6: Vertical-horizontal wrapper example, combining vertical wrappers into a
single horizontal wrapper.

The Autosubmit workflow manager supports all these types of wrapper, which must be
defined in the autosubmit [expid].conf INI file with the wrapper attribute [39], indicating
the type of wrapper, its jobs, and the minimum and maximum size. It also implements
different wrapping policies. We must select one between flexible, mixed and strict depend-
ing on our needs. The flexible policy is the most lax because if there is not a minimum of
jobs to be grouped, they will be sent to the platform individually anyway, while the strict
policy always waits until there are enough tasks to create a wrapper. The mixed one will
wait for a minimum number of jobs to create the wrapper, except in the cases where a
task has failed.

In the following snippet, an example set-up where vertical wrappers are applied to a
collection of jobs called “SIM”, which stands for simulation, with a wrapper size between
5 and 10 jobs, following a flexible policy (default).

[wrapper]

TYPE = vertical

JOBS_IN_WRAPPER = SIM

MIN_WRAPPED = 5

MAX_WRAPPED = 10

POLICY = flexible

Code 2.1: Example of wrapper configuration in Autosubmit 3.15.
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Chapter 3

Methodology

3.1 Overview

The main objective of this work is to analyze the impact of task aggregation in real-life
simulations on different HPC platforms. To do so, in this chapter we will go through a
series of steps that involve, first of all, conveniently choosing the auto-model we want to
execute. Subsequently, we will request access to the supercomputing platforms that will
run our simulations.

3.2 The auto-model

3.2.1 Selecting the auto-model

We are seeking an auto-model able to run for an extended period, enabling us to en-
counter various usage patterns and time frames, including day and night cycles, weekends,
and periods of both low and high platform demand. Furthermore, the auto-model must be
executable on a broad range of supercomputing platforms so that we can determine which
are the most appropriate for our research. Additionally, the model-platform pair should be
commonly utilized by Earth scientists at the BSC, as this would enable us to clone existing
– and tested – experiments as a basis for ours by adapting them to meet certain needs,
setting up the usage of wrappers, changing the number of chunks to simulate and its size,
and removing the overhead produced, for example, by the file transfer between the remote
platform and the host. Otherwise, we would have to build our experiments from scratch,
and that implies creating a new Autosubmit experiment that uses a pre-compiled version
of the auto-model’s base adapted to the platform we want to use, and it is undoubtedly
better for us to take advantage of the work that has already been done than delving that
far into the auto-model’s configurations with the complications that it entails. Moreover,
having high-quality documentation is crucial as it allows us to resolve issues independently
without needing support from the auto-modelers.

Different auto-models have been evaluated throughout the project, including EC-
Earth3’s and some of its models separately. In the end, we opted for Auto-EC-Earth3,
which perfectly fulfills our requirements. Besides the EC-Earth3 model, we also explored
other workflows, such as the NEMO standalone, which also met the criteria, ported to
LUMI, the flagship supercomputer at the CSC, in Finland. Although we gained access to
the platform, we finally discarded this particular possibility, finding it more practical to
use the same model across all platforms, thereby reducing the time required for learning
and research before conducting any experiments.

We will now outline the rationale behind selecting Auto-EC-Earth3 for our research:
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• It is currently running on a wide variety of powerful supercomputers across Europe,
such as MareNostrum 4, hosted at BSC in Spain; MeluXina, hosted at LuxProvide
in Luxembourg; and HPC2020, hosted at ECMWF in Italy. In addition, since
the internal pre-release of MareNostrum 5, prior to the power-off of MareNostrum
4, auto-modelers have been working on porting the auto-model to BSC’s newest
platform.

• Its developers execute a testing suite periodically on the remote platforms to ensure
that all the updates they perform over the auto-model are correctly working on real
life scenarios. That testing suite is composed by special Autosubmit experiments
called “test cases”, which have a given number of chunks, start dates, members and
HPC platform, and are differentiated from others because they have a reserved first
letter “t” at the expid [40]. Each testing case aims to simulate a particular model
configuration on an specific HPC. Auto-EC-Earth3 developers generate a new tag in
the GitLab repository nearly every week and validate its operation by running this
testing suite.

In other words, we have a set of reliable experiments for different supercomputing
platforms that can be used as the basis for ours. In addition, having experiments that
someone has already executed as a reference will allow us to know the approximate
consumption in CPU hours for each task in the workflow. This will allow us to
adjust the size of our workflows to adapt them to the resources available on each
platform. CPU hours serve as a metric to measure the resource consumption of our
tasks.

• It has high-quality and extensive documentation that provides detailed insights into
the auto-model’s internal operation, step-by-step guidance for running an Auto-
EC-Earth3 experiment, platform-specific usage instructions, including a tutorial for
porting the auto-model to a new HPC, a section on Frequently Asked Questions
addressing common issues, among other resources for its developers.

Unfortunately, this documentation [41] is hosted in the GitLab repository of the
project, which is private because EC-Earth3 is partially based on OpenIFS, a com-
ponent that requires a license from ECMWF [42].

3.2.2 Auto-EC-Earth3

Auto-EC-Earth3 is the software package that contains all the files required to run the
EC-Earth3 model with Autosubmit.

Includes essential files such as templates, configuration files, supporting software, and
even the EC-Earth3 code itself. Thanks to Autosubmit capabilities, Auto-EC-Earth3
offers an automated solution to create, manage, and monitor EC-Earth3 experiments on
various HPC platforms, handling everything from model compilation to post-processing
of output files [41].

The workflow

Auto-EC-Earth3 is composed of a set of tasks with different purposes, including setup,
synchronization of the file system, simulation, postprocessing of results, or diagnostics.
Presented in Figure 3.1 is a streamlined version of the workflow capable of simulating up
to S startdates, containing M members with N chunks.
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Local Setup

Synchronize

Remote Setup

Ini

Sim Sim

All Member
Jobs

Member M

CMOR JobsSaveIC

Post

Transfer
Diagnostic

Jobs

Clean

CMOR JobsSaveIC

Post

Transfer
Diagnostic

Jobs

Clean

Clean
Member

Clean
Experiment

Transfer
Member

NCTimeMonitor

Member 1 Member M

Chunk 1 Chunk N

Last chunk jobs

Start Date 1 Start Date S

All Start
Date Jobs
Start Date S

Figure 3.1: A simplified view of an Auto-EC-Earth3 workflow with its common tasks.

Tasks are organized to ensure that the workflow can be easily scaled, taking into
account its numerous interdependencies.

There are three common tasks independently of the number of startdates, members,
and chunks that are responsible for initializing the execution of the workflow locally and
remotely. In real experiments, they will be named LOCAL SETUP, SYNCHRONIZE,
and REMOTE SETUP. There is another exclusive initialization task per member (INI ).
Within the chunk, there are several tasks focused, initially, on simulating (SIM ) and,
subsequently, on post-processing the output of the simulation. These tasks are interde-
pendent, sometimes even between other chunks in the same member, and there are also
other chunk-related tasks which depend exclusively on the last chunk.
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Figure 3.1 visually illustrates the complexity of why a climate system model needs to
be executed using a workflow orchestrator such as Autosubmit, as seen in Chapter 2.3.

The following table provides a brief overview of the roles of the workflow tasks seen
above [43]:

Set of tasks Description

LOCAL SETUP Checks configuration files and creates the template files for the
SIM jobs.

SYNCHRONIZE Sets up the scratch experiment folder at the HPC platform.

REMOTE SETUP Compiles the model components.

INI Sets up inidata folders for each member.

SIM Runs the simulation.

SAVEIC Creates the requested initial conditions.

CMOR jobs These are several jobs that can be executed separately for the
cmorization of the outputs.

POST Post-processes the output of the simulation.

Clean jobs These are the jobs responsible for deleting the chunk files
(CLEAN ) or the member directories (CLEAN MEMBER).

Diagnostics jobs These are specialized jobs to compute diagnostics. There exists
both EARTHDIAGS or ESMVALTOOL jobs, each associated
with a different diagnostics tool.

Transfer jobs TRANSFER and TRANSFER MEMBER jobs move chunk- or
member-related files to local or intermediate storage.

MONITOR Generates plots from diagnostics for online monitoring of the
simulations.

NCTIME Checks the time consistency and completeness of the CMOR
outputs.

Table 3.1: A brief explanation of the Auto-EC-Earth3 jobs.

3.2.3 An approach to what our experimentation requires

As discussed in Section 3.2.1, our experiments will be based on test cases from the
Auto-EC-Earth3 testing suite. These test cases differ in the number of startdates,members,
chunks, the HPC, and even the climate models they couple. For simplicity, we will define
the same workflow for all platforms and adjust its configurations or try different coupled
model combinations depending on the available resources on each one. For that reason,
it is essential to note that this analysis aims to evaluate task aggregation for each HPC
platform individually, without performing cross-platform performance comparisons. Given
that the experiments on each platform will not be identical, such a comparison would be
unfair.

Figure 3.1 presented a complete Auto-EC-Earth3 workflow, with all its tasks and their
interdependencies. Experiments in real life typically follow that schema, although certain
tasks may be omitted. However, our study only needs to focus on large computationally
intensive jobs, like the SIM tasks, while other tasks, involving transfer, cleaning, moni-
toring or post-processing, can be regarded as overhead, as we do not need to handle the
climate model outputs, and discarding them will allow us to save valuable CPU hours,
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memory, storage, and network bandwidth. Then, we can proceed to prune all the unnec-
essary jobs in the execution tree, leaving only those ones that are required to initialize
the experiment locally and remotely, and the simulation tasks themselves. It would not
be necessary for our research to have multiple startdates or members.

Putting these requirements together results in the simplified workflow represented in
Figure 3.2, consisting of LOCAL SETUP, SYNCHRONIZE, and REMOTE SETUP for
workflow initialization, INI to initialize the member, and as many chunks composed only
by its SIM job as we can simulate on each platform. The quantity, denoted as N in the
figure, will depend on the number of CPU hours granted by the project managers and the
CPU hours consumption of each SIM task.

Furthermore, trimming the generic tree makes it more apparent that simulation tasks
are vertically organized and can be easily combined into wrappers.

Local Setup

Synchronize

Remote Setup

Ini

Sim 1

Sim N

Chunk N

Chunk 1

Member 1

Start Date 1

Figure 3.2: Our custom Auto-EC-Earth3 workflow with a single startdate and member
and N chunks. Chunks have been simplified to be reduced to its minimum expression:

the simulation job.

3.2.4 Wrapping Auto-EC-Earth3

Our investigation requires applying task aggregation to the large computationally in-
tensive jobs we had previously mentioned: the SIM jobs. The wrapper size and policy
would vary on each experiment depending on the number of simulation jobs we are able
to execute in.

If we take the workflow in Figure 3.2 and group the SIM jobs into wrappers of, for
example, 4 jobs, also following the strict Autosubmit policy, the resulting workflow would
be as represented in Figure 3.3. The Autosubmit configuration required to set up this
specific wrapper is also shown in Code 3.1.
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Local Setup

Synchronize

Remote Setup

Ini

Sim 1

Sim N

Sim 2

Sim 3

Sim 4

Sim 5

Sim 6

Sim 7

Sim 8

Sim N-3

Sim N-2

Sim N-1

Member 1

Start Date 1

Wrapper 1 Wrapper 2 Wrapper
⌈
N
4

⌉

Figure 3.3: The custom workflow in Figure 3.2 with N chunks consisting solely by SIM
jobs split into 4 job wrappers.

[wrapper]

TYPE = vertical

JOBS_IN_WRAPPER = SIM

MIN_WRAPPED = 4

MAX_WRAPPED = 4

POLICY = strict

Code 3.1: Autosubmit wrapper configuration for the workflow in Figure 3.3.

3.3 Collecting metrics

Autosubmit records comprehensive details related to the workflow execution, including
the dispatch dates of tasks, how long they were in the queue, and the execution times,
in SQLite databases. The capability of Autosubmit to collect these data alleviates the
burden of collecting metrics manually.

For our research, we require not just the different times mentioned above, but also
keeping track of the status of the platform while our workflow is running. We will collect
three share parameters from the platform to represent the status of the platform. Although
Autosubmit does not offer a direct method to do it, it integrates an extended header
functionality that we can utilize to append a custom code snippet to the header of each
designated job.
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Then, to obtain these share parameters from the platform, we will write a script that
reads and appends them to a CSV file. Initially, the script will call sshare [44] to fetch
the three required metrics. This call to sshare will differ based on the platform and will
require specifying the user and the account for each.

The Code 3.2 contains a sshare command which filters by the three metrics susceptible
to be analyzed, without considering either the user or the account; thus, the amount of
information shown may vary by platform.

sshare --format=RawUsage,FairShare,LevelFS,Partition

Code 3.2: The sshare command to retreive all the usage, fairshare, and level fairshare
metrics from Slurm. The system administrator can restrict the information it returns.

It is important to note that the command output must be properly formatted according
to the HPC platform in order to correctly dump the parameters in the CSV file, considering
that the default output may vary depending on the Slurm version.

The remainder of the script should identify the currently running job’s name and link
it with a UTC timestamp. The UTC time simplifies the output understanding when
running in supercomputers across different time zones. Additionally, it will determine
the path to the CSV file to append the new entry. This can be achieved by utilizing the
environment variables that Autosubmit generates for its scripts; hence a deep examination
of Autosubmit’s source code is necessary. Finally, the data of each entry is appended to
the CSV file following the format “Job Name,Start Time,Raw Usage,Fair Share,Level FS”.

The complete bash script can be found in Code A.1 of Appendix A.

3.4 HPC Platforms

Auto-EC-Earth3 is a well-known workflow regularly used in production experiments
and, for this purpose, it is executed on a wide variety of HPC platforms. To increase the
reliability of our conclusions we will execute our simulations on various platforms where the
auto-model has been ported. Therefore, we will run simulations in MeluXina, HPC2020,
and both MareNostrum 4 and MareNostrum 5, although the latter will not be accessible
until shortly before the project’s conclusion.

Now that we know which platforms we will use, it is time to carefully prepare the
execution of the simulation platform. Each platform has its particularities, software stacks,
features, architecture, security restrictions, submission mechanisms, and even a long list
of known common errors for given applications, so we must adjust our experimentation to
each one. Moreover, we must keep in mind that resources are neither unlimited nor free,
so the scale of our experiments will have to be meticulously adjusted to the portion of the
account, or CPU hours, that the project managers allow us to use. Our simulations will
allocate a considerable amount of resources and will be remarkably extensive to accurately
evaluate the effects of task aggregation; therefore, we need to be very careful.

As an additional step, it is very important to take into account that Autosubmit
requires to be able to establish password-less connections to all the utilized platforms.
This can be done by creating a key pair and adding a new entry to our user’s .ssh/config
file, specifying the hostname, the port, the user, and the path to the key for authentication,
among other optional parameters following the example above:
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Host mn_login1

HostName glogin1.bsc.es

User [user]

IdentityFile ~/.ssh/id_rsa_mn

Code 3.3: Example of host entry inside the user’s .ssh/config file. It enables access to
the host as the specified user using its rsa key.

3.5 Experimentation

The methodology involves running one workflow with wrappers and another without,
which serves as a reference. To ensure that both the wrapped and reference experiments
begin under the same conditions – or Slurm share parameters, namely, fairshare 2.5.1 –,
they must be conducted simultaneously. Therefore, we will coordinate two user accounts
per platform, with each account running a single experiment.

In the subsequent sections, we will describe these supercomputing platforms, how we
managed to access them, the experiments to be run, and the different faced problems.

3.5.1 MareNostrum 4

Platform overview

MareNostrum 4 is a Spanish supercomputer that was operational from June 2017 to
April 2024. It belongs to a lineage of supercomputers that traditionally have been the most
powerful in Spain and have achieved notable positions in the TOP500 list, reaching 13th
place within that list after its launch1. The MareNostrum 4 supercomputer serves as an
excellent resource for conducting research and generating knowledge. It is utilized across
various fields, including physics, biomedicine, earth sciences, engineering, and industry.

The system includes a general-purpose partition containing 48 racks and 3,456 nodes,
each node being equipped with two Intel Xeon Platinum processors, having 24 cores each.
Together, the general purpose block sums up to 165,888 cores, capable of delivering up to
11.15 PetaFLOPS, or 11.15 × 1015 Floating Point Operations per Second. Furthermore,
there is a dedicated block for emerging technologies, which includes an MN4 CTE-Power
cluster equipped with IBM POWER9 processors and Nvidia Volta GPUs, an MN4 CTE-
AMD cluster with AMD Rome processors and AMD Radeon Instinct MI50 GPUs, and a
last MN4 CTE-ARM cluster featuring ARMv8 processors. [45]

MareNostrum 4 is the first platform we will use and there are many reasons that moti-
vate this decision. Firstly, we have previous experience [46] in running various workflows
on it through Autosubmit, so we already have knowledge about its operation. This ex-
perience will be particularly beneficial for troubleshooting issues that could arise during
executions. In addition, it is the most utilized among the scientists in the Department as it
is hosted by the BSC itself, and we can use the experience of our colleagues. The last, but
not least, is the fact that this project started in late February, when MareNostrum 5 was
almost ready for production, and MareNostrum 4 was reaching the end of its life cycle, so
it was a priority to get results as soon as possible, and it would be possible to try different
wrapping configurations if there is enough time. Finally, on April 26th MareNostrum 4
was powered off.

1https://www.top500.org/lists/top500/2017/06/. Last accessed: July 3, 2024
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This platform uses Slurm as its batch scheduler. MareNostrum 4 users report that in
certain periods, it can take a significant amount of time for tasks to be processed in the
MareNostrum 4 queues, sometimes more than a day. Figure 3.4 illustrates the reason by
representing the overall status of the jobs in the scheduler from 3rd to 24th August 2023.
Since queues are quite full, then, task aggregation should be notoriously beneficial on this
platform. We will check whether this hypothesis holds true, once both the queuing times
and the user’s share values are obtained.

Figure 3.4: Running and pending jobs at MareNostrum 4, from 3rd to 24th August 2023.
Graph by Giménez de Castro et al. [10] Data extracted from the BSC operation’s HPC

portal.

Available resources for our project

For the MareNostrum 4 supercomputer, which is managed by the BSC, we utilize the
computational budget of the Earth Sciences department to execute the simulations.

Experiment overview

As previously stated, for a fair comparison, we will have to run one workflow con-
currently with wrappers and one without them, which implies creating and configuring
two Autosubmit experiments that will be launched from two different user accounts. The
objective is for both experiments to begin with an analogous fairshare value to monitor
their progression as the tasks are launched, hence we will delay running any work on the
platform until we are certain that the experiments are entirely functional. One scheduling
advantage MareNostrum 4 offers for our research compared to other platforms is that the
fairshare value is reset at the beginning of each month. This reset ensures that our ini-
tial tasks can be placed in the queue as fairly as possible, maintaining parity with other
users in the group. Consequently, if at any time our experiments encounter errors and the
fairshare value becomes skewed between the two accounts, we can stop and restart the
experiments the following month to obtain more accurate results.

At the time of calculating the maximum experiment length we can afford for the avail-
able computing hours budget, on average, each simulation job SIM within this workflow
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will consume about 1,663.36 CHSY, or Core Hours per Simulated Year. Thus, for instance,
a 50-year simulation would require a total of 83,168 CPU hours. We believe that a 50-
year simulation should be adequate for share and performance metrics to demonstrate the
effects of task aggregation, whether its impact over queuing times is positive or negative.
These 50 years could be conveniently spread over 50 chunks of 12 months, so we could say
that each chunk consumes the cited CHSY, and we would comfortably remain under the
budget, leaving sufficient allowance to rerun single jobs or even fully rerun the simulations
in case of error.

The 50 chunks to be simulated can be divided into 5 wrappers of 10 jobs each. This
wrapper size should be large enough to observe significant improvements if our hypothesis
regarding vertical wrappers holds true. The wrapping policy will be flexible in order to
let Autosubmit decide when to wrap or what to do in case a job inside a wrapper fails.

Regarding errors, it is worth noting that, in parallel executions, it is quite common
for a node to occasionally fail during runtime, causing the task to fail as well. It is
important to consider this aspect when configuring the experiments, as a failure in one
of the 50 simulation tasks could lead to the downfall of the entire workflow. Fortunately,
Autosubmit provides a mechanism for retrials, enabling the restoration of the workflow
execution from the most recent successful task if an error occurs. Given the flexibility we
were provided, we will set the maximum number of retrials to 6 for our experiments on
MareNostrum 4, a deliberately overestimated value. For other platforms, the configured
number of retrials must be considered when determining the resources available for our
simulation. This is because the worst-case execution time, assuming 50 chunks of 12
months each, would be 50× CHSY × retrials+ 1.

In summary, we will perform one experiment that incorporates wrappers and another
without them, following the schema in Figure 3.2. The experiments will follow an Auto-
EC-Earth3 workflow with one of the most complex – and complete – configurations, the
T255L91-ORCA1L75-LIM3-PISCES-LPJG-TM5, divided into 50 chunks of 12 months.
The simulation jobs in the wrapped experiment will be organized into 5 wrappers with
10 jobs each, and the count of retrials will be set to 6. Each experiment is estimated to
require 83,168 CPU hours, totaling 166,336 CPU hours for both, excluding any retrial of
tasks that may fail incidentally.

Configuring and launching experiments

Every single operation on Autosubmit CLI will be performed from the Department’s
Autosubmit virtual machine, which contains environment modules for each Autosubmit
version. This is also a reminder that we need to determine which Autosubmit version ran
the test case we are copying from to ensure full compability. The test case we selected for
our experiments on MareNostrum 4 uses version 3.15.0b, so our experiments will also be
executed with that version. The command required to load that specific environment is
module load autosubmit/3.15.0b-foss-2015a-Python-2.7.9.

From now on, we will focus on creating and properly configuring the wrapped and
unwrapped experiments. In order to create the experiments using as base the selected
variation of the test case, we will use the autosubmit expid command as follows:

autosubmit expid -y a6bi -H marenostrum4 -d "My Auto-EC-Earth3 running

with wrappers on MareNostrum 4."↪→

autosubmit expid -y a6bi -H marenostrum4 -d "My Auto-EC-Earth3 running

without wrappers on MareNostrum 4."↪→
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Code 3.4: The autosubmit expid commands to create two new experiments based on a6bi
to be executed on MareNostrum 4.

The first command retrieved a new expid for which will be the wrapped experiment,
the a6zi. The process is the same for the unwrapped experiment, which has been named
a6zs.

Now, it is time to configure the experiments. The procedure will first be to configure
the a6zi wrapped experiment. As we introduced in Chapter 2.4.1, the experiments are
configured through the INI configuration files, and Table 3.2 details the modifications
applied to each to perform this task.

Configuration file Modifications

autosubmit a6zi.conf Defined the wrapper parameters over the SIM jobs, with a size
between 5 and 10 jobs, following a flexible policy. Code 3.5 de-
tails the configuration. Email notifications were also activated
in order to get notified when a job execution fails. The number
of retrials have been adjusted to 6.

expdef a6zi.conf Modified to define one unique startdate, 18500101, and a mem-
ber, fc0. Configured 50 chunks of 12 month each. Code 3.6 lists
the menctioned experiment-related configurations. The remain-
ing configurations were left as they was, such as the source Git
tag or the specific commit.

jobs a6zi.conf It hosted the complete job list of the workflow seen in Table
3.1, but it had to be pruned in order to have only the jobs
shown in Figure 3.2: LOCAL SETUP, SYNCHRONIZE, RE-
MOTE SETUP, INI and the SIM jobs. This task is not as
simple as it seems, because the interdependency definitions had
been had to be removed too, making necessary to change some
values in the proj a6zi.conf file.
Adding the path to the extended header was also necessary,
which will be placed in the project directory, inside the header
folder, after the sources have been downloaded.

platforms a6zi.conf Added the necessary HPC platforms to launch the experiment,
which are the MareNostrum 4 login node, which serves as dis-
patching node, and the data transfer node. Each individual
platform has some associated parameters such as the scheduler,
the project, the user, or even the queue, which have been left
as it was. Another parameter is the maximum wall clock time
(MAX WALLCLOCK ), which defines how long the resources
will be allocated for the job. This duration is set to 48 hours,
and if a job runs beyond this limit, Slurm will terminate it.

proj a6zi.conf Disabled several flags associated with the jobs that were deleted
recently.

Table 3.2: Changes applied to the configuration files of the a6zi (wrapped) experiment in
MareNostrum 4.
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[wrapper]

TYPE = vertical

JOBS_IN_WRAPPER = SIM

MIN_WRAPPED = 5

MAX_WRAPPED = 10

POLICY = flexible

Code 3.5: The wrapping configuration
for the a6zi experiment in

MareNostrum 4.

[experiment]

DATELIST = 18500101

MEMBERS = fc0

CHUNKSIZEUNIT = month

CHUNKSIZE = 12

NUMCHUNKS = 50

CALENDAR = standard

Code 3.6: The experiment configuration
for a6zi in MareNostrum 4.

Once the configuration for a6zi is finished, it is time to apply the same modifications
to the a6zs experiment, except for the wrapper configuration shown in Code 3.5. Then,
we can run the autosubmit create command to prepare our workflows for execution. Au-
tosubmit will fetch the project sources and generate the job scripts that will be submitted
to the remote platform, including the wrapper scripts for a6bi. These commands are listed
as follows:

autosubmit create -cw a6zi

autosubmit create a6zi

Code 3.7: The autosubmit create commands to create the a6bi and a6bs experiments.
The “-cw” flag is used to indicate Autosubmit that our experiment will use wrappers.

Since these workflow uses githooks, we had to load the updated Git module. Moreover,
due to the use of submodules in EC-Earth to point to the different model and workflow
components, we also had to configure the Git credential cache to prevent repeated authen-
tication requests.

To monitor user share metrics in the Slurm scheduler using the extended header, we
need to adjust the script found in Appendix A to run the sshare command as shown in
Code 3.8. This command retrieves the necessary metrics for the current user without
needing to specify an account, since our MareNostrum 4 users are associated with only
one account. The custom implementation of the script for MareNostrum 4 will be placed
within the header folder inside the proj directory.

sshare --format=RawUsage,FairShare,LevelFS -h -P -U

Code 3.8: The sshare command adjusted to MareNostrum 4.

After confirming that the Autosubmit virtual machine can establish password-less
connections to the platforms specified in platforms.conf, the experiments can be executed.
This involves using the nohup and autosubmit run commands together. The nohup com-
mand allows the process to run in the background, remaining active even if the console
session ends, and logs the output to a file. The autosubmit run command will start the
workflow execution.

nohup autosubmit run a6zi &

nohup autosubmit run a6zs &

Code 3.9: The autosubmit run commands to start the workflow execution, for both a6bi
and a6bs experiments.
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Experiments finalization

After several 168,170.45 CPU hours of simulation, both experiments finished success-
fully. Since clean-related jobs were removed from the workflow, we need to delete all
experiment-related files and directories on the remote platform, as its file system is in-
tended only for temporary data storage. Prior to this, we must gather all the logs and
CSV files generated by our header script containing the shared metrics. Both experiments
occupied more than 8 TB:

[user1]@login0:-> du -hs /gpfs/scratch/[proj]/[user1]/a6zi/*

4,0T /gpfs/scratch/[proj]/[user]/a6zi/18500101

...

[user2]@login0:-> du -hs /gpfs/scratch/[proj]/[user2]/a6zs/*

4,0T /gpfs/scratch/[proj]/[user]/a6zs/18500101

...

Code 3.10: Size of the experiment output for both a6bi and a6bs in MareNostrum 4.

Exploring different wrapping configurations

Although the results obtained from the previous simulations are sufficient to draw
our conclusions, given that we have enough margin to conduct additional experiments, it
would be beneficial to conduct a new simulation with a different wrapping configuration,
for example, by varying the size from 10 to 5 jobs, a reduction that should allow us to
appreciate upward variations in queuing times because the jobs sent are smaller. This
involves replicating some of the steps previously performed, just altering the reference
experiments to our own and modifying the wrapping configuration in the autosubmit.conf
file of the experiment to be wrapped as follows:

[wrapper]

TYPE = vertical

JOBS_IN_WRAPPER = SIM

MIN_WRAPPED = 2

MAX_WRAPPED = 5

POLICY = flexible

Code 3.11: Another possible wrapping configuration for the wrapped experiment in
MareNostrum 4.

With the updated configuration, the experiment without wrappers will be a duplicate
of a6zs, while the wrapped one will be identical to a6zi except for the modification we made
to the parameter MAX WRAPPED, which represents the maximum size of the wrapper.
However, after running the experiments, a general disk usage issue emerged over the
weekend of April 21. The hard quota limit for our department’s partition was surpassed,
causing numerous experiments to fail, including ours. The disk usage is illustrated in the
graph below, which shows the historical occupancy data, clearly highlighting the source
of our errors.
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Figure 3.5: esarchive partition occupation history, until the MareNostrum 4 power-off.
Graph from [47].

After this, and considering the imminent shutdown date of MareNostrum 4 on April
26th, we opted to discontinue these additional experiments since there wouldn’t be suffi-
cient time to conduct them.

3.5.2 MeluXina

Platform overview

MeluXina is Luxembourg’s LuxProvide supercomputing project and a part of the Eu-
roHPC JU supercomputers. It is built upon the EVIDEN BullSequana XH2000 architec-
ture. This heterogeneous system is notable for its accelerated module’s peak performance
of 10.52 PetaFLOPS, featuring 200 nodes each equipped with 2 AMD Rome CPUs with 32
cores and 4 NVIDIA A100-40 GPUs. The cluster module includes 573 nodes with 2 AMD
Rome CPUs, each with 64 cores. Additional modules comprise a secondary accelerator
module with 20 FPGA nodes, a cloud module with 20 cloud VM host nodes, a storage
module, and a Large Memory module designed for memory-intensive workloads, similar
to typical CPU nodes. [48]

Upon its release in June 2021, its performance secured the accelerated module the 36th
position on the TOP500 list2.

Through a brief examination of previous experiments executed on this platform by
other users, we noted that tasks dispatched to the scheduler are executed shortly after
being queued. Feedback from colleagues also indicates that queues in MeluXina are gen-
erally not very full. Therefore, although we anticipate a decrease in queue times after
applying our task aggregation method, we do not expect significant changes.

2https://top500.org/lists/top500/2021/06/. Last accessed: July 3, 2024
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Available resources for our project

In the case of MeluXina, our two experiments will have to fit within a budget of a total
of 200,000 CPU hours. This is a strict limit, so we must plan as precisely as possible how
we want to use the machine.

Experiment overview

In the same way as in MareNostrum 4, our experimentation will be based on creating
two Auto-EC-Earth3 experiments that will be launched to the remote platform at the
same time. In the case of MeluXina, the fairshare value is never reset, so we must be
careful not to launch any task prior to the execution of our workflows so that they start
in as similar conditions as possible.

This time, the experiments will be based on a simplified MeluXina-specific test case
called T255L91-ORCA1L75-LIM3. Again, T255L91 and ORCA1L75 refer to the grid
resolution of the IFS and NEMO models, and LIM3 will run as part of the ocean model.
The expid of this reference experiment is t0d8.

Considering that we have a budget of 100,000 CPU hours per experiment, we must
calculate how many chunks we can run on this platform. This test case consists of a single
startdate, a single member, and two chunks simulating 1 month. Each chunk takes an
average of 7 minutes and 1 second to execute, i.e. 421 seconds. We want to simulate
12-month chunks, so that the size of the jobs submitted to the platform is large enough
to appreciate the benefits of task aggregation on queue times.

Firstly, it is necessary to calculate the CPU hours required for each simulated chunk.
The formula below will be used for this purpose. The number of processors, which is set
to 1280, is derived from the test case parameters. Then,

Core Hours Per Chunk = Processors · Texecution · ChunkSizeNew

ChunkSizeOld

Core Hours Per Chunk = 1280 · 421 · 1 hour

3600 seconds
· 12
1

Core Hours Per Chunk = 1, 796.27

This means that in the best-case scenario, without counting possible failures in the
execution of the jobs, we could execute up to 55 chunks within our budget:

Max Runnable Chunks =

⌊
100, 000

1, 796.27

⌋
= 55

Ideally, we aim to divide the 50 chunks into groups of 10 jobs each, maintaining consis-
tency between different platform experiments. Opting for this setup results in a minimal
margin for job retrials. Considering the success rate in MareNostrum 4, this configuration
is viable, but extreme caution and regular monitoring are required in order to halt both
processes if an error occurs and resume their execution when the problem is solved.

In summary, we will execute two Auto-EC-Earth3 workflows utilizing a T255L91-
ORCA1L75-LIM3 setup. Each workflow will have one startdate and one member simulat-
ing 50 chunks of 12 months each. The simulation tasks will be organized into wrappers of
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10 tasks, with a minimum of 5, following the flexible Autosubmit policy. It is anticipated
that the combined cost of the two experiments will remain near the budget of our project.

Configuring and launching experiments

We will once again employ the Autosubmit virtual machine to create and execute our
experiments. However, this time we need to load the module for Autosubmit version
3.15.14 along with the appropriate Git version.

After preparing the environment, we can proceed to create the experiments. For
simplicity, we will first set up the experiment using wrappers, and once configured, we
will create the experiment without wrappers to avoid having to apply the configuration
twice. The command for creating the experiment with wrappers is provided below:

autosubmit expid -y t0d8 -H meluxina -d "My Auto-EC-Earth3 running with

wrappers on MeluXina."↪→

Code 3.12: The autosubmit expid command to create the wrapped experiment based on
t0d8 to be executed on MeluXina.

Autosubmit has returned the expid a72x for our experiment. We can now start mod-
ifying the configuration files:

Configuration file Modifications

autosubmit a72x.conf Defined the wrapper policy indicated in Code 3.13 for the SIM
jobs. For this experiment, the policy has been established as
flexible, with a wrapper size ranging from 5 to 10 jobs. The
number of retrials has been reduced to 2, and email notifications
have also been activated.

expdef a72x.conf As listed on Code 3.14, a unique startdate, 19900201, a mem-
ber, fc00, and 50 chunks of 12 months each have been defined.

jobs a72x.conf All the overhead tasks had been removed, and its dependencies
undone as we did for MareNostrum 4, leaving only the jobs in
Figure 3.2, i.e., the initialization and the SIM tasks. The loca-
tion of the extended header has also been indicated and will be
placed in the same directory that was specified for MareNos-
trum 4.

platforms a72x.conf The platforms were already set up correctly, so we only needed
to update the usernames and remove the platforms we will not
use.

proj a72x.conf Disabled several flags associated with the jobs previously
deleted.

Table 3.3: Changes applied to the configuration files of the a72x (wrapped) experiment
in MeluXina.
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[wrapper]

TYPE = vertical

JOBS_IN_WRAPPER = SIM

MIN_WRAPPED = 5

MAX_WRAPPED = 10

POLICY = flexible

Code 3.13: The wrapping configuration
for the a72x experiment in MeluXina.

[experiment]

DATELIST = 19900201

MEMBERS = fc00

CHUNKSIZEUNIT = month

CHUNKSIZE = 12

NUMCHUNKS = 50

CALENDAR = standard

Code 3.14: The experiment
configuration for a72x in MeluXina.

With the experiment with wrappers properly configured, we can execute the following
Autosubmit command to generate the experiment without wrappers.

autosubmit expid -y a72x -H meluxina -d "My Auto-EC-Earth3 running without

wrappers on MeluXina."↪→

Code 3.15: The autosubmit expid command to create the unwrapped experiment based
on a72x to be executed on MeluXina.

Autosubmit returned the expid a74v for this experiment. The only change needed in
its configuration files is to remove the Code segment 3.13 from autosubmit a74v.conf to
disable the wrappers.

Once the modification is done, we can create the experiment with autosubmit create,
as indicated in Code 3.16.

autosubmit create -cw a72x

autosubmit create a74v

Code 3.16: The autosubmit create commands to create the a72x and a74v experiments.

Similarly to the MareNostrum 4 experiments, it is necessary to copy the extended
header script to the directory specified in the configuration. The script is the same as
the one shown in Appendix A, considering that an account may be linked to multiple
accounts. The sshare command construction will require indicating the account ID.

After making sure that the virtual machine can access MeluXina via SSH without a
password, we can launch the experiments:

nohup autosubmit run a72x &

nohup autosubmit run a74v &

Code 3.17: The autosubmit run commands to start the workflow execution, for both
a72x and a74v experiments.

Experiments finalization

Experiments on MeluXina required less execution time, and when both experiments
were completed, it was necessary to clean up the experiments-related files on the remote
file system, which occupied more than 6 TB in total.
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[[user1]@login03 -]$ du -hs /project/scratch/[proj]/[user1]/a72x/*

3.1T /project/scratch/[proj]/[user1]/a72x/19900201

...

[[user2]@login03 -]$ du -hs /project/scratch/[proj]/[user2]/a74v/*

3.1T /project/scratch/[proj]/[user2]/a74v/19900201

...

Code 3.18: Size of the experiment output for both a72x and a74v in MeluXina.

In total, the combined CPU hours used for both experiments amounted to 150,221.02.

3.5.3 ECMWF HPC2020

Platform overview

HPC2020 is a cluster of the European Centre for Medium-Range Weather Forecasts
located in a data center in Bologna, Italy. It is a general purpose cluster with a compute
partition with 7,488 nodes with AMD Epyc Rome processors, totaling 128 cores per node,
organized in Bull Sequana XH2000 high-density racks, and another “General Purpose and
Interactive Login” partition with 208 nodes running at slightly higher frequency and with
more memory per node than normal compute nodes. [49]

Setting up this platform involved configuring TOTP (Time-based One-Time Password)
for our ECMWF user as a two-factor authentication mechanism. The platform’s login
nodes can be accessed through the Teleport software, which provides an SSH Jump Host
and single sign-on, although it requires re-authentication every 12 hours. Teleport will
enable us to access HPC2020 through an ECMWF gateway in Bologna, jump.ecmwf.int.

Furthermore, even though this platform also employs Slurm as its workload manager,
tasks need to be submitted through a proprietary service called ECaccess, which relies on
a certificate that is valid for one week and can be generated by the user with TOTP.

Just as we did in the case of MeluXina, we reviewed old experiments that other users
ran on HPC2020, and the queue times, again, are relatively low, so it is expected that the
queues are not very full and that the use of wrappers will not have much impact on queue
times.

Available resources for our project

Due to the high demand for this platform, we had to delay the experiments several
times. Eventually, we received a total budget of 1 million SBUs, or System Billing Unitss.
One CPU hour equals 17.06 SBU.

Then, we can use 500,000 SBUs for each experiment, that is, 29,308.32 CPU hours.

Experiment overview

Again, the goal is to run two experiments with and without wrappers synchronously.
As with MeluXina, since the fairshare is not reset periodically, we will have to be careful
not to send tasks to the machine prior to execution.

Taking into account that our budget for this platform is much lower than for the others,
we will take as a reference a simplified test case like the MeluXina one, but specific for this
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platform. It will be the same Auto-EC-Earth3 configuration, the T255L91-ORCA1L75-
LIM3, with expid t0d9.

To calculate the number of 12-month chunks we can run, we just need to know the
average chunk execution time, 1980 seconds, the chunk size, which would be 1 month, and
the number of processors we will allocate for our SIM jobs. In this case, 768 processors.
Substituting these values in the formula defined in Section (3.5.2), we have:

Core Hours Per Chunk = 768 · 1980 · 1 hour

3600 seconds
· 12
1

Core Hours Per Chunk = 1, 267.20

Then, in the best case, if we do not have any failures, we will be able to run up to 23
chunks.

Max Runnable Chunks =

⌊
29, 308.32

1, 267.20

⌋
= 23

The final decision was to run 25 12-month chunks for each experiment, which would
allow us to have 5 wrappers of 5 SIM jobs without exceeding the budget too much. Of
course, it is imperative to properly monitor the experiment to stop it in case of failure,
correct it, and resume execution.

So, in summary, we will run two experiments based on a simplified Auto-EC-Earth3
configuration, the T255L91-ORCA1L75-LIM3. They will have a single startdate, member
and 25 chunks of 12 months of simulation. Simulation tasks will be grouped in 5 wrappers
of 5 jobs each. The number of retrials will be kept at 2, as in MeluXina.

Configuring and launching experiments

In this case, we will not launch the experiments from the Autosubmit virtual machine,
as it does not have the software required to submit jobs to HPC2020. Instead, we will use
a hub machine of the department. The reference test case operates on Autosubmit version
3.15.14, which requires loading the corresponding module, along with the appropriate
Git version and the ECaccess module. This process includes authenticating through the
module to generate a connection certificate, valid for one week. Now, we can proceed to
create the experiments using the same approach as in MeluXina: we will first generate
the experiment with wrappers and then clone it. The command to create the experiment
with wrappers is as follows:

autosubmit expid -y t0d9 -H ecmwf-hpc2020 -d "My Auto-EC-Earth3 running

with wrappers on HPC2020."↪→

Code 3.19: The autosubmit expid command to create the wrapped experiment based on
t0d9 to be executed on ECMWF HPC2020.

This command returned a new expid for our experiment, a76w, and created its direc-
tory structure. With this, we can move on to the configuration:
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Configuration file Modifications

autosubmit a76w.conf The wrapping policy is the one illustrated in Code 3.20. It is
a strict policy, with wrappers on the SIM jobs with a size of 5
jobs. A strict policy has been established because, considering
the scale of the experiment, we need to ensure that Autosubmit
does not dispatch wrappers smaller than the desired size so that
we can appreciate the improvements. Retrials have been limited
to 2 attempts, and email alerts have also been enabled.

expdef a76w.conf A startdate, 18500101, a member, fc00, and 25 chunks of 12
months have been defined. The specific configuration is repre-
sented in the Code 3.21.

jobs a76w.conf All unnecessary tasks and their dependencies have been elim-
inated, leaving only the workflow initialization and simulation
tasks. Additionally, the extended header has been set up for
the SIM jobs.

platforms a76w.conf Since the platforms were already configured, it was only neces-
sary to change the user names. It should be noted that in the
case of the ecmwf-hpc2020 platform, it was necessary to explic-
itly indicate that jobs must be submitted with the ECaccess
software. We can see a reduced version of this configuration in
Code 3.22.

proj a76w.conf Disabled several flags associated with the jobs previously
deleted.

Table 3.4: Changes applied to the configuration files of the a76w (wrapped) experiment
in ECMWF HPC2020.

[wrapper]

TYPE = vertical

JOBS_IN_WRAPPER = SIM

MIN_WRAPPED = 5

MAX_WRAPPED = 5

POLICY = strict

Code 3.20: The wrapping configuration
for the a76w experiment in ECMWF

HPC2020.

[experiment]

DATELIST = 18500101

MEMBERS = fc00

CHUNKSIZEUNIT = month

CHUNKSIZE = 12

NUMCHUNKS = 25

CALENDAR = standard

Code 3.21: The experiment
configuration for a76w in ECMWF

HPC2020.

[ecmwf-hpc2020]

TYPE = ecaccess

VERSION = slurm

...

Code 3.22: Reduced ecmwf-hpc2020 platform configuration for the a76w experiment in
ECMWF HPC2020.

After setting up the experiment with wrappers, we can create the reference experiment
using the Autosubmit command below:

autosubmit expid -y a76w -H ecmwf-hpc2020 -d "My Auto-EC-Earth3 running

without wrappers on HPC2020."↪→
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Code 3.23: The autosubmit expid command to create the wrapped experiment based on
a76w to be executed on ECMWF HPC2020.

The expid for this new experiment is a773. Before running it, we need to delete the
Code 3.20 section from the file autosubmit a773.conf. After that, both experiments can
be launched.

autosubmit create -cw a76w

autosubmit create a773

Code 3.24: The autosubmit create commands to create the a72x and a74v experiments.

To track the platform’s status during execution, the header script will be copied to the
directory specified in the configuration. This script is a variation of the one in A, which
runs the same Slurm command, but handles the output differently, because this platform
uses a different version of Slurm.

After ensuring that the ECaccess certificate is valid, we can proceed to run the exper-
iments.

nohup autosubmit run a76w &

nohup autosubmit run a773 &

Code 3.25: The autosubmit run commands to start the workflow execution, for both
a72x and a74v experiments.

Experiments finalization

Even though the experiments were properly configured, an unidentified error in Au-
tosubmit prevented the creation of wrappers, resulting in the tasks being submitted in-
dividually to the platform. This bug cannot be resolved on time, thus we have opted to
suspend these experiments and defer their execution for the future.

3.5.4 MareNostrum 5

Platform overview

MareNostrum 5 is currently one of the 3 pre-exascale supercomputers of the EuroHPC
JU [3], and the latest version of a family of state-of-the-art supercomputers that began in
2004. In April 2024, it officially replaced MareNostrum 4, which is also the subject of study
in this investigation (see 3.5.1). It has reaffirmed its status as the leading supercomputer
in Spain and has even been ranked among the 3 most powerful supercomputers in Europe.
Worldwide, it entered the TOP500 for the first time in the list of November 20233, and
its accelerated partition (ACC) secured the 8th position and continues to hold it, while
its general-purpose partition (GPP) achieved the 19th position. With its heterogeneous
architecture, the applications inherited from its predecessor can be expanded to include
fields such as medicine, the creation of digital twins of the Earth and the human body,
artificial intelligence, or deep learning.

3https://top500.org/lists/top500/list/2023/11/. Last accessed: July 2, 2024
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MareNostrum 5 consists of multiple partitions, with the main one being the general-
purpose partition (MareNostrum 5 GPP), featuring 6408 standard nodes each equipped
with two Intel Sapphire Rapids processors with 56 cores each, which translates into 112
cores per node. Furthermore, there are 72 High Bandwidth Memory (HBM) nodes,
each also with 112 cores per node. This partition achieves a peak performance of 45.9
PetaFLOPS. The accelerated partition (MareNostrum 5 ACC) comprises 1120 nodes, each
containing 2 Intel Sapphire Rapids processors and 4 Nvidia Hopper GPUs, achieving a
peak performance of 260 PetaFLOPS. There are other smaller compute partitions desti-
nated to pre- or post-process, or to Next Generation Technologies: the NGT ACC and
the NGT GPP partitions, this last one made up of 408 Nvidia Grace ARM processors.

Available resources for our project

As in the MareNostrum 4 supercomputer, which was also managed by the BSC, we
will utilize the computational budget of the Earth Sciences department to execute the
simulations on MareNostrum 5.

Experiment overview

Experimentation on this platform will also consist of running two experiments simul-
taneously. One of the administrative distinctions with respect to MareNostrum 4 is that
the fairshare value is never reset. Consequently, similar to previous platforms, we need to
be especially cautious to avoid running any job in either of the two accounts that will run
the experiments.

In this case, instead of using the regular test cases, the experiments will utilize a
specific test case for MareNostrum 5, which is still being set up by one of the Auto-EC-
Earth3 auto-modelers. This is because the porting of the auto-model to this platform is
still ongoing. The experiment is the t0n4 and operates with a T255L91-ORCA1L75-LIM3
configuration.

Using this test case as a base experiment, we will conduct simulations consisting of
40 chunks, each simulating 12 months, organized into 4 wrappers of 10 jobs. The retrial
count can once again be adjusted to 6.

Configuring and launching experiments

Following the methodology of the previous platforms, we will load the corresponding
Autosubmit version in the virtual machine, in this case, version 3.15.18, alongside the
Git module with the correct version to prevent problems during download, like those
experienced with MareNostrum 4. We will first create the experiment with wrappers and
then replicate it to use it as a reference experiment.

autosubmit expid -y t0n4 -H marenostrum5 -d "My Auto-EC-Earth3 running

with wrappers on MareNostrum 5."↪→

Code 3.26: The autosubmit expid command to create the wrapped experiment based on
t0n4 to be executed on MareNostrum 5.

autosubmit expid returned theexpid a7d4 for our experiment. Once created the exper-
iment, we can proceed to the configuration:
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Configuration file Modifications

autosubmit a7d4.conf Added the wrapping policy in Code 3.27. It is flexible, with
wrappers of 5 to 10 SIM jobs. The count of retrials have been
adjusted to 6, and email notifications have been also set up.

expdef a7d4.conf Defined a startdate, 19900201, a member, fc00, and 40 chunks
of 12 months have been defined, as the Code 3.28 indicates.

jobs a7d4.conf Deleted both extra jobs and their dependencies. The extended
header has also been configured for the SIM jobs.

platforms a7d4.conf The platforms were already configured, only the usernames
needed to be modified.

proj a7d4.conf Disabled several flags associated with the jobs previously
deleted.

Table 3.5: Changes applied to the configuration files of the a7d4 (wrapped) experiment
in MareNostrum 5.

[wrapper]

TYPE = vertical

JOBS_IN_WRAPPER = SIM

MIN_WRAPPED = 5

MAX_WRAPPED = 10

POLICY = flexible

Code 3.27: The wrapping configuration
for the a7d4 experiment in

MareNostrum 5.

[experiment]

DATELIST = 19900201

MEMBERS = fc00

CHUNKSIZEUNIT = month

CHUNKSIZE = 12

NUMCHUNKS = 50

CALENDAR = standard

Code 3.28: The experiment
configuration for a7d4 in MareNostrum

5.

Once the experiment with wrappers has been set up, we can create the unwrapped
experiment with the following Autosubmit command:

autosubmit expid -y a7d4 -H ecmwf-marenostrum5 -d "My Auto-EC-Earth3

running without wrappers on MareNostrum 5."↪→

Code 3.29: The autosubmit expid command to create the wrapped experiment based on
a7d4 to be executed on MareNostrum 5.

The new expid is a7d5. It is necessary to delete the wrapper-specific configuration
from its autosubmit a7d5.conf file. Once that is done, both experiments can be initiated.

autosubmit create -cw a7d4

autosubmit create a7d5

Code 3.30: The autosubmit create commands to create the a7d4 and a7d5 experiments.

To collect Slurm share metrics, the header script will be placed in the directory defined
in the configuration. This script will be the same as the one used for MareNostrum 4, in
which specifying the account was not necessary. At this point, we are ready to launch the
experiments.
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nohup autosubmit run a7d4 &

nohup autosubmit run a7d5 &

Code 3.31: The autosubmit run commands to start the workflow execution, for both
a7d4 and a7d5 experiments.

Experiments finalization

After the successful completion of both simulations, it was necessary to remove the
files related to our experiments from scratch, which needed nearly 5 TB of space.

[[user1]@glogin1 -]$ du -hs /gpfs/scratch/[proj]/[user1]/a7d4/*

2.6T /gpfs/scratch/[proj]/[user1]/a7d4/19900201

...

[[user2]@glogin1 -]$ du -hs /gpfs/scratch/[proj]/[user2]/a7d5/*

2.6T /gpfs/scratch/[proj]/[user2]/a7d5/19900201

...

Code 3.32: Size of the experiment output for both a7d4 and a7d5 in MareNostrum 5.

In total, both experiments required a total of 105,181.20 CPU hours to execute.
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Experimentation results

In this chapter, we will present and discuss the results obtained from our experi-
ments with the Auto-EC-Earth3 workflow, comparing scenarios with and without wrap-
pers across MareNostrum 4, MeluXina, and MareNostrum 5. No results are available for
HPC2020 as we were unable to properly run the wrapped experiment on that platform.

4.1 MareNostrum 4

Platform status

The header script executed before each simulation task (A.1) has given us insightful
information about the scheduling factors of the user. The figure 4.1, derived from the data
in Tables B.1 and B.2 found in Appendix B, represents the progression of the fairshare
value throughout the execution of the workflow on one side, and on the other side, the
Raw Usage, or the utilization in core seconds, of our tasks for both users.

Figure 4.1: Fair Share and Raw Usage of Auto-EC-Earth3
T255L91-ORCA1L75-LIM3-PISCES-LPJG-TM5. Simulating 50 chunks of 12 months

each. Results for MareNostrum 4.

The graph shows nearly identical fairshare and raw usage values for the two accounts
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involved in the experiments, starting at an elevated value. Although there is a usage
of approximately 3 × 108 core seconds, this utilization does not significantly impact the
fairshare value, which does not decrease as much as expected. This indicates that our
usage is considerably lower relative to the other members of our group and the rest of the
machine.

Several peaks in the evolution of fairshare have been identified. Each peak, considering
the significant increase in the value, indicates that some other group used more resources
than they should with respect to ours.

Queuing times

Data from the Autosubmit database reveal that the total queuing time for the experi-
ment using wrappers is 15577 seconds (4.33 hours), while the reference experiment, which
does not use wrappers, has a queuing time of 173973 seconds (2.01 days). To evaluate
the actual improvement gained in the queueing times of the experiment with wrappers
compared to the reference experiment, represented in Figure 4.2, we can determine the
SpeedUp:

SpeedUp =
Tunwrapped

Twrapped
=

173973

15577
= 11.17

The time required to queue all tasks in the experiment without wrappers is 1116,86%
greater than the total queueing time for the experiment where we used the task aggregation
technique. Figure 4.2 clearly represents this improvement.

Figure 4.2: Total queue times for the a6zi (wrapped) and a6zs (unwrapped) experiments
in MareNostrum 4. The Auto-EC-Earth3 configuration was

T255L91-ORCA1L75-LIM3-PISCES-LPJG-TM5, simulating 50 chunks of 12 months
each.
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4.2 MeluXina

In the case of MeluXina, in Figure 4.3, we can observe how the values of fairshare and
raw usage follow roughly the same pattern for both the user that runs with the wrappers
and the one that runs the reference experiment.

Both experiments begin with nearly the same share values for each user. The initial
value of fairshare is quite high, which means that our group in the machine does not use
it as much as in MareNostrum 4.

In this case, machine usage, which accumulates over 5×108 core seconds per experiment
at the end, influences the value that the fair share acquires during the runtime. The
decrease in the fair share is an indicator that we are making an intensive use of the
machine compared to the rest of the users of our group, leading Slurm to penalize us to
allow them to execute their jobs.

Platform status

Figure 4.3: Fair Share and Raw Usage of Auto-EC-Earth3 T255L91-ORCA1L75-LIM3.
Simulating 50 chunks of 12 months each. Results for MeluXina.

Queuing times

The aggregated queue times for the experiments with and without wrappers executed
in MeluXina are 81 and 971 seconds, respectively. Calculating the SpeedUp will allow us
to quantify the benefit of implementing task aggregation on this workflow:

SpeedUp =
Tunwrapped

Twrapped
=

971

81
= 11.99

We can see this gain in Figure 4.4.
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Figure 4.4: Total queue times for the a72x (wrapped) and a74v (unwrapped)
experiments in MeluXina. The Auto-EC-Earth3 configuration was

T255L91-ORCA1L75-LIM3, simulating 50 chunks of 12 months each.

4.3 MareNostrum 5

Platform status

Figure 4.5 represents the share values before starting the simulation jobs in the Auto-
EC-Earth3 workflows executed on MareNostrum 5.

Figure 4.5: Fair Share and Raw Usage of Auto-EC-Earth3 T255L91-ORCA1L75-LIM3.
Simulating 40 chunks of 12 months each. Results for MareNostrum 5.
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The first thing to note about these results is that neither the fairshare nor the raw
usage start with similar values. The user who ran the workflow without wrappers exhibits
greater raw usage and a reduced fairshare, indicating prior utilization of the machine.
Despite this, we can see that both users’ utilization tend to follow the same pattern.

The initial fairshare value is very low compared to what we have observed on the
other platforms, indicating that our group is using less of the machine than some other
group. Moreover, the decreasing trend in fairshare as we utilize the machine means that
our workload is higher than that of other users.

For a period, Slurm boosted our fairshare, likely due to the starting of resource-
intensive jobs in other groups. However, after several hours, the machine load increased
beyond the level it was at before the boost and fairshare starts to decline following the
original trajectory.

Queuing times

Figure 4.6: Total queue times for the a7d4 (wrapped) and a7d5 (unwrapped)
experiments in MareNostrum 5. The Auto-EC-Earth3 configuration was

T255L91-ORCA1L75, simulating 40 chunks of 12 months each.

Figure 4.6 illustrates a notable reduction in queue times for the wrapped experiment
compared to the reference. The aggregated queue times are 141 and 1598 seconds for each
respective experiment. The SpeedUp, which is 11.33, further demonstrates the substantial
enhancement in queuing times achieved through wrapping.

SpeedUp =
Tunwrapped

Twrapped
=

1598

141
= 11.33
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Conclusions and future work

Conclusions

In this study, we analyzed how task aggregation affects queueing times using workflows
based on Auto-EC-Earth3. The range of platforms and model configurations, particularly
of EC-Earth3, permitted the submission of jobs of different sizes to platforms with very
different levels of utilization, allowing us to evaluate different scenarios separately.

Our experimental results show that the total queue times for an experiment utilizing
vertical wrappers are 11 to 12 times shorter compared to an experiment without them. This
finding is consistent across all three platforms that we tested, which had very different
resource availability, as evidenced by the graphs in Chapter 4 derived from the share
metrics in Appendix B.

It has also been observed that machine occupancy affects the overall queue time pro-
portionally for both wrapped and unwrapped workflows. Therefore, users might not notice
significant improvements, as seen with MeluXina and MareNostrum 5, where even a sub-
stantial relative gain amounts to less than half an hour for workflows exceeding 2 days
in duration. Conversely, in the case of MareNostrum 4, the same gain results in nearly 2
days saved, which users will appreciate.

Therefore, using vertical wrappers will always result in a major improvement that can
lead to a varying degree of reduction in queue time, and consequently, the overall workflow
execution time, based on the machine’s resource availability and workload.

Future work

After assessing the impact of task aggregation techniques on a range of top-tier super-
computers across Europe, we have sufficient information to start the development of an
automated decision-making policy within the Autosubmit workflow manager.

This policy should evaluate, prior to generating the jobs for submission to the remote
Slurm scheduler, whether the kind of wrapper selected and the state of the user scheduling
factors for a specific user and queue allow accelerating the workflow execution, as using
vertical wrappers reduces queue times and, consequently, the overall execution time.

Once implemented in production, it is anticipated to significantly boost the production
efficiency for the Department or any research group opting to use the new functionality.
It should be noted that Autosubmit is employed beyond just the Earth Sciences Depart-
ment at the BSC, meaning that any enhancements at its scheduling level will benefit the
experiments conducted by all its users, even from other institutions.

43



Bibliography

[1] Tirthak Patel et al. “Job Characteristics on Large-Scale Systems: Long-Term Anal-
ysis, Quantification, and Implications”. In: SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. 2020, pp. 1–17. doi:
10.1109/SC41405.2020.00088.

[2] “TOP500”. url: https://top500.org/. Last accessed: June 30, 2024.

[3] “Our supercomputers - European Union”. url: https://eurohpc-ju.europa.eu/
supercomputers/our-supercomputers. Last accessed: July 2, 2024.

[4] Jörn Hoffmann et al. “Destination Earth – A digital twin in support of climate
services”. In: Climate Services 30 (2023), p. 100394. issn: 2405-8807. doi: 10.1016/
j.cliser.2023.100394.

[5] Chenyu Tang et al. “A roadmap for the development of human body digital twins”.
In: Nature Reviews Electrical Engineering 1.3 (2024), pp. 199–207. issn: 2948-1201.
doi: 10.1038/s44287-024-00025-w. url: https://doi.org/10.1038/s44287-
024-00025-w.

[6] Sergi Palomas Martinez. “Automatic load-balance method for coupled Earth System
Models”. Master thesis. UPC, Facultat d’Informàtica de Barcelona, Departament
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Computer Science, vol 14283. Ed. by Klusáček Dalibor, Julita Corbalán, and Rodrigo
Gonzalo P. Cham: Springer Nature Switzerland, 2023, pp. 3–23. doi: 10.1007/978-
3-031-43943-8.

[34] “Slurm Workload Manager - slurm.conf”. url: https://slurm.schedmd.com/
slurm.conf.html. Last accessed: June 30, 2024.

[35] Njoud O Almaaitah et al. “Performance-driven scheduling for malleable workloads”.
In: The Journal of Supercomputing 80.8 (2024), pp. 11556–11584. issn: 1573-0484.
doi: 10.1007/s11227-023-05882-0.

[36] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System Con-
cepts. 10th ed. Wiley, 2018. isbn: 978-1-119-43925-7.

[37] Shawn Hoopes. “Priority and Fair Trees”. In: Priority and Fair Trees. Sept. 2019.
url: https://slurm.schedmd.com/SLUG19/Priority_and_Fair_Trees.pdf.

[38] A W Mu’alem and D G Feitelson. “Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling”. In: IEEE Transac-
tions on Parallel and Distributed Systems 12.6 (2001), pp. 529–543. doi: 10.1109/
71.932708.

[39] “Autosubmit Wrappers. Documentation”. url: https://autosubmit.readthedocs.
io/en/latest/userguide/wrappers/. Last accessed: June 19, 2024.

[40] “Create an Experiment. Autosubmit Documentation”. url: https://autosubmit.
readthedocs.io/en/latest/userguide/create/. Last accessed: June 04, 2024.

[41] “Auto-ECEarth3 Documentation. GitLab”. url: https://earth.bsc.es/gitlab/
es/auto- ecearth3/- /wikis/home. Private repository. Last accessed: June 03,
2024.

[42] “OpenIFS ECMWF Project”. url: https : / / www . ecmwf . int / en / research /
projects/openifs. Last accessed: June 04, 2024.

[43] “Auto-ECEarth3 Jobs. GitLab”. url: https://earth.bsc.es/gitlab/es/auto-
ecearth3/-/wikis/auto-ecearth_jobs. Private repository. Last accessed: June
11, 2024.

[44] “Slurm Workload Manager - sshare”. url: https://slurm.schedmd.com/sshare.
html. Last accessed: July 2, 2024.

[45] “MareNostrum 5 — BSC-CNS”. url: https://www.bsc.es/es/marenostrum/
marenostrum-5. Last accessed: July 2, 2024.

[46] Pablo Goitia et al. “Profiler integration in a python-based workflow manager”. url:
https://earth.bsc.es/wiki/lib/exe/fetch.php?media=degree_students:

bsc_report.pdf. Last accessed: July 2, 2024.

[47] “Occupation growth of “esarchive” partition”. url: https://www.bsc.es/projects/
earthscience/esarchive/plot.html. Last accessed: June 03, 2024.

46

https://doi.org/10.21957/nr843dob
https://doi.org/10.21957/nr843dob
https://doi.org/10.21105/joss.03049
https://doi.org/10.14778/3554821.3554842
https://doi.org/10.1007/978-3-031-43943-8
https://doi.org/10.1007/978-3-031-43943-8
https://slurm.schedmd.com/slurm.conf.html
https://slurm.schedmd.com/slurm.conf.html
https://doi.org/10.1007/s11227-023-05882-0
https://slurm.schedmd.com/SLUG19/Priority_and_Fair_Trees.pdf
https://doi.org/10.1109/71.932708
https://doi.org/10.1109/71.932708
https://autosubmit.readthedocs.io/en/latest/userguide/wrappers/
https://autosubmit.readthedocs.io/en/latest/userguide/wrappers/
https://autosubmit.readthedocs.io/en/latest/userguide/create/
https://autosubmit.readthedocs.io/en/latest/userguide/create/
https://earth.bsc.es/gitlab/es/auto-ecearth3/-/wikis/home
https://earth.bsc.es/gitlab/es/auto-ecearth3/-/wikis/home
https://www.ecmwf.int/en/research/projects/openifs
https://www.ecmwf.int/en/research/projects/openifs
https://earth.bsc.es/gitlab/es/auto-ecearth3/-/wikis/auto-ecearth_jobs
https://earth.bsc.es/gitlab/es/auto-ecearth3/-/wikis/auto-ecearth_jobs
https://slurm.schedmd.com/sshare.html
https://slurm.schedmd.com/sshare.html
https://www.bsc.es/es/marenostrum/marenostrum-5
https://www.bsc.es/es/marenostrum/marenostrum-5
https://earth.bsc.es/wiki/lib/exe/fetch.php?media=degree_students:bsc_report.pdf
https://earth.bsc.es/wiki/lib/exe/fetch.php?media=degree_students:bsc_report.pdf
https://www.bsc.es/projects/earthscience/esarchive/plot.html
https://www.bsc.es/projects/earthscience/esarchive/plot.html


BIBLIOGRAPHY Bibliography

[48] “System overview - MeluXina User Documentation”. url: https://docs.lxp.lu/
system/overview/. Last accessed: July 3, 2024.

[49] “HPC2020 User Guide”. url: https://confluence.ecmwf.int/display/UDOC/
HPC2020+User+Guide. Last accessed: July 3, 2024.

47

https://docs.lxp.lu/system/overview/
https://docs.lxp.lu/system/overview/
https://confluence.ecmwf.int/display/UDOC/HPC2020+User+Guide
https://confluence.ecmwf.int/display/UDOC/HPC2020+User+Guide


Appendices

48



Appendix A

Scripts

Gathering metrics on the share status of the platforms.

#!/bin/bash

#

# This script fetches the current usage, fairshare, and level fairshare.

# Recorded data is stored in a CSV file upon every submitted job.

#

# BSC-CNS - Earth Sciences, 2024

# Pick rawusage, which is in core seconds, the current fairshare, and

# the fairshare among users in our group.

# The -h flag is used to avoid having headers, -P to separate metrics

# with "|", and -U to pick the metrics associated with the current user.

# The sed command is used to replace '|' for ','.

SLURM_OUT=$(sshare --format=RawUsage,FairShare,LevelFS -hPU -A ******* |

sed -r -e "s/[ \|\ ]+/,/g")↪→

# Get job name

JOB_NAME=$(basename $job_name_ptrn)

# Record current time in UTC following ISO8601 format to prevent

# complications when used on global platforms.

DATE=$(date --utc -Iseconds)

# Compute the CSV path

EXPID=$(echo $JOB_NAME | cut -d'_' -f1)

OUTPUT_FILE="$(dirname $job_name_ptrn)/${EXPID}_SLURM_DATA.csv"

# If the output file does not exists, create it

if [ ! -f $OUTPUT_FILE ]; then

echo "Job Name,Start Time,Raw Usage,Fair Share,Level FS" >

$OUTPUT_FILE↪→

fi

# Append metrics to the output file

echo "$JOB_NAME,$DATE,$SLURM_OUT" >> $OUTPUT_FILE

Code A.1: The bash script used to retreive Slurm share metrics of usage, fairshare, and
level fairshare, for a specified user and account. Tested on systems running Slurm 23.02.
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Appendix B

Auto-ECEarth3 complete list of share
metrics

MareNostrum 4

Wrapped

Job Name Start Time (+00:00) Raw Usage Fair Share Level FS

a6zi 18500101 fc0 1 SIM 2024-03-19 13:52:45 10983 0.324708 2074.227310
a6zi 18500101 fc0 2 SIM 2024-03-19 17:02:54 5883927 0.323038 3.827168
a6zi 18500101 fc0 3 SIM 2024-03-19 20:11:27 11903127 0.323038 1.897283
a6zi 18500101 fc0 3 SIM 2024-03-19 23:13:28 13351959 0.322760 1.694321
a6zi 18500101 fc0 4 SIM 2024-03-20 02:23:20 19360599 0.322482 1.185026
a6zi 18500101 fc0 5 SIM 2024-03-20 05:32:25 25221399 0.322343 0.913999
a6zi 18500101 fc0 6 SIM 2024-03-20 08:42:09 31240599 0.322204 0.741621
a6zi 18500101 fc0 7 SIM 2024-03-20 11:52:29 37259799 0.322204 0.626971
a6zi 18500101 fc0 8 SIM 2024-03-20 15:01:33 43278999 0.322298 0.544842
a6zi 18500101 fc0 9 SIM 2024-03-20 18:09:58 49298199 0.322298 0.480050
a6zi 18500101 fc0 10 SIM 2024-03-20 21:18:23 55317399 0.322298 0.428526
a6zi 18500101 fc0 11 SIM 2024-03-21 00:27:15 61178199 0.322298 0.390675
a6zi 18500101 fc0 12 SIM 2024-03-21 03:36:46 67197399 0.322298 0.358560
a6zi 18500101 fc0 13 SIM 2024-03-21 07:50:00 73310055 0.322298 0.334449
a6zi 18500101 fc0 14 SIM 2024-03-21 10:58:10 79269591 0.322168 0.310632
a6zi 18500101 fc0 15 SIM 2024-03-21 14:06:16 85130391 0.321890 0.289568
a6zi 18500101 fc0 16 SIM 2024-03-21 17:15:16 91149591 0.321984 0.270769
a6zi 18500101 fc0 17 SIM 2024-03-21 20:23:12 97168791 0.321984 0.254766
a6zi 18500101 fc0 18 SIM 2024-03-21 23:30:47 103029591 0.321984 0.241028
a6zi 18500101 fc0 19 SIM 2024-03-22 02:38:50 109048791 0.321984 0.230403
a6zi 18500101 fc0 20 SIM 2024-03-22 05:47:14 114909591 0.321984 0.220325
a6zi 18500101 fc0 21 SIM 2024-03-22 08:54:31 120928791 0.321984 0.211063
a6zi 18500101 fc0 22 SIM 2024-03-22 12:02:05 126789591 0.321984 0.202514
a6zi 18500101 fc0 23 SIM 2024-03-22 16:06:04 132881655 0.404530 0.194801
a6zi 18500101 fc0 24 SIM 2024-03-22 19:15:18 138807927 0.404530 0.189200
a6zi 18500101 fc0 25 SIM 2024-03-22 22:23:52 144827127 0.404530 0.182911
a6zi 18500101 fc0 26 SIM 2024-03-23 01:31:55 150687927 0.321984 0.176761
a6zi 18500101 fc0 27 SIM 2024-03-23 04:40:33 156707127 0.321984 0.170758
a6zi 18500101 fc0 28 SIM 2024-03-23 07:49:57 162726327 0.321984 0.165248
a6zi 18500101 fc0 29 SIM 2024-03-23 10:58:04 168587127 0.321984 0.160250
a6zi 18500101 fc0 30 SIM 2024-03-23 14:06:39 174606327 0.321984 0.155279
a6zi 18500101 fc0 31 SIM 2024-03-23 17:14:12 180625527 0.321984 0.150626
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APPENDIX B. AUTO-ECEARTH3 COMPLETE LIST OF SHARE METRICS

Job Name Start Time (+00:00) Raw Usage Fair Share Level FS

a6zi 18500101 fc0 32 SIM 2024-03-23 20:24:10 186644727 0.321984 0.146332
a6zi 18500101 fc0 33 SIM 2024-03-23 23:34:04 192676599 0.321984 0.142174
a6zi 18500101 fc0 34 SIM 2024-03-24 02:43:48 198665703 0.321984 0.138238
a6zi 18500101 fc0 35 SIM 2024-03-24 05:52:51 204526503 0.321984 0.134630
a6zi 18500101 fc0 36 SIM 2024-03-24 09:02:22 210545703 0.321984 0.131126
a6zi 18500101 fc0 37 SIM 2024-03-24 12:11:25 216564903 0.321984 0.127816
a6zi 18500101 fc0 38 SIM 2024-03-24 15:20:11 222584103 0.321984 0.124645
a6zi 18500101 fc0 39 SIM 2024-03-24 18:29:04 228603303 0.321984 0.121671
a6zi 18500101 fc0 40 SIM 2024-03-24 21:39:30 234622503 0.321984 0.118819
a6zi 18500101 fc0 41 SIM 2024-03-25 00:49:08 240641703 0.321845 0.116169
a6zi 18500101 fc0 42 SIM 2024-03-25 03:58:02 246502503 0.321845 0.113716
a6zi 18500101 fc0 43 SIM 2024-03-25 07:07:25 252634167 0.321845 0.111302
a6zi 18500101 fc0 44 SIM 2024-03-25 10:17:08 258517671 0.321622 0.107738
a6zi 18500101 fc0 45 SIM 2024-03-25 13:27:00 264536871 0.321622 0.105494
a6zi 18500101 fc0 46 SIM 2024-03-25 16:36:16 270556071 0.321622 0.103310
a6zi 18500101 fc0 47 SIM 2024-03-25 19:46:20 276575271 0.321622 0.101286
a6zi 18500101 fc0 48 SIM 2024-03-25 22:56:51 282594471 0.404388 0.099367
a6zi 18500101 fc0 49 SIM 2024-03-26 02:05:45 288613671 0.404388 0.097564
a6zi 18500101 fc0 50 SIM 2024-03-26 05:15:12 294632871 0.321622 0.095822

Table B.1: a6zi (wrapped) experiment execution parameters on MareNostrum 4.

Unwrapped

Job Name Start Time (+00:00) Raw Usage Fair Share Level FS

a6zs 18500101 fc0 1 SIM 2024-03-19 13:52:45 10896 0.324847 2079.237521
a6zs 18500101 fc0 2 SIM 2024-03-19 22:57:25 6070224 0.323178 3.723313
a6zs 18500101 fc0 3 SIM 2024-03-20 02:11:16 12074112 0.323178 1.898252
a6zs 18500101 fc0 4 SIM 2024-03-20 05:21:46 18086448 0.322621 1.280967
a6zs 18500101 fc0 5 SIM 2024-03-20 08:33:01 24084528 0.322482 0.965336
a6zs 18500101 fc0 6 SIM 2024-03-20 13:10:41 30106896 0.322482 0.780776
a6zs 18500101 fc0 7 SIM 2024-03-20 23:21:32 36096000 0.322437 0.658668
a6zs 18500101 fc0 8 SIM 2024-03-21 04:19:53 42121008 0.322437 0.572539
a6zs 18500101 fc0 9 SIM 2024-03-21 07:50:00 48114864 0.322437 0.509582
a6zs 18500101 fc0 10 SIM 2024-03-22 00:45:35 54101328 0.322401 0.460324
a6zs 18500101 fc0 11 SIM 2024-03-22 03:57:45 60105744 0.322401 0.420420
a6zs 18500101 fc0 12 SIM 2024-03-22 07:29:47 66122304 0.322401 0.384382
a6zs 18500101 fc0 12 SIM 2024-03-22 12:18:54 72783024 0.322401 0.352916
a6zs 18500101 fc0 13 SIM 2024-03-22 16:07:24 78783744 0.404947 0.328564
a6zs 18500101 fc0 14 SIM 2024-03-22 19:21:48 84768624 0.404808 0.309983
a6zs 18500101 fc0 15 SIM 2024-03-22 22:48:18 90738720 0.404808 0.292149
a6zs 18500101 fc0 16 SIM 2024-03-23 01:58:23 96733104 0.322262 0.275548
a6zs 18500101 fc0 17 SIM 2024-03-23 05:07:12 102690000 0.322123 0.261065
a6zs 18500101 fc0 18 SIM 2024-03-23 08:16:48 108659568 0.322123 0.247792
a6zs 18500101 fc0 19 SIM 2024-03-23 11:26:22 114651840 0.322123 0.235969
a6zs 18500101 fc0 20 SIM 2024-03-23 14:37:07 120665760 0.322123 0.224997
a6zs 18500101 fc0 21 SIM 2024-03-23 17:45:15 126617904 0.322123 0.215103
a6zs 18500101 fc0 22 SIM 2024-03-23 20:53:49 132566352 0.322123 0.206147
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APPENDIX B. AUTO-ECEARTH3 COMPLETE LIST OF SHARE METRICS

Job Name Start Time (+00:00) Raw Usage Fair Share Level FS

a6zs 18500101 fc0 23 SIM 2024-03-24 00:03:33 138552288 0.322123 0.197787
a6zs 18500101 fc0 24 SIM 2024-03-24 03:14:20 144563040 0.322123 0.190061
a6zs 18500101 fc0 25 SIM 2024-03-24 06:23:47 150538944 0.322123 0.182997
a6zs 18500101 fc0 26 SIM 2024-03-24 09:32:40 156501648 0.322123 0.176629
a6zs 18500101 fc0 27 SIM 2024-03-24 12:42:20 162495504 0.322123 0.170533
a6zs 18500101 fc0 28 SIM 2024-03-24 15:51:51 168488832 0.322123 0.164828
a6zs 18500101 fc0 29 SIM 2024-03-24 19:14:00 174448368 0.322123 0.159525
a6zs 18500101 fc0 30 SIM 2024-03-24 22:29:44 180418992 0.322123 0.154603
a6zs 18500101 fc0 31 SIM 2024-03-25 01:38:11 186367440 0.322123 0.150109
a6zs 18500101 fc0 32 SIM 2024-03-25 04:47:53 192348624 0.322123 0.145927
a6zs 18500101 fc0 33 SIM 2024-03-25 07:56:24 198306576 0.322123 0.141903
a6zs 18500101 fc0 34 SIM 2024-03-25 20:41:14 204252384 0.321900 0.137223
a6zs 18500101 fc0 35 SIM 2024-03-25 23:57:19 210255216 0.404666 0.133681
a6zs 18500101 fc0 36 SIM 2024-03-26 03:05:40 216212640 0.404666 0.130384
a6zs 18500101 fc0 37 SIM 2024-03-26 06:16:13 222164784 0.321900 0.127185
a6zs 18500101 fc0 38 SIM 2024-03-26 12:35:13 228142800 0.404831 0.124140
a6zs 18500101 fc0 39 SIM 2024-03-26 15:57:44 234125568 0.404831 0.121189
a6zs 18500101 fc0 40 SIM 2024-03-26 19:13:45 240137904 0.404831 0.118391
a6zs 18500101 fc0 41 SIM 2024-03-27 00:09:38 246135984 0.404692 0.115775
a6zs 18500101 fc0 42 SIM 2024-03-27 03:20:39 252152016 0.404692 0.113201
a6zs 18500101 fc0 43 SIM 2024-03-27 06:55:23 258096768 0.404692 0.110751
a6zs 18500101 fc0 44 SIM 2024-03-27 10:05:40 264102768 0.404692 0.108607
a6zs 18500101 fc0 45 SIM 2024-03-27 13:15:38 270115632 0.404692 0.107148
a6zs 18500101 fc0 46 SIM 2024-03-27 16:49:17 276171792 0.321672 0.105870
a6zs 18500101 fc0 47 SIM 2024-03-27 20:16:29 282152448 0.321672 0.103947
a6zs 18500101 fc0 48 SIM 2024-03-27 23:31:04 288145776 0.321672 0.101950
a6zs 18500101 fc0 49 SIM 2024-03-28 02:41:29 294141744 0.321672 0.100042
a6zs 18500101 fc0 50 SIM 2024-03-28 05:52:36 300165168 0.321672 0.098211

Table B.2: a6zs (unwrapped) experiment execution parameters on MareNostrum 4.

MeluXina

Wrapped

Job Name Start Time (+00:00) Raw Usage Fair Share Level FS

a72x 19900201 fc00 1 SIM 2024-04-23 12:28:30 492800 0.520485 33.621002
a72x 19900201 fc00 2 SIM 2024-04-23 13:39:57 11441920 0.509164 1.409773
a72x 19900201 fc00 3 SIM 2024-04-23 14:51:49 22193920 0.509164 0.762471
a72x 19900201 fc00 4 SIM 2024-04-23 16:04:17 32945920 0.508890 0.535293
a72x 19900201 fc00 5 SIM 2024-04-23 17:15:54 44465920 0.508621 0.413838
a72x 19900201 fc00 6 SIM 2024-04-23 18:29:13 55217920 0.508351 0.346197
a72x 19900201 fc00 7 SIM 2024-04-23 19:40:26 66737920 0.508351 0.297906
a72x 19900201 fc00 8 SIM 2024-04-23 20:53:00 77489920 0.508351 0.265794
a72x 19900201 fc00 9 SIM 2024-04-23 22:04:09 88241920 0.508351 0.241509
a72x 19900201 fc00 10 SIM 2024-04-23 23:15:37 99761920 0.507543 0.221291
a72x 19900201 fc00 11 SIM 2024-04-24 00:27:30 110913280 0.507543 0.206183
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Job Name Start Time (+00:00) Raw Usage Fair Share Level FS

a72x 19900201 fc00 12 SIM 2024-04-24 01:39:17 121248000 0.507543 0.193820
a72x 19900201 fc00 13 SIM 2024-04-24 02:51:38 132768000 0.507274 0.182770
a72x 19900201 fc00 14 SIM 2024-04-24 04:03:19 143520000 0.507274 0.174062
a72x 19900201 fc00 15 SIM 2024-04-24 05:15:42 155040000 0.507274 0.166067
a72x 19900201 fc00 16 SIM 2024-04-24 06:28:29 165792000 0.507274 0.159601
a72x 19900201 fc00 17 SIM 2024-04-24 07:40:33 177312000 0.507274 0.153543
a72x 19900201 fc00 18 SIM 2024-04-24 08:52:19 188064000 0.507274 0.148563
a72x 19900201 fc00 19 SIM 2024-04-24 10:04:03 198816000 0.506193 0.144129
a72x 19900201 fc00 20 SIM 2024-04-24 11:15:56 210336000 0.506193 0.139871
a72x 19900201 fc00 21 SIM 2024-04-24 12:28:10 221571840 0.506326 0.136367
a72x 19900201 fc00 22 SIM 2024-04-24 13:39:52 232569600 0.506322 0.133413
a72x 19900201 fc00 23 SIM 2024-04-24 14:51:42 243321600 0.506322 0.130777
a72x 19900201 fc00 24 SIM 2024-04-24 16:03:07 254073600 0.506053 0.128016
a72x 19900201 fc00 25 SIM 2024-04-24 17:14:21 264825600 0.506053 0.125502
a72x 19900201 fc00 26 SIM 2024-04-24 18:26:01 276345600 0.506053 0.123030
a72x 19900201 fc00 27 SIM 2024-04-24 19:37:32 287097600 0.506053 0.120906
a72x 19900201 fc00 28 SIM 2024-04-24 20:49:38 297849600 0.506053 0.118946
a72x 19900201 fc00 29 SIM 2024-04-24 22:01:11 309369600 0.506053 0.116992
a72x 19900201 fc00 30 SIM 2024-04-24 23:13:00 320121600 0.506053 0.115297
a72x 19900201 fc00 31 SIM 2024-04-25 00:25:35 331669760 0.506053 0.113604
a72x 19900201 fc00 32 SIM 2024-04-25 01:38:29 342301440 0.506053 0.112149
a72x 19900201 fc00 33 SIM 2024-04-25 02:49:55 353821440 0.506053 0.110662
a72x 19900201 fc00 34 SIM 2024-04-25 04:02:11 364573440 0.506053 0.109360
a72x 19900201 fc00 35 SIM 2024-04-25 05:15:51 376093440 0.506053 0.108047
a72x 19900201 fc00 36 SIM 2024-04-25 06:27:49 386845440 0.506053 0.106893
a72x 19900201 fc00 37 SIM 2024-04-25 07:39:36 397597440 0.506053 0.105804
a72x 19900201 fc00 38 SIM 2024-04-25 08:50:58 409117440 0.506053 0.104695
a72x 19900201 fc00 39 SIM 2024-04-25 10:03:45 419869440 0.506053 0.103717
a72x 19900201 fc00 40 SIM 2024-04-25 11:17:03 431389440 0.503878 0.102723
a72x 19900201 fc00 41 SIM 2024-04-25 12:29:48 442835200 0.503277 0.101776
a72x 19900201 fc00 42 SIM 2024-04-25 13:43:03 453584640 0.503277 0.100942
a72x 19900201 fc00 43 SIM 2024-04-25 14:55:55 465104640 0.503277 0.100186
a72x 19900201 fc00 44 SIM 2024-04-25 16:10:06 476624640 0.503277 0.099608
a72x 19900201 fc00 45 SIM 2024-04-25 17:23:21 487376640 0.503277 0.098979
a72x 19900201 fc00 46 SIM 2024-04-25 18:36:44 498896640 0.503277 0.098221
a72x 19900201 fc00 47 SIM 2024-04-25 19:49:56 510416640 0.503277 0.097506
a72x 19900201 fc00 48 SIM 2024-04-25 21:03:38 521168640 0.503277 0.096867
a72x 19900201 fc00 49 SIM 2024-04-25 22:17:40 532688640 0.503277 0.096115
a72x 19900201 fc00 50 SIM 2024-04-25 23:31:19 544208640 0.503277 0.094786

Table B.3: a72x (wrapped) experiment execution parameters on MeluXina.

Unwrapped

Job Name Start Time (+00:00) Raw Usage Fair Share Level FS

a74v 19900201 fc00 1 SIM 2024-04-23 12:28:30 486912 0.520755 34.042702
a74v 19900201 fc00 2 SIM 2024-04-23 13:36:34 10844672 0.509434 1.506818
a74v 19900201 fc00 3 SIM 2024-04-23 14:45:08 21309952 0.509434 0.791781
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Job Name Start Time (+00:00) Raw Usage Fair Share Level FS

a74v 19900201 fc00 4 SIM 2024-04-23 15:53:43 31747072 0.509159 0.561349
a74v 19900201 fc00 5 SIM 2024-04-23 17:00:51 41992192 0.508890 0.435643
a74v 19900201 fc00 6 SIM 2024-04-23 18:08:55 52385792 0.508621 0.365024
a74v 19900201 fc00 7 SIM 2024-04-23 19:16:32 62689792 0.508621 0.314050
a74v 19900201 fc00 8 SIM 2024-04-23 20:24:37 73088512 0.508621 0.280246
a74v 19900201 fc00 9 SIM 2024-04-23 21:32:14 83412992 0.508621 0.252793
a74v 19900201 fc00 10 SIM 2024-04-23 22:40:49 93862912 0.508621 0.231593
a74v 19900201 fc00 11 SIM 2024-04-23 23:49:57 104438272 0.507812 0.214808
a74v 19900201 fc00 11 SIM 2024-04-24 00:01:28 106038272 0.507812 0.212709
a74v 19900201 fc00 12 SIM 2024-04-24 01:09:33 116436992 0.507812 0.200366
a74v 19900201 fc00 13 SIM 2024-04-24 02:18:09 126902272 0.507812 0.189079
a74v 19900201 fc00 14 SIM 2024-04-24 03:25:45 137244672 0.507543 0.179560
a74v 19900201 fc00 15 SIM 2024-04-24 04:33:51 147633152 0.507543 0.171937
a74v 19900201 fc00 16 SIM 2024-04-24 05:42:28 158075392 0.507543 0.164826
a74v 19900201 fc00 17 SIM 2024-04-24 06:50:35 168433152 0.507543 0.158635
a74v 19900201 fc00 18 SIM 2024-04-24 07:58:41 178816512 0.507543 0.153559
a74v 19900201 fc00 19 SIM 2024-04-24 09:06:47 189251072 0.507543 0.148664
a74v 19900201 fc00 20 SIM 2024-04-24 10:15:27 199700992 0.506462 0.144264
a74v 19900201 fc00 21 SIM 2024-04-24 11:25:04 210330112 0.506462 0.140359
a74v 19900201 fc00 22 SIM 2024-04-24 12:34:41 220931072 0.506595 0.137134
a74v 19900201 fc00 23 SIM 2024-04-24 13:44:18 231537152 0.506591 0.134360
a74v 19900201 fc00 24 SIM 2024-04-24 14:56:29 242258432 0.506591 0.131548
a74v 19900201 fc00 25 SIM 2024-04-24 16:05:57 252741632 0.506322 0.128892
a74v 19900201 fc00 26 SIM 2024-04-24 17:13:57 263127552 0.506322 0.126591
a74v 19900201 fc00 27 SIM 2024-04-24 18:22:24 273544192 0.506322 0.124254
a74v 19900201 fc00 28 SIM 2024-04-24 19:30:56 283958272 0.506322 0.122103
a74v 19900201 fc00 29 SIM 2024-04-24 20:38:56 294382592 0.506322 0.120253
a74v 19900201 fc00 30 SIM 2024-04-24 21:47:26 304837632 0.506322 0.118367
a74v 19900201 fc00 31 SIM 2024-04-24 22:54:57 315164672 0.506322 0.116626
a74v 19900201 fc00 32 SIM 2024-04-25 00:03:24 325635072 0.506322 0.115098
a74v 19900201 fc00 33 SIM 2024-04-25 01:11:55 336141312 0.506322 0.113549
a74v 19900201 fc00 34 SIM 2024-04-25 02:20:56 346678272 0.506322 0.112099
a74v 19900201 fc00 35 SIM 2024-04-25 03:29:25 357140992 0.506322 0.110841
a74v 19900201 fc00 36 SIM 2024-04-25 04:37:55 367608832 0.506322 0.109559
a74v 19900201 fc00 37 SIM 2024-04-25 05:45:52 378004992 0.506322 0.108349
a74v 19900201 fc00 38 SIM 2024-04-25 06:53:55 388431872 0.506322 0.107284
a74v 19900201 fc00 39 SIM 2024-04-25 08:02:22 398866432 0.506322 0.106192
a74v 19900201 fc00 40 SIM 2024-04-25 09:11:26 409421312 0.506322 0.105169
a74v 19900201 fc00 41 SIM 2024-04-25 10:23:24 420416512 0.504145 0.104191
a74v 19900201 fc00 42 SIM 2024-04-25 11:33:23 430889472 0.504145 0.103264
a74v 19900201 fc00 43 SIM 2024-04-25 12:40:53 441236992 0.503539 0.102411
a74v 19900201 fc00 44 SIM 2024-04-25 13:49:22 451679232 0.503539 0.101623
a74v 19900201 fc00 45 SIM 2024-04-25 14:58:19 462211072 0.503539 0.100919
a74v 19900201 fc00 46 SIM 2024-04-25 16:09:19 473034752 0.503539 0.100376
a74v 19900201 fc00 47 SIM 2024-04-25 17:20:50 483935232 0.503539 0.099699
a74v 19900201 fc00 48 SIM 2024-04-25 18:31:54 494756352 0.503539 0.098992
a74v 19900201 fc00 49 SIM 2024-04-25 19:41:52 505457152 0.503539 0.098316
a74v 19900201 fc00 50 SIM 2024-04-25 20:53:23 516388352 0.503539 0.097662

Table B.4: a74v (unwrapped) experiment execution parameters on MeluXina.
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MareNostrum 5

Wrapped

Job Name Start Time (+00:00) Raw Usage Fair Share Level FS

a7d4 19900201 fc00 1 SIM 2024-06-14 18:14:07 797174 0.235337 298.045981
a7d4 19900201 fc00 2 SIM 2024-06-14 19:50:07 9463510 0.224475 25.186246
a7d4 19900201 fc00 3 SIM 2024-06-14 21:28:58 18871510 0.222303 12.679496
a7d4 19900201 fc00 4 SIM 2024-06-14 23:08:12 28279510 0.219406 8.497225
a7d4 19900201 fc00 5 SIM 2024-06-15 00:47:42 37687510 0.216510 6.404242
a7d4 19900201 fc00 6 SIM 2024-06-15 02:27:40 47095510 0.215062 5.146422
a7d4 19900201 fc00 7 SIM 2024-06-15 04:07:35 56503510 0.210717 4.307392
a7d4 19900201 fc00 8 SIM 2024-06-15 05:49:24 65911510 0.210717 3.707136
a7d4 19900201 fc00 9 SIM 2024-06-15 07:30:34 75319510 0.210717 3.256294
a7d4 19900201 fc00 10 SIM 2024-06-15 09:11:38 85197910 0.210717 2.890378
a7d4 19900201 fc00 11 SIM 2024-06-15 10:52:52 94718806 0.210717 2.613687
a7d4 19900201 fc00 12 SIM 2024-06-15 12:34:34 103973142 0.210717 2.387928
a7d4 19900201 fc00 13 SIM 2024-06-15 14:15:58 113381142 0.209269 2.198755
a7d4 19900201 fc00 14 SIM 2024-06-15 15:56:44 123259542 0.209269 2.030956
a7d4 19900201 fc00 15 SIM 2024-06-15 17:37:50 132667542 0.209269 1.894345
a7d4 19900201 fc00 16 SIM 2024-06-15 19:18:40 142075542 0.208545 1.775864
a7d4 19900201 fc00 17 SIM 2024-06-15 21:02:57 151953942 0.208545 1.666934
a7d4 19900201 fc00 18 SIM 2024-06-15 22:43:22 161361942 0.208545 1.575046
a7d4 19900201 fc00 19 SIM 2024-06-16 00:23:55 170769942 0.207820 1.493009
a7d4 19900201 fc00 20 SIM 2024-06-16 02:05:15 180177942 0.207096 1.419403
a7d4 19900201 fc00 21 SIM 2024-06-16 03:46:42 190064182 0.206372 1.349886
a7d4 19900201 fc00 22 SIM 2024-06-16 05:26:50 199429846 0.214337 1.290164
a7d4 19900201 fc00 23 SIM 2024-06-16 07:07:14 208837846 0.214337 1.235381
a7d4 19900201 fc00 24 SIM 2024-06-16 08:47:34 218245846 0.213613 1.184879
a7d4 19900201 fc00 25 SIM 2024-06-16 10:28:02 227653846 0.212889 1.138838
a7d4 19900201 fc00 26 SIM 2024-06-16 12:07:44 237061846 0.210717 1.096626
a7d4 19900201 fc00 27 SIM 2024-06-16 13:48:29 246469846 0.201303 1.057838
a7d4 19900201 fc00 28 SIM 2024-06-16 15:28:39 255877846 0.201303 1.021765
a7d4 19900201 fc00 29 SIM 2024-06-16 17:09:10 265285846 0.201303 0.988349
a7d4 19900201 fc00 30 SIM 2024-06-16 18:50:12 274693846 0.201303 0.957374
a7d4 19900201 fc00 31 SIM 2024-06-16 20:31:38 284550294 0.201303 0.926962
a7d4 19900201 fc00 32 SIM 2024-06-16 22:13:42 293922230 0.201303 0.900055
a7d4 19900201 fc00 33 SIM 2024-06-16 23:54:15 303330230 0.201303 0.874704
a7d4 19900201 fc00 34 SIM 2024-06-17 01:33:57 312738230 0.200579 0.850811
a7d4 19900201 fc00 35 SIM 2024-06-17 03:14:18 322146230 0.200579 0.828293
a7d4 19900201 fc00 36 SIM 2024-06-17 04:55:37 331554230 0.200579 0.807039
a7d4 19900201 fc00 37 SIM 2024-06-17 06:36:03 340962230 0.200579 0.787480
a7d4 19900201 fc00 38 SIM 2024-06-17 08:17:07 350840630 0.200145 0.762800
a7d4 19900201 fc00 39 SIM 2024-06-17 09:59:07 360248630 0.199856 0.745102
a7d4 19900201 fc00 40 SIM 2024-06-17 11:41:28 370127030 0.199134 0.730330

Table B.5: a7d4 (wrapped) experiment execution parameters on MareNostrum 5.
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Unwrapped

Job Name Start Time (+00:00) Raw Usage Fair Share Level FS

a7d5 19900201 fc00 1 SIM 2024-06-14 18:04:25 17916324 0.221579 13.243435
a7d5 19900201 fc00 2 SIM 2024-06-14 19:43:06 27103236 0.219406 8.817363
a7d5 19900201 fc00 3 SIM 2024-06-14 21:23:26 36423428 0.215786 6.583782
a7d5 19900201 fc00 4 SIM 2024-06-14 23:03:32 45743620 0.214337 5.265715
a7d5 19900201 fc00 5 SIM 2024-06-15 00:43:20 55046564 0.211441 4.392472
a7d5 19900201 fc00 6 SIM 2024-06-15 02:23:27 64415364 0.209993 3.771170
a7d5 19900201 fc00 7 SIM 2024-06-15 04:05:12 73895492 0.209993 3.305496
a7d5 19900201 fc00 8 SIM 2024-06-15 05:47:45 83490084 0.209993 2.929691
a7d5 19900201 fc00 9 SIM 2024-06-15 07:29:09 93006276 0.209993 2.644185
a7d5 19900201 fc00 10 SIM 2024-06-15 09:12:33 102666724 0.209993 2.399861
a7d5 19900201 fc00 11 SIM 2024-06-15 10:54:59 112212708 0.209269 2.208708
a7d5 19900201 fc00 12 SIM 2024-06-15 12:36:55 121746148 0.208545 2.039880
a7d5 19900201 fc00 13 SIM 2024-06-15 14:19:48 131314084 0.208545 1.902112
a7d5 19900201 fc00 14 SIM 2024-06-15 16:00:43 140761284 0.207820 1.783182
a7d5 19900201 fc00 15 SIM 2024-06-15 17:42:07 150200644 0.207820 1.673554
a7d5 19900201 fc00 16 SIM 2024-06-15 19:25:08 159768580 0.207820 1.581912
a7d5 19900201 fc00 17 SIM 2024-06-15 21:09:25 169529380 0.207096 1.496592
a7d5 19900201 fc00 18 SIM 2024-06-15 22:50:16 178984420 0.206372 1.422943
a7d5 19900201 fc00 19 SIM 2024-06-16 00:30:43 188420644 0.205648 1.356294
a7d5 19900201 fc00 20 SIM 2024-06-16 02:12:16 197907044 0.205648 1.292832
a7d5 19900201 fc00 21 SIM 2024-06-16 03:53:54 207395012 0.213613 1.238260
a7d5 19900201 fc00 22 SIM 2024-06-16 05:35:46 216829668 0.212165 1.188304
a7d5 19900201 fc00 23 SIM 2024-06-16 07:17:48 226344292 0.212165 1.140461
a7d5 19900201 fc00 24 SIM 2024-06-16 09:00:17 235847940 0.210717 1.097820
a7d5 19900201 fc00 25 SIM 2024-06-16 10:41:34 245284164 0.208545 1.057413
a7d5 19900201 fc00 26 SIM 2024-06-16 12:22:42 254704708 0.208545 1.021276
a7d5 19900201 fc00 27 SIM 2024-06-16 14:03:43 264178564 0.200579 0.988107
a7d5 19900201 fc00 28 SIM 2024-06-16 15:43:10 273489348 0.200579 0.956863
a7d5 19900201 fc00 29 SIM 2024-06-16 17:24:26 282908324 0.200579 0.927803
a7d5 19900201 fc00 30 SIM 2024-06-16 19:05:09 292316324 0.200579 0.900974
a7d5 19900201 fc00 31 SIM 2024-06-16 20:45:39 301699236 0.200579 0.875509
a7d5 19900201 fc00 32 SIM 2024-06-16 22:27:29 311154276 0.199855 0.850590
a7d5 19900201 fc00 33 SIM 2024-06-17 00:09:13 320621860 0.199855 0.828345
a7d5 19900201 fc00 34 SIM 2024-06-17 01:49:04 329956164 0.199855 0.807258
a7d5 19900201 fc00 35 SIM 2024-06-17 03:29:19 339348484 0.199855 0.787212
a7d5 19900201 fc00 36 SIM 2024-06-17 05:09:15 348723556 0.199855 0.768192
a7d5 19900201 fc00 37 SIM 2024-06-17 06:49:34 358140964 0.199855 0.750639
a7d5 19900201 fc00 38 SIM 2024-06-17 08:30:07 367541124 0.198699 0.728952
a7d5 19900201 fc00 39 SIM 2024-06-17 10:11:48 377063588 0.198413 0.712371
a7d5 19900201 fc00 40 SIM 2024-06-17 11:53:06 386587620 0.198413 0.699941

Table B.6: a7d5 (unwrapped) experiment execution parameters on MareNostrum 5.
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