
Universidad de Cantabria

Facultad de Ciencias

INFORME DE LAS PRÁCTICAS

Profiler integration in a
python-based workflow manager

Integración de un profiler en un gestor de workflows
basado en python

Grado en Ingenieŕıa Informática

Curso 2022-2023

Agosto, 2023

PABLO GOITIA GONZÁLEZ

Acerca de las prácticas

Las prácticas se desarrollan en el entorno del Barcelona Supercomputing Center - Centro Na-
cional de Supercomputación (BSC-CNS), dentro del programa BSC International Summer HPC
Internship Programme.

• Tutor académico: Julio Ramón Beivide Palacio (ramon.beivide@unican.es)

• Tutor en la empresa: Miguel Castrillo Melguizo (miguel.castrillo@bsc.es)

• Duración de las prácticas: 16 de junio - 8 de agosto, 2023

• Modalidad: Presencial. Plaça Eusebi Güell, 1-3, 08034 Barcelona, España

Resumen

La misión del departamento de Earth Sciences del BSC es estudiar distintos aspectos del sistema
terrestre, desde los procesos atmosféricos a corto plazo y su impacto sobre la actividad humana,
hasta la evolución a largo plazo de los distintos subsistemas y su impacto sobre el clima terrestre
o la salud de las personas. El departamento realiza su actividad analizando datos provenientes de
distintas fuentes, tanto observacionales como de experimentos de modelización.

Llevar a cabo estos experimentos requiere de apoyo técnico a distintos niveles, incluyendo el
estudio de la eficiencia computacional de los modelos, la gestión de la infraestructura y análisis
de datos, y el desarrollo de herramientas que permitan realizar la experimentación de manera au-
tomática. Estos experimentos habitualmente constan de un gran número de tareas (desde cientos
a decenas de miles) a ejecutar en diferentes plataformas y con múltiples dependencias que deben
resolverse en tiempo de ejecución. En definitiva, no es un proceso que pueda realizarse manual-
mente, y ah́ı es donde es indispensable el trabajo del grupo de Computational Earth Sciences y
su equipo de Models and Workflows, que se encarga del desarrollo de herramientas que permiten
crear, gestionar y monitorizar estos experimentos de simulación.

Una de estas herramientas es Autosubmit, un gestor de workflows hecho en Python que hace
las veces de interfaz con los HPC y orquesta todas las tareas y sus dependencias automáticamente.
Mi objetivo es desarrollar e integrar una nueva funcionalidad de profiling en Autosubmit para que
desarrolladores y usuarios puedan obtener perfiles de rendimiento precisos e información sobre el
uso de memoria, para detectar posibles cuellos de botella o regresiones de eficiencia y aplicar las
optimizaciones o correcciones necesarias.

Abstract

The mission of the Earth Sciences Department at BSC is to study the Earth system, from
short-term atmospheric processes to the long-term evolution of the different subsystems and their
impact on the Earth’s climate or human activity and their health. The department carries out its
activities by analyzing data from different sources, both observational and modeling experiments.

Carrying out these experiments requires technical support at different levels, including the
study of the computational efficiency of the models, the management of the infrastructure and
data analysis, and the development of tools that allow performing the experimentation automat-
ically. These experiments usually consist of a large number of tasks (from hundreds to tens of
thousands) to be executed on different platforms and with multiple dependencies that must be
resolved at runtime. In short, it is not a process that can be performed manually, and this is
where the work of the Computational Earth Sciences group and its Models and Workflows team
is essential, which is responsible for developing methodologies and tools that allow the creation,
management and monitoring of these simulation experiments.

One of these tools is Autosubmit, a Python-based workflow manager that interfaces between
the users and the HPC’s, and orchestrates all the tasks and their dependencies automatically. My
goal is to develop and to integrate a profiling functionality in Autosubmit so that developers and
users could obtain accurate performance profiles and memory usage information, in order to detect
possible bottlenecks or efficiency regressions and apply the necessary optimizations or corrections.

Contents

Abstract 1

Introduction 3

Starting at BSC and Earth Sciences 3
Initial tasks and meeting people . 3
Setting up the workspace . 3
Running dummy experiments in Autosubmit 4 . 4

In a local installation of Autosubmit . 5
In MareNostrum 4, through the Autosubmit’s virtual machine 5

First merge request for training . 6

Project requirements 7
Functional requirements . 7
Non-functional requirements . 7

Designing the new functionality 7
Enhancement proposals . 9

Programming the profiler 10
The profiler’s module . 10

The code structure . 10
CPU profiling . 12
Memory profiling: . 12
Putting all together . 13
Some problems found during the process . 14

Integrating the profiler in Autosubmit . 15
The argument parser . 15
Autosubmit’s run experiment function . 15

Enhancement proposals . 16

Testing code 17
Black box cases . 17
White box cases . 18

Writing documentation 20

Demonstration: Profiling a dummy workflow 21

Presentation at the CES meeting, August 4th 22

2

Introduction

Autosubmit1 is a lightweight workflow manager designed to meet climate research necessities.
Unlike other workflow solutions in the domain, it integrates the capabilities of an experiment man-
ager, workflow orchestrator and monitor in a self-contained application. The experiment manager
allows for defining and configuring experiments, supported by a hierarchical database that ensures
reproducibility and traceability. The orchestrator is designed to run complex workflows in research
and operational mode by managing their dependencies and interfacing with local and remote hosts.
These multi-scale workflows can involve from a few to thousands of steps and from one to multiple
platforms. It is also a robust software that can handle a variety of setbacks, automatically recov-
ering from, for example, network or I/O errors.

It is currently used at Barcelona Supercomputing Centre (BSC) to run models (EC-Earth,
MONARCH, NEMO...), operational toolchains, data-download workflows and many others. Au-
tosubmit has run these workflows in different supercomputers in BSC, CESGA, CSC, OLCF, LMU,
KIT, and others.

It has contributed to various European research projects and runs different operational systems.
During the following years, it will support some of the Earth Digital Twins as the Digital Twin
Ocean within the European Commission’s Destination Earth2 (DestinE) project.

Starting at BSC and Earth Sciences

Initial tasks and meeting people

My arrival at BSC coincided with a meeting of the Earth Sciences Department, so I had the
opportunity to introduce myself to all the attendees. The following week, while completing some
initial tasks I attended some more meetings. The first one was the Autosubmit weekly meeting,
where I met the team. Its purpose is to analyze reported issues and enhancements proposals. The
next ones were the Models and Workflows Team and the Computational Earth Sciences Group
ones, where I also had to introduce myself. At these meetings, participants explain the latest
developments in their projects or make presentations on a topic they have been researching.

The first days were dedicated to completing some introductory tutorials and getting to know
people and being interested in the projects they were working on. I learned a lot about the main
lines of research in the Department, and I quickly became familiar with the BSC environment,
tools, software, services and intranet.

I have started to get into the project I have been working on until the next few weeks by reading
the documentation of Autosubmit and also of some candidate libraries to be useful for the future
profiler..

After that, I managed to get access to the HPC resources that I would use later, such as
Marenostrum 4 and Nord 3. I also got access to the virtual machines running Autosubmit, needed
to run the experiments on the HPC’s.

Setting up the workspace

Autosubmit uses GitLab to manage its source code version control, so installing and configur-
ing Git locally is mandatory. In addition to Git, it was necessary to install a tool to create and
manage virtual environments in order to be able to have multiple simultaneous Python installa-
tions in the system. This way, it is possible to have an environment for each project, where you

1Definition partially extracted from the Earth Sciences Dept. wiki: https://earth.bsc.es/wiki/doku.php?id=
tools:autosubmit

2https://destination-earth.eu/

3

https://earth.bsc.es/wiki/doku.php?id=tools:autosubmit
https://earth.bsc.es/wiki/doku.php?id=tools:autosubmit
https://destination-earth.eu/

can update or downgrade Python versions at will, recover it in case of corruption or just install
libraries without having to deploy them system-wide. There are many tools for this purpose,
such as Conda or Mamba. I decided to use the last one by recommendation of my mentor. After
a brief meeting I learned its basics and then, I created my first virtual environment for Autosubmit.

Once Git and Mamba were installed, I proceeded to create my workspace. The virtual en-
vironment’s name was “autosubmit4”, and it ran under Python v3.10. The libraries and the
Autosubmit’s project dependencies would be installed there.

I created a directory called “Workspace” that will be used to host all my local projects. There,
I will clone the Autosubmit’s repository directly from GitLab. To be able to make modifications in
the remote repository, I needed to request special permissions to the IT support in the Department
and then, to create a personal token to identify myself with the server.

Searching for IDE’s to work, I had some doubts about choosing PyCharm or Visual Studio
Code, but I decided to install the latter for simplicity. It is easy to use and it has a huge amount
of extensions in case we need some extra functionality that is not integrated by default. It has
important functionalities such as a debugger and it can test coverage.

At this moment, everything is ready to build Autosubmit locally. The build was performed
using the setup.py script, located at the Autosubmit’s root directory.

Running dummy experiments in Autosubmit 4

A dummy experiment in Autosubmit is a simple workflow with jobs that emulates a real model
execution. It has a preset configuration and is used for training and testing purposes. This is
the best way to be introduced to Autosubmit because during the creation process you can check
which configuration files and parameters are involved. Throughout the development of the profiler
functionality, we will test the code with them. Its structure is the following one:

Figure 1: The diagram of a non-executed dummy workflow.

It has 8 different jobs simulating some real task, just spending CPU time.

For training purposes, I was requested to create and run dummy workflows in my local machine
and in MareNostrum 4:

4

In a local installation of Autosubmit

Assuming that we have a version of Autosubmit already installed on the system (or in the
virtual environment in our case), creating a dummy experiment is as simple as executing the
following command:

autosubmit expid -H local -d "Pablo testing" -dm

What this command does?

• autosubmit is the command that make the main program run. Then, you must specify

what you want to do. In our case, with expid we are creating a new experiment. This name
comes from EXPID, or EXPeriment IDentifier. Autosubmit generates a new one for each
experiment.

• The -H argument establishes the name of the HPC where the experiment will be executed.

It could be local , as in the example, marenostrum4 or other machines.

• The -d argument is a brief description of what our experiment does (could be anything we
want).

• The -dm option is used to indicate that we are creating a dummy experiment, with preset
configurations and scripts.

This will generate an experiment called a000, the first possible EXPID assigned.

After creating our experiment, we must create its jobs (the ones that will execute the scripts
in our workflow). To do that, we will use the create command, passing as argument the EXPID
of the experiment we just created. Now, we are ready to run our experiment for the first time. We
can run it with:

autosubmit create a000

Once all the jobs had been created, we are ready to run our experiment for the first time with
the run command:

autosubmit run a000

In MareNostrum 4, through the Autosubmit’s virtual machine

Running a workflow in a BSC machine like MareNostrum 4 requires to follow some additional
steps, but essentially the process is the same as in local.

Firstly, its recommended to keep opened one terminal on your BSC workstation, and another
one SSH connected to the Autosubmit’s Virtual Machine (located in the Department’s internal
network). The workstation is required because it has Autosubmit already installed and con-
figured with a network shared directory. All the data of your experiment will be located at
/esarchive/autosubmit/ , together with the files of other people’s experiments. So in the work-
station we will create the dummy experiment, as follows:

autosubmit expid -H marenostrum4 -d "Pablo testing" -dm

This will create a new experiment, and its assigned EXPID in this case was a068. We will edit
its configuration files to set the connection parameters (host url, user...). All the configuration
files in Autosubmit are in YAML format. Autosubmit by default has some HPC’s configured, so
choosing the marenostrum4 one and specifying the user in the platform configuration file would
be enough. That file looks as follows:

5

PLATFORMS:

MARENOSTRUM4:

TYPE: slurm #scheduler

HOST: mn1.bsc.es #ip or alias

PROJECT: bsc32

USER: ******** #username at the HPC, the only parameter we will change

SCRATCH_DIR: /gpfs/scratch

ADD_PROJECT_TO_HOST: false

QUEUE: bsc_es #could also be 'debug'

#OTHER PRE-CONFIGURED PLATFORMS

File 1: autosubmit/a68c/conf/platforms a068.yml

Now, we can create the jobs of the workflow, also with the create command:

autosubmit create a068

The experiment is ready to be executed, but Autosubmit needs to establish password-less SSH
connections in order to run and monitor workflows on remote platforms. Once we have stored the
keys in each platform we must access to the VM and execute the run command:

autosubmit run a068

Autosubmit provides a web interface where we can check the status of the execution of all the
models. The following screenshot shows the diagram of our dummy workflow, when all the jobs
have finished:

Figure 2: The diagram of the executed a068 dummy workflow, at the web GUI.

First merge request for training

As a part of the training in the Models and Workflows Team, I was required to read the Au-
tosubmit’s documentation in search of some grammatical mistakes and correct them. This was
interesting to familiarize myself with the Git commands and proceedings that I used every day.

I proceeded to create a new branch, and then a merge request to merge it into the master’s
branch3. Its title was “Draft: Fix: Documentation corrections”. The “Draft:” tag at the beginning
is to indicate that the branch is not ready to be merged by now. The “Fix:” one is just descriptive.

3https://earth.bsc.es/gitlab/es/autosubmit/-/merge_requests/349

6

https://earth.bsc.es/gitlab/es/autosubmit/-/merge_requests/349

This was my first contribution to the Autosubmit development. It included 2 changes that were
made in two separate commits, and I pushed them up individually to the remote server. Then, I
was requested to manually squash both commits into one as a training exercise, although GitLab
already offers an option to do this automatically when you make a merge request.

The final squashed commit was “Changed ’euns’ at line 49 to ’runs’ in the qstartguide index,
and ’user’ to use in userguide/config ’s line 82”. Then, I made the third push to the server (forcing),
and deleted the draft status to formalize the merge request. My mentor approved and merged the
branch, and now the changes appear in the last build of the Autosubmit’s Read the Docs4, the
website that hosts the Autosubmit’s documentation.

Project requirements

The requirements that the profiler must meet were specified in a GitLab issue5 opened by my
mentor some weeks before I arrived to BSC. It starts mentioning that it would be useful to have a
way to run Autosubmit with a profiler, but without having to install a profiler module and modify
the Autosubmit source code each time we want to profile it. The requirements for that profiler are
as follows:

Functional requirements

Code Requirement description

F001 The implementation will use the Python cProfile and psutil built-in modules for profiling.

F002
The profiler must be integrated in the autosubmit run command, so users can enable
or disable it.

F003 The profiler must be disabled and not interfere with Autosubmit commands by default.

F004
It must produce a simple output that gives users a simple view of the performance of
Autosubmit.

Non-functional requirements

Code Requirement description

NF001
It must work on the laptop of common users, workflow developers, Autosubmit
developers, and also on other servers/platforms like MareNostrum4, Nord3, or external
sites like LUMI.

Designing the new functionality

After a rigorous reading of the documentation of the functions that I will use to build the
profiler, I started to think how to structure my code to ensure an easy integration with the Auto-
submit code in the future.

4https://autosubmit.readthedocs.io/en/master/index.html
5https://earth.bsc.es/gitlab/es/autosubmit/

7

https://autosubmit.readthedocs.io/en/master/index.html
https://earth.bsc.es/gitlab/es/autosubmit/

Firstly, I will implement a basic profiler able to get the CPU time consumption of each function,
thanks to the cProfile and pstats libraries. I will also add a memory profiling functionality using
the psutil library, but just after having that first part.

I spent several hours reading documentation, but here is a summary of the main purpose of
each of the libraries mentioned:

• The cProfile6 library implements a deterministic profiler based in C and introduces less
overhead to the code execution than other similar libraries.

• The pstats library will be used for processing and handling the profiling results.

• The psutil7 library is useful when you need to get information about the processes running
in the system, or when you need to limit its resources.

From here, it is important to remember that the profiler must be designed to be
easily integrated into the autosubmit run command. This command executes the experi-
ment starting the different tasks as their dependencies are fulfilled and repeating its execution in
case of failure. This command has an associated function in the Autosubmit’s main file called
run_experiment() . This function, as many others in Autosubmit, consists of a loop surrounded
by a try/except statement (or try/catch, in other languages).

After some consideration, I decided that the best way to achieve the requirements described
in the GitLab issue, and above, was to make the profiler follow a sequential model, divided in 4
functions that will be called in order like in the following diagram:

Figure 3: The definitive status diagram of our profiler.

What each function is supposed to do?

• init : is the function of each Python object that is executed each time it is instantiated. It
will establish the initial files, data structures and instance variables to ensure the correct
work of the other functions.

• start : starts the profiler imported from the cProfile library, takes the current memory usage,
and will handle any errors if necessary.

• stop: ends the profiler, so that it finishes taking measurements, takes again the current
memory usage, and will do error handling if necessary. It will also generate the final report.

• report : takes the profiling results and processes them to create a report that will be printed
by console.

Note

The report function is called automatically by the stop function, but I have decided to
keep it in the diagram for a better understanding.

6https://docs.python.org/3/library/profile.html
7https://psutil.readthedocs.io/en/latest/

8

https://docs.python.org/3/library/profile.html
https://psutil.readthedocs.io/en/latest/

All these functions will be located in a new module in order to facilitate code comprehension
and maintainability. The profiler.py module will be located at the autosubmit/profiler direc-
tory.

Thanks to the sequential design, we could firstly instantiate a new Profiler object, and make it
to start calling start() before the main loop of the run_experiment() function. After it, and

in a finally clause inside the try/except statement, we could call to the stop() function, that will
automatically generate and save the report. This way, the profiler will always produce a report
even if something inside the function raises an exception that abruptly finishes the command exe-
cution.

Enhancement proposals

——————————————

Apart from the original design explained above, I had some more ideas to make the profiler
more useful. In the same week I finished designing the basics of the profiler, I started to build the
implementation, so in the next Autosubmit Weekly Meeting I presented the design, part of the
code, and the ideas I had during the implementation. We discussed about the following ones:

• The generated report would be stored in the Autosubmit’s log files so that de-
velopers could access it later.

They liked this proposal, and it was finally implemented in the final version.

• Exporting a file with the final report so that developers could post-manipulate
it as they prefer.

The main reason for this is that the stdout and the log contain a preformatted report that
maybe do not fit the developer needs. This file could be opened with the SnakeViz8 library,
which allows us to view the results both graphically and in a detailed way through a web
GUI.

To explain this idea I made a demonstration of how could I get a report file and I opened it
with SnakeViz as an example. They also liked this initiative, and it was finally implemented.

Since this characteristic was implemented, my personal recommendation for Autosubmit
developers or users was to post-manipulate the exported file with SnakeViz. This is far
easier than using pstats.

• Some possible problems must be prevented, like saving multiple reports from
different instances of Profiler without distinguishing them. Maybe each one
could have a name provided by the programmer.

The Autosubmit team does not plan to use more than one instance of the profiler, so following
the principle “You aren’t gonna need it”9 I discarded this idea.

• The same profiler instance should be able to be started and stopped as many
times as the developer needs, merging all the generated reports into one. If we
don’t implement this functionality we must handle the corresponding errors: the
same profiler instance can’t be used more than once.

Investigating a bit more about this issue, I made a short script10 to check if cProfile already
merge the reports when you execute its profiler more than one time, and it does, so imple-
menting this idea would be relatively easy. However, we considered that it would be much
simpler and natural to let the user to start and stop the profiler once to avoid mistakes.
This decision leaves the status diagram as it is right now, without a transition from stop

to start .

Some of these ideas were already implemented, at least partially, because I though that were
useful for the profiler. This also helped me to demonstrate and defend their importance.

8https://jiffyclub.github.io/snakeviz/
9https://en.wikipedia.org/wiki/You_aren’t_gonna_need_it

10https://drive.google.com/file/d/1RHQFSa3QGAmTEPwdHQuhI9TQiTSjmvoC

9

https://jiffyclub.github.io/snakeviz/
https://en.wikipedia.org/wiki/You_aren't_gonna_need_it
https://drive.google.com/file/d/1RHQFSa3QGAmTEPwdHQuhI9TQiTSjmvoC

Programming the profiler

First of all, I cloned the Autosubmit repository11 from GitLab to my workspace. Then, for
simplicity, I created an alias in the bashrc file called as4venv to both activate the autosumbit4

virtual environment and to access the project’s directory in one step. This was one of the most
used commands I had during my internship and I saved a lot of time thanks to it. The next step is
to open a new merge request on GitLab. I linked it to the profiler’s issue previously opened by my
mentor, mentioned before. This merge request had been supervised by him and other Autosubmit
collaborators along the process. It can be accessed through the following link:

https://earth.bsc.es/gitlab/es/autosubmit/-/merge_requests/350

The profiler’s module

The code structure

Knowing the requirements and how the Autosubmit’s main code was built, we can start pro-
gramming the “core” of our project: the profiler’s module. The first step was to find the most
suitable place for it, which will be next to the other Autosubmit modules in the main directory:

Figure 4: The Autosubmit’s source code directory.

The profiler’s directory will contain the profiler.py file, with the source code, and other files
automatically generated by Python:

Figure 5: The profiler’s directory.

The code will be composed by a class Profiler that will contain the functions mentioned in

the design: __init__() , which is the equivalent of a constructor in other programming languages,

start() and stop() , which will start and stop the profiling process, and report() , which will
take the generated data and process it to generate the final report. The most basic code structure
would be the following one:

class Profiler:

"""Class to profile the execution of experiments."""

def __init__(self):

Code of the init function

def start(self):

"""Function to start the profiling process."""

Code of the start function

11https://earth.bsc.es/gitlab/es/autosubmit/

10

https://earth.bsc.es/gitlab/es/autosubmit/-/merge_requests/350
https://earth.bsc.es/gitlab/es/autosubmit/

def stop(self):

"""Function to finish the profiling process."""

Code of the stop function

def report(self):

"""Function to print the final report into the stdout, log and

filesystem."""↪→

Code of the report function

Source Code 1: The basic structure of the “Profiler” class.

What is the “self” argument?

In Python, self represents the instance of the class. it is necessary to access the instance
variables and the functions defined inside it.

During the development process I decided to make the report function private. For simplicity
for the users, it will be called automatically by the stop function. In Python, private functions are
differentiated adding a “ ” before its name, as follows:

def _report(self):

"""Function to print the final report into the stdout, log and

filesystem."""↪→

Code of the report function

Source Code 2: Example of a private function.

The declaration of a private function in Python, however, is not strict. It is possible to call it
from outside the class, but the IDE will probably warn.

Once defined the structure, we could proceed searching for a way to prevent breaking the se-
quential execution of the profiler, according to the state diagram defined at the Figure 3. Doing
this shouldn’t be more complicated than creating some error handling flags, for example, started

and finished . Their values by default will be False and will be changed to True in the start()

and stop() , respectively.

If the conditions are not met, the corresponding function will throw an exception. Autosubmit
has 2 exception types for different purposes, AutosubmitCritical and AutosubmitError. We will use
AutosubmitCritical. AutosubmitError exceptions are not recommended because they are thought-
out for recoverable code. The exceptions in Autosubmit have an associated message and an error
code. The profiler has its own entry at the error codes table12 in the documentation webpage, the
error 7074.

If we put all together, the resulting code should be like this:

from log.log import AutosubmitCritical #importing the exception type

class Profiler:

def __init__(self):

Error handling flags

self._started = False

self._finished = False

def start(self):

if self._started:

12https://autosubmit.readthedocs.io/en/master/troubleshooting/error-codes.html

11

https://autosubmit.readthedocs.io/en/master/troubleshooting/error-codes.html

raise AutosubmitCritical('The profiling process was already

started.', 7074)↪→

self._started = True

more code [...]

def stop(self):

if not self._started or self._finished:

raise AutosubmitCritical('Cannot stop the profiler because was

not running.', 7074)↪→

more code [...]

self._report()

self._finished = True

The report function is not affected

Source Code 3: The structure with conditions that don’t let the user to break the sequential
execution.

At this stage, it is time to start writing the functional part, also following an objective: to
make the start() and stop() functions as simple as possible.

CPU profiling

As planned, we will use the cProfile library to get statistics about the CPU usage of all the
functions executed during the profiling. The cProfile library provides a class called Profile . Its
usage is simple: you must instantiate a Profile object and call to its enable and disable methods
conveniently. The instantiation will be made inside the __init__() function, and the object will

be saved as an instance attribute of our Profiler object, so that it could be accessed from other

functions. Then, in the start function we will call the Profile’s enable() method, and the same in

the opposite way in the stop function, calling disable() . When calling disable, the CPU profiling
stops and the statistics are saved in the Profile object. These statistics will be manipulated in the
report function.

Inside the report function, we will take advantage of the pstats library to adjust the report to
our needs. pstats will take the statistics in the Profile object and convert them into a compre-
hensible string format. By default, the order of the functions in the report is random, but what the
Autosubmit developer wants is to quickly locate possible bottlenecks or functions that are delaying
more time than the expected, so we will change this order criteria to “cumulative time”, i.e. the
total time consumed by all calls to a single function. This way, the functions that had been using
more CPU will be listed at the top of the report.

Memory profiling:

As I proposed in the design, the psutil library will be used to collect memory usage details.
psutil is really useful to get information about running processes in the system. In our case, it
would be enough getting the total amount of memory used by the function or the fragment of
code we want to profile. To get more detailed memory information, it is better to use external
tools dedicated exclusively to this purpose. I also searched alternatives to this library, for example,
memory-profiler13, but it didn’t quite fit what I was looking for.

Then, to get the total memory consumption, we can take the current memory consumed in
both start and stop functions, and the result will be the difference between these 2 measures. To
get the current memory I created a private function outside the Profiler’s class, which obtains

13https://pypi.org/project/memory-profiler/

12

https://pypi.org/project/memory-profiler/

the PID used to instantiate a Process object provided by the own psutil function, and then it

calls the memory_info() 14 method of that process. That method will return multiple memory
consumption data, but the most important are the rss and the vms. rss means “Resident Set
Size”, the non-swapped physical memory a process has used, and vms means “Virtual Memory
Size”, the total amount of virtual memory used by the process. We will return back to the caller
function the first one.

In the report, we will take the 2 memory values previously collected to calculate its difference.
Now we have the total memory consumed, but in bytes. I wrote a simple loop to convert it to its
most suitable unit. For example, if we get 1048576 bytes, the loop will convert it to 1 MiB. This
is more useful for the developer.

Putting all together

A resumed code of what we have been doing in the last sections would be as follows:

import cProfile

import pstats

import psutil

from log.log import AutosubmitCritical

class Profiler:

def __init__(self):

self._profiler = \textit{cProfile}.Profile()

Memory profiling variables

self._mem_init = 0

self._mem_final = 0

Error handling flags

self._started = False

def start(self):

Here was the error handling section

self._profiler.enable()

self._mem_init = _get_current_memory()

self._started = True

def stop(self):

Here was the error handling section

self._profiler.disable()

self._mem_final = _get_current_memory()

self._report()

def _report(self):

Here we generate the CPU usage report

Generate memory profiling results

mem_total = self._mem_final - self._mem_init # memory in Bytes

Here is the loop to reduce the value to its most suitable unit

Source Code 4: A very simplified vision of the code after getting all the profiling statistics.

At this moment, the most important part of the profiler’s module is done. What continues
is merging the results into a single report and saving it somewhere. Merging the report is an

14https://psutil.readthedocs.io/en/latest/#psutil.Process.memory_info

13

https://psutil.readthedocs.io/en/latest/#psutil.Process.memory_info

straightforward task, it just require to join the CPU results string with the memory value, and
adding some headers to differentiate each section. Printing the report to console and storing it
in the log could be done in a single step, because the Autosubmit’s logger automatically prints
to the stdout channel what you log. This step is quite easy and it only requires to import the
Autosubmit’s Log library. However, storing the results into the file system is not so simple: we
must be careful to respect the format implemented by other functionalities in Autosubmit to be
consistent and not confuse the users.

The profiler will export 2 different files: a plain text .txt with the same content as the report

previously shown to the user and a .prof binary file which contains the statistics offered by our

Profile object without the post-processing with pstats. This last file could be interpreted and
manipulated by external tools such as SnakeViz, as I mentioned before.

The name of the generated files will follow the format below:

• For the stats (binary): [EXPID] profile [date]-[time].prof

• For the report (plain text): [EXPID] profile [date]-[time].txt

An example of filename could be: a000_profile_20230804-124833.prof

The files will be saved into the directory [EXPID]/tmp/profile of the related experiment, next
to other generated files by Autosubmit. To build the path we need to request the EXPID to the
programmer. We could request it while instantiating the Profiler object, as follows:

def __init__(self, expid):

self._expid = expid

More variables [...]

Source Code 5: Where to request the EXPID to build the output files path

The report function thanks to the Path library and some Autosubmit constants will build the
absolute path to the export directory.

Now, the profiler module is completely functional, and is ready to be integrated in the autosubmit run

command.

Some problems found during the process

—————————————————————

• GitLab’s pipeline fails when I submit the newest changes.

Each time you push your last local changes to GitLab, your code passes through a “pipeline”
which compiles and tests the code and the documentation. The failure, this time, occurred
because the psutil library was not installed by default. I solved this dependency problem
by adding ‘psutil ’ to the install requires list inside the Autosubmit’s setup script. It also
needed to be added to the requirements.txt file in the AS’ root directory. Hereinafter, the
Autosubmit’s setup will install psutil in the local machine if it’s not installed yet.

• pstats output is not ordered as indicated. It follows a “call” order, not accumu-
lated time as specified.

It happened because of the order of the calls that manipulate the statistics. The function
sort stats() must appear next to strip dirs() one.

• Duplicated commits because of a “git pull” made from my personal computer at
home.

Solved with $git rebase . The process took a long time.

14

Integrating the profiler in Autosubmit

Having the profiler ready to be integrated in the autosubmit run command, I took a look
in the Autosubmit’s main source file to learn how it works and to get some first ideas of the
code that I will need to modify. I inserted some prints and re-installed the code with the
pip install -e [AS path] command.

The installation was successful and the results were the expected ones, so I could continue
writing the actual code:

The argument parser

Autosubmit uses a parser library (argparse15) to recognize its commands and to save the pa-
rameters. I located the section where the “run” subparser was, and with the help of other existing
arguments, I added a new Boolean flag for the profiler. It will be activated when the user writes
the flag [-p, --profile] . Its value by default is False , as described in the requirements section.

The code snippet below contains the creation of the “run” subparser and the “profile” argument:

Run

subparser = subparsers.add_parser('run',

description="runs specified experiment")

Other arguments [...]

subparser.add_argument('-p', '--profile', action='store_true', default=False,

required=False, help='Prints performance parameters of the

execution of this command.')

Source Code 6: Where to request the EXPID to build the output files path

Autosubmit’s run experiment function

Once the autosubmit run command could recognize the profile flag, it was necessary to add it

to the run_experiment() function declaration, and passing it as a parameter in the corresponding

calling. To access the flag we just need to use args.profile . Naturally, I also added the new
parameter to the function docstring, following the reStructuredText docstring format16.

Then, I wrote a small section of code to test if the work was done well or not. If the user
sets the --profile flag (or -p), a message will be printed by console. I removed that code in
subsequent commits.

Now, it is time to correctly place the Profiler instantiation and its function calls. As planned

in the design phase, if the flag is True , the Profiler object will be created at the beginning
of the function, followed by the call to the start function. Remember that the main loop of the
function is wrapped by a try/except statement, so the stop function will be called from the finally
clause to ensure that the profiler always shows its results even if something during the Autosub-
mit’s execution fails.

Here is the resulting code of applying the idea above:

def run_experiment(expid, notransitive=False, start_time=None,

start_after=None, run_only_members=None, profile=False):↪→

"""

Runs and experiment (submitting all the jobs properly and repeating its

execution in case of failure).↪→

:param expid: the experiment id

:param notransitive: if True, the transitive closure of the graph is not

computed↪→

:param start_time: the time at which the experiment should start

15https://docs.python.org/es/3/library/argparse.html
16https://realpython.com/documenting-python-code/#restructuredtext-example

15

https://docs.python.org/es/3/library/argparse.html
https://realpython.com/documenting-python-code/#restructuredtext-example

:param start_after: the expid after which the experiment should start

:param run_only_members: the members to run

:param profile: if True, the function will be profiled

:return: None

"""

Start profiling if the flag has been used

if profile:

profiler = Profiler(expid)

profiler.start()

try:

#########################

AUTOSUBMIT - MAIN LOOP

#########################

while job_list.get_active():

Here autosubmit executes the jobs

except BaseException as e:

raise AutosubmitCritical("This seems like a bug in the code, please

contact AS developers", 7070, str(e))↪→

finally:

if profile:

profiler.stop()

Source Code 7: Simplified view of the function with the profiling functionality already
implemented.

Enhancement proposals

——————————————

The following ones, are just ideas that I had while working on the code. Each one required
discussion in different Autosubmit Weekly Meetings:

• Avoid the user to execute the profiler module directly from the command line.

This just require a couple more lines on the code, but it isn’t necessary at all, so we decided
not to implement it.

• Create a custom decorator for the Autosubmit’s profiler. This should make it
easier to use in other functions.

A decorator is a design pattern in Python that allows a user to add new functionality to an
existing object without modifying its structure17.

With a decorator, profiling a function would be as simple as writing @profile above its
heading:

@profile #this is de decorator

def run_experiment(...): #this is the function heading

#the function code

Source Code 8: Example of use of the decorator in the run experiment function.

This is the most complex proposal that I’ve been working on. It would be quite useful for
easily integrating the profiler into the Autosubmit commands. However, building a decora-
tor has its difficulties: you need a way to indicate when to profile or not depending on the
status of the flag, and it cannot be passed as a parameter because the only way to do it is
saving the flag as a global variable, and this is bad practice in Python for security reasons.
It also has one more handicap: where to save the profiling results. Until now, the answer
seemed to be obvious, we could remain saving them into the experiment’s tmp path, but not

17Extracted from https://www.datacamp.com/tutorial/decorators-python

16

https://www.datacamp.com/tutorial/decorators-python

every command in Autosubmit uses an EXPID, so if the profiler is working on that kind of
functions it may need to export the results to a generic place, and this is not consistent at all.

Despite that, I programmed the decorator solving these problems, but we decided not to
include it in the last reviews because the logic I introduced was too difficult to be rewritten
to include it in an upcoming project that the Autosubmit developers have pending, which
consists of refactoring the entire Autosubmit code to make it even more modular.

After removing it, I opened an issue on the Autosubmit’s GitLab to briefly explain other
programmers how to integrate the decorator again: https://earth.bsc.es/gitlab/es/

autosubmit/-/issues/1094

• Adding type hints as defined at PEP 48418.

This idea had been proposed by my mentor. Python by its nature assigns types to variables
dynamically. Adding type hints, we would be forcing a specific type to each one, as other
languages such as C, Java... do. Implementing this proposal have been a first step for a
future project about compiling the Python modules to C extensions to make Autosubmit
more efficient19.

A brief example:

def _generate_title(title):

"""

Generates a title banner with the specified text.

:param title: The title that will be shown in the banner.

:type title: str

:return: The banner with the specified title.

:rtype: str

"""

Source Code 9: The generate title() auxiliary function with its docstring.

If we add type hints to the function above, the result would be the following one:

def _generate_title(title:str) -> str:

Source Code 10: The generate title() auxiliary function after adding type hints.

Testing code

To ensure code quality and reliability I was requested to build unit tests and try to get as
high coverage percentage as possible. All of them had been designed following black/white box
methodologies.

The tests have been programmed in a different file called test_profiler.py , located next to
the other Autosubmit tests. They works thanks to the unittest20 library, and to execute them I
used the nosetests21 tool.

Black box cases

Black box defines coverage criteria for status machine based classes, with status and transition
coverage. This criteria is ideal for our case. Status coverage means that all the possible status
are reached, and transition coverage means that all the possible transitions between status are
contemplated. We will also cover those cases in which you try to go to an unreachable status (from
another one that doesn’t have any connection).

18https://peps.python.org/pep-0484/
19https://earth.bsc.es/gitlab/es/autosubmit/-/issues/876
20https://docs.python.org/3/library/unittest.html
21https://pypi.org/project/nose/

17

https://earth.bsc.es/gitlab/es/autosubmit/-/issues/1094
https://earth.bsc.es/gitlab/es/autosubmit/-/issues/1094
https://peps.python.org/pep-0484/
https://earth.bsc.es/gitlab/es/autosubmit/-/issues/876
https://docs.python.org/3/library/unittest.html
https://pypi.org/project/nose/

Then, the tests will contain the following cases:

• Status machine coverage

It will execute the whole profiling process. I.e, it will call __init__() , start() and

stop() in that order. Remember that we are not taking into account report() because it

is internally called from stop() .

• Transition coverage

According to the status diagram in the Figure 3, the possible transitions are: from __init__()

to start() and from start() to stop() , that will automatically call to report. These
cases, essentially, are exactly the same as those in the last item, so we will preserve these
instead of the others. Repeating cases would not make sense.

• Wrong transitions coverage

According to the diagram, wrong transitions are from __init__() to stop() , from start()

to start() and from stop() to stop() .

How the actual tests are:

class TestProfiler(TestCase):

def setUp(self):

self.profiler = Profiler("a000")

def test_transitions(self):

__init__ -> start

self.profiler.start()

start -> stop

self.profiler.stop()

def test_transitions_fail_cases(self):

__init__ -> stop

self.assertRaises(AutosubmitCritical, self.profiler.stop)

start -> start

self.profiler.start()

self.assertRaises(AutosubmitCritical, self.profiler.start)

stop -> stop

self.profiler.stop()

self.assertRaises(AutosubmitCritical, self.profiler.stop)

Source Code 11: Black box test cases.

Only with black box tests we got a high percentage of coverage of the code, so that a lot of
white box cases could be omitted later. The coverage is 95% for profiler.py.

Figure 6: Screenshot of the coverage report just running the black box test cases.

White box cases

We will attempt to reach 100% in profiler.py with white box test cases. To simplify the
process and to not redefine already existing test cases, we will directly take a look to the coverage

18

report to see which lines are not covered by the black box cases. In the figure below, not covered
lines are highlighted in red:

Figure 7: Screenshot of the coverage report just running the black box test cases.

There are only 3 not covered lines (just the 5% of the code). The first one, in the line 78 is
because the profiler checks if the directory in which the files will be exported is writable, and if not,
an exception will be raised. This exception will never be raised until we force it. Doing this is not
as trivial as adding an assert clause with the result expected. I needed to use a mock to accomplish
this task. A mock is a “false” object that returns what we want in order to successfully test the
code. We will create a mock that replaces the os.access call, making it to return False always.
Mocking is not easy to understand, but searching for some examples and reading documentation I
could get used to it relatively quickly. The resulting white box test for this part is the following one:

@mock.patch("os.access")

def test_writing_permission_check_fails(self, mock_response):

mock_response.return_value = False

self.profiler.start()

self.assertRaises(AutosubmitCritical, self.profiler.stop)

Source Code 12: Test case to cover the writing permissions condition.

The lines 95 and 96 are from the loop that convert the memory consumption unit to its most
suitable. This part is never accessed because our simple tests almost don’t waste memory, so the
converter is no needed. Covering these lines is as simple as running a profiler allocating memory
after starting and before stopping it. There are many ways to do this. The solution below is simple
and efficient:

def test_memory_profiling_loop(self):

self.profiler.start()

bytearray(1024*1024)

self.profiler.stop()

Source Code 13: Test case to cover the unit converter loop.

With these 2 cases we have got the expected 100% of coverage, and the execution of the tests
doesn’t throws any kind of error nor warning, so we finished with the testing part.

Figure 8: Screenshot of the coverage report running both black and white box test cases.

19

Writing documentation

The Autosubmit documentation is written in reStructuredText format22. When you push
changes in the documentation to the GitLab repository, they are automatically built and uploaded
to the Autosubmit’s Read the Docs website.

The documentation source directory looks as follows:

Figure 9: Documentation source directory.

The important directory for us is userguide (highlighted). That folder contains the documen-

tation related to the autosubmit run command, and many others:

Figure 10: userguide directory inside the documentation source code.

There is a folder called run , where is the index.rst . I modified that file to include a brief
section user-oriented explaining the basics of the profiler: how to activate it and interpret the
results. I also created a new orphan file inside the same folder called profiler.rst , with more
detailed documentation that will be useful for other Autosubmit developers. An orphan file in
reStructuredText is a page that is not expected to be listed in a menu and just can be accessed
from a internal link in another page. In fact, in the beginning, I had some compilation problems
because of the orphan tag, but later I realized that it wasn’t in the correct place of the header.

To represent the status diagram, I decided to use the GraphViz23 library. This tool lets you
code graphics yourself (is not a graphical tool), and is so powerful and widely used by any kind of
applications. If fact, it is used to compose the diagrams generated by Autosubmit, for example the
Figure 1. Programming a diagram from zero is not a trivial task and requires a lot of imagination,
but is the best way to ensure that future developers could update it. I integrated the code in
the documentation and it compiles successfully (and looks great). The diagram is available at the
extended documentation.

The profiler documentation could be accessed through this link:
https://autosubmit.readthedocs.io/en/master/userguide/run/index.html

The extended documentation is also available at this page:
https://autosubmit.readthedocs.io/en/master/userguide/profiler.html

22https://docutils.sourceforge.io/rst.html
23https://graphviz.org/

20

https://autosubmit.readthedocs.io/en/master/userguide/run/index.html#how-to-profile-autosubmit-while-running-an-experiment
https://autosubmit.readthedocs.io/en/master/userguide/profiler.html
https://docutils.sourceforge.io/rst.html
https://graphviz.org/

Demonstration: Profiling a dummy workflow

The tool is finally ready to be used, so here is a short demo of how the profiler works:

1. The first step is to create an experiment. It could be dummy. In fact, we will test the profiler
with the same experiment that I created during my training when I arrived to BSC, the a000.

2. Execute the run command with one of the profile flags (--profile or -p , it doesn’t matter
at all):

autosubmit run a000 --profile

3. After the execution of the experiment, the final report is printed by console and saved in
plain text at the tmp directory of the experiment, as well as the binary file:

Figure 11: Simplified profiling results.

The CPU profiling report is more complete than the shown in the screenshot above. Some of
the entries were omitted just to leave space to the memory profiling results in the window.

The exported files are in the experiment’s tmp/profile path as expected:

Figure 12: The exported files.

4. There are many tools available if someone need to open and manipulate the .prof file. I always
recommended to use SnakeViz, because it allows you to view the results in a graphical way
and to reorder all the entries according to your needs:

21

Figure 13: The SnakeViz web interface showing the same profiling results.

Presentation at the CES meeting, August 4th

When my internship main project was finished, I presented it to the CES meeting attendees on
August 4. I had a 15∼20 minute slot before the end of the meeting, in which I gave a very brief
account of the development process that I have detailed in this report, focusing more on how to
use the new functionality, how it can be used and how to extend it for the future. It also includes
a small section about how to integrate the profiler with other functions, but warning of possible
incompatibilities.

The slides I used are available to the whole Earth Science Department for anyone who may
need them. The document can be accessed through the following public link:

https://earth.bsc.es/wiki/lib/exe/fetch.php?media=working groups:ces:profilerpresentation.pdf

On august 8th, the merge request was approved and the branch was successfully merged. From
now, all the Autosubmit builds from version 4 onward will integrate the new profiler.

22

https://earth.bsc.es/wiki/lib/exe/fetch.php?media=working_groups:ces:profilerpresentation.pdf

	Abstract
	Introduction
	Starting at BSC and Earth Sciences
	Initial tasks and meeting people
	Setting up the workspace
	Running dummy experiments in Autosubmit 4
	In a local installation of Autosubmit
	In MareNostrum 4, through the Autosubmit's virtual machine

	First merge request for training

	Project requirements
	Functional requirements
	Non-functional requirements

	Designing the new functionality
	Enhancement proposals

	Programming the profiler
	The profiler's module
	The code structure
	CPU profiling
	Memory profiling:
	Putting all together
	Some problems found during the process

	Integrating the profiler in Autosubmit
	The argument parser
	Autosubmit's run_experiment function

	Enhancement proposals

	Testing code
	Black box cases
	White box cases

	Writing documentation
	Demonstration: Profiling a dummy workflow
	Presentation at the CES meeting, August 4th

