
New Python AMIP reader for EC Earth 4

OASIS to pyOASIS conversion
New more flexible Python AMIP reader

Computacional Earth Sciences - Performance Team
BSC Summer Internship Programme

Intern: Rodrigo Martín
Supervisor: Mario Acosta

From 21/06/2021 to 29/08/2021
Academic year: 2021/2022

Abstract
The new flexible and highly configurable Python AMIP reader development for EC Earth 4 is

documented here as well as a light analysis of the old Fortran implementation with an explanation of
main differences when converting Fortran code from OASIS to pyOASIS. The new Python
implementation has demonstrated equivalent results and comparable performance to the old Fortran
AMIP reader while having a largely improved namelist configuration interface with huge flexibility
for reading and sending any coupling field. This new version of the AMIP reader also maintains
backwards compatibility with the old namelist configuration files in EC Earth v3.3.3.1 and EC Earth
v3.2.2 (PRIMAVERA production).

New Python AMIP reader - Rodrigo Martín Page 2 of 17

Index of contents

My work in context 4
AMIP 4
My objectives 4

Old Fortran implementation 5

OASIS to pyOASIS conversion 6
#1: Python vs. Fortran integer division 6
#2: Fortran column-major in netCDF files 6
Performance differences between pyOASIS and OASIS 6

New Python AMIP reader 8
Python dependencies 8
Usage 8

New namelist file 9
Example of the old namelist file 11
Example of the new namelist file 11
Backwards compatibility 11

Add a new field 13
Input netCDF files 13

Hardcode an operation (inner workings) 13
Run an example 15

Visualize netCDF output files as GIF 15

Conclusion 16

References 17

New Python AMIP reader - Rodrigo Martín Page 3 of 17

My work in context
My internship is framed in the field of Earth Sciences. I have been part of the Performance

group in the Computational Earth Sciences team of the Earth Sciences department under the BSC
Summer Internship Program 2021, working on the conversion from Fortran to Python of the AMIP
reader for the EC Earth 4 project using the pyOASIS API from the CERFACS OASIS library [1]. All
the info about the development can be found in the issue ec-earth4#13.

AMIP

EC-Earth (Earth System Model for the Climate Model Intercomparison Project) is a model of
the Earth that is developed collaboratively in the European Earth System Model consortium, whose
current version is EC Earth 3. The model is composed of different modules that describe atmosphere,
ocean, sea ice, land surface, dynamic vegetation, atmospheric composition, ocean biogeochemistry
and the Greenland ice sheet. The basic configuration of EC-Earth consists of the IFS atmosphere
module and the NEMO ocean module (which includes the LIM3 sea ice module). The coupling of
variables between the modules is done through the OASIS3-MCT coupler, which provides a means to
exchange variables coupled in the different modules. The replicability tests consist of comparing the
executions of the same code in coupled (CMIP) and only atmosphere configurations (AMIP) carried
out by different institutions using their respective platforms.

The AMIP reader provides realistic sea surface temperature and sea ice data from 1979 to near
present. These data are obtained from reading already defined netCDF files. It is not meant to be used
for climate change prediction, an endeavor that requires a coupled atmosphere-ocean model (e.g., see
AMIP's sister project CMIP[2]). As can be seen in Figure 1, this allows scientists to focus on the
atmospheric model without the added complexity of ocean-atmosphere feedback (CIMP).

Figure 1. Fragment of the coupling links between components in AMIP vs CIMP.

My objectives
The main objective was to switch the current implementation of the AMIP reader from Fortran

to Python. In this process, it was necessary to convert all coupling exchange code from OASIS3-MCT
to pyOASIS, which is currently in development. In addition, adding extensibility to the AMIP reader
interface taking advantage of Python's flexibility was a secondary objective, as well as refactoring the
current implementation improving its reusability and maintainability. All objectives were
accomplished successfully and will be discussed in the following pages.

New Python AMIP reader - Rodrigo Martín Page 4 of 17

https://earth.bsc.es/gitlab/es/ec-earth4/-/issues/13

Old Fortran implementation
In order to carry out a successful refactor, I created a few activity diagrams of the original

Fortran implementation. Some of these diagrams can be seen in the figure 2 and show a messy
implementation with the use of a lot of different module global variables, which is probably caused by
the superposition of one code patch after another; the entry and exit points for each subroutine are not
clear and the naming is a bit unconventional. As this implementation is too complex for a simple
component like the AMIP reader, a complete code refactor is necessary (leaving the coupling interface
as it is).

Figure 2. Activity diagram of the Fortran implementation, complete diagram on ec-earth4#13.

New Python AMIP reader - Rodrigo Martín Page 5 of 17

https://earth.bsc.es/gitlab/es/ec-earth4/-/issues/13

OASIS to pyOASIS conversion
In order to carry out a first conversion, easier to understand, develop and debug, I created a

basic pyOASIS "prototype-model" from the spoc_communication example from OASIS3-MCT4.0
repository[3]. This toy model consists of two components ('ocean' and 'atmos') and implements basic
coupling exchanges between them and its development is kept in the ES GitLab in the repository
rmarti1/oasis-toy-model-python[4].

While performing this conversion, I identified the most common differences between Fortran
and Python when converting from OASIS to pyOASIS, which can also be found in the issues #1 and
#2 of the repository:

#1: Python vs. Fortran integer division

Fortran integer division results in the truncated output of the operands. However, since
Python3, Python automatically casts the result of the division between two integers to float. This
difference can be addressed in the Python code by casting the result in Python of each division like
so: int(a/b) or use the integer division operator: a//b.

#2: Fortran column-major in netCDF files

While writing two components' grids, one written in Python and the other in Fortran, and using
netCDF files in the process, it is important to keep in mind that the Fortran approach to array-like
structures is column-major, while Python's default approach is row-major. This difference can be
overcome by subjecting one of the languages to the other. netCDF files stored in Fortran will be
written in a column-major fashion, so in order to retrieve the data in Python and be able to process and
store it with the same format and shape, we must transpose the arrays by numpy.transpose(a).

Performance differences between pyOASIS and OASIS
Taking advantage of the simplicity of the "prototype-model" I was able to create a new branch

in the same repository serving as an example on the performance difference between pyOASIS and
OASIS, as well as OASIS performance analysis itself when sending two coupling fields at the same
time.

The "prototype-model" has been modified from the master branch. It consists of two
components ('ocean' and 'atmos') and implements coupling exchanges only from 'ocean' to 'atmos' at
the same time on every iteration of two coupling fields of the same size. 'ocean' runs first in Fortran
and then in Python, always communicating with 'atmos' running in Fortran.

The execution of the model outputs almost the same results as shown in figure 3. It looks like it
does not depend on the coupling field itself, but in what order you call put for each one of them.
Python and Fortran display the same behavior, indicating that pyOASIS does not provoke a noticeable
performance penalty. However, the incremental runtime trend along the simulation might indicate
room for improvement for OASIS performance as a whole.

New Python AMIP reader - Rodrigo Martín Page 6 of 17

Figure 3. Execution time for the subroutine OASIS_VAR.put() for each variable in Python and Fortran.
Source: rmarti1/oasis-toy-model-python#performance branch.

New Python AMIP reader - Rodrigo Martín Page 7 of 17

https://earth.bsc.es/gitlab/rmarti1/oasis-toy-model-python/-/tree/performance

New Python AMIP reader
All the documentation below is directly taken from the README.md file from the new Python

AMIP reader repository: rmarti1/python-amip-reader [5], which also contains tests for running both
implementations (Fortran code is taken from EC Earth v3.3.3.1) using the current setup for IFS and
AMIP from EC Earth v3.3.3.1. It is highly recommended to check the documentation in the repository
in order to get the most up-to-date and intra-linked documentation.

The new Python AMIP reader is a flexible, highly-customizable and ready out-of-the-box
component with the following features:

● Read and send any field by including it in the new namelist file and making sure the input
netCDF files follow a common structure. The following fields have been tested:

○ SST (Sea Surface Temperature) and SIC (Sea Ice Concentration) constructed
mid-month fields (exactly as the AMIP reader from EC Earth v3.3.3.1).

○ SST (Sea Surface Temperature) and SIC (Sea Ice Concentration) constructed daily
fields (exactly as the AMIP reader for PRIMAVERA from EC Earth v3.2.2
(PRIMAVERA production)).

○ Gridded emissions data as in these TM5 routines from EC Earth in
tm5mp/proj/co2emission_read__co2.F90.

● Backwards compatibility with all the namelist files used by the old Fortran AMIP reader.
● Dynamic grids.nc and masks.nc definitions for OASIS based on the input netCDF files. It will

not override any existing grid with the same name (as stated in the OASIS 4.0 user guide),
providing backwards compatibility with all current implementations.

All the source code for the new implementation can be found under the folder
sources/amip-forcing/src/python/ of this repository.

Python dependencies
The new Python implementation relies on the Python modules f90nml, netCDF4 and numpy. In

order to install these dependencies in your local machine you may execute the following command.

pip3 install f90nml netCDF4 numpy

Or if running in MN4 (assuming the modules impi/2017.4 and mkl/2017.4 are loaded):

module load python/3.6.1

module load netcdf/4.2

Usage
The new Python AMIP reader gets all its configuration from a new namelist.amip file.

However, it can also be used as a drop-in replacement for the Fortran implementation without any
additional configuration for reading and sending the SST and SIC fields for both EC Earth v3.3.3.1
and EC Earth v3.2.2 (PRIMAVERA production). See the backwards compatibility section for more
info.

In order to take advantage of all the new functionalities and have more control over the
coupling fields and input data, it is highly recommended to use the new namelist.amip configuration
structure. Although not necessary, it is also recommended to avoid setting the AMIP grid in the

New Python AMIP reader - Rodrigo Martín Page 8 of 17

https://earth.bsc.es/gitlab/es/auto-ecearth3/-/tree/3.3.3.1
https://earth.bsc.es/gitlab/es/auto-ecearth3/-/tree/3.2.2_Primavera_production
https://earth.bsc.es/gitlab/es/auto-ecearth3/-/tree/3.2.2_Primavera_production
https://earth.bsc.es/gitlab/svn/ecearth-mirror/-/blob/ceb1f5b95ced1374f190d2a9f9b833a74627c5d8/sources/tm5mp/proj/co2/emission_read__co2.F90
http://www.cerfacs.fr/oa4web/oasis3-mct_4.0/oasis3mct_UserGuide.pdf

grids.nc, masks.nc and areas.nc files in advance, as the new AMIP reader is able to write them at
runtime.

New namelist file
Although the new AMIP reader works with the old namelist.amip configuration files, the new

namelist configuration file provides greater flexibility to the user when reading and operating with the
input data. Here is a scheme for the new namelist generator bash script taken from
namelist_python.amip.sh:

cat << EOF

!---

&NAMAMIP

!---

RunLengthSec = ${leg_length_sec}

TimeStepSec = ${cpl_freq_amip_sec}

StartYear = ${leg_start_date_yyyymmdd:0:4}

StartMonth = ${leg_start_date_yyyymmdd:4:2}

StartDay = ${leg_start_date_yyyymmdd:6:2}

FixYear = ${ifs_cmip_fixyear}

Vars(1,:) = <id> <grid_name> <oasis_name> <file_pattern> <netcdf_variable>

<yref_min> <yref_max> <timestep> <interpolate> <scale_factor> <offset> <min>

<max>

...

Vars(n,:) = ...

LDebug = false

!---

/

EOF

The main difference between the old and the new namelist files is the substitution of the fields
exclusively defined for SST and SIC grids (FileListSST, FileListSIC and LInterpolate) for an agnostic
array of fields Vars(:,:). Vars(:,:) shape is (n,13), being n the number of fields to exchange and each
coupling field declaration must follow the structure below:

New Python AMIP reader - Rodrigo Martín Page 9 of 17

Index Name Type Description

0 id string Unique identifier for the field.

1 grid_name string Grid name (must match one of the grids declared in
the namcouple file).

2 oasis_name string Variable name (must match one of variables under
the grid_name declared in the namcouple file).

3 file_pattern string File pattern of the input netCDF files. I.e:
'HadISST2_prelim_0to360_alldays_sst_[year].nc'.
All patterns must be between brackets '[]' and
currently the only accepted pattern is: year.

4 netcdf_variable string Variable to read in the netCDF files.

5 yref_min int32 Reference year for the time variable in the netCDF
files.

6 yref_max int32 The last year of the netCDF files.

7 timestep 'monthly' | 'daily' The step in number of days of the time variable in
the netCDF files.

8 interpolate true | false Whether to interpolate or not (disabled if the
timestep is set to daily).

9 scale_factor float64 Scale factor applied after reading the input data.

10 offset float64 Offset applied after reading the input data.

11 min float64 | None* Minimum value used to clip the input data before
submitting the field.

12 max float64 | None* Maximum value used to clip the input data before
submitting the field.

* In order to set a section as None you must leave blank the content between its comas. I.e: for
setting the last section (max) as None in AMIP_sst, the field Vars(1,:) ends with "..., 273.15, 271.38,
,". See the example of the new namelist file for the complete configuration.

New Python AMIP reader - Rodrigo Martín Page 10 of 17

Below is an example of the old namelist.amip file used for AMIP forcing in EC Earth v3.3.3.1
next to the new equivalent one created by the script above:

Example of the old namelist file

!---

&NAMAMIP

!---

RunLengthSec = 5097600

TimeStepSec = 86400

StartYear = 1991

StartMonth = 01

StartDay = 01

FixYear = 0

FileListSST =

'tosbcs_input4MIPs_SSTsAndSeaIce_CMIP_PCMDI-AMIP-1-1-3_gn_187001-201706.nc'

FileListSIC =

'siconcbcs_input4MIPs_SSTsAndSeaIce_CMIP_PCMDI-AMIP-1-1-3_gn_187001-201706.nc'

LDebug = false

LInterpolate = true

!---

/

Example of the new namelist file

!---

&NAMAMIP

!---

RunLengthSec = 5097600

TimeStepSec = 86400

StartYear = 1991

StartMonth = 01

StartDay = 01

FixYear = 0

Vars(1,:) = 'AMIP_sst_monthly', 'AMIP', 'AMIP_sst',

'tosbcs_input4MIPs_SSTsAndSeaIce_CMIP_PCMDI-AMIP-1-1-3_gn_187001-201706.nc',

'tosbcs', 1870, 2016, 'monthly', true, 1, 273.15, 271.38, ,

Vars(2,:) = 'AMIP_sic_monthly', 'AMIP', 'AMIP_sic',

'siconcbcs_input4MIPs_SSTsAndSeaIce_CMIP_PCMDI-AMIP-1-1-3_gn_187001-201706.nc',

'siconcbcs', 1870, 2016, 'monthly', true, 0.01, 0, 0, 1,

LDebug = false

!---

/

Backwards compatibility
The new AMIP reader is backwards compatible with both EC Earth v3.3.3.1 and EC Earth

v3.2.2 (PRIMAVERA production) namelist files. It achieves this by internally converting the
configuration from the old namelist files to the new representation when reading the namelist file
(source code in function read_namelist() in amip_utils.py). Here is the internal conversion of the SST
coupling field when using each old namelist file:

New Python AMIP reader - Rodrigo Martín Page 11 of 17

EC Earth v3.3.3.1 (AMIP forcing)

Property Value

id 'AMIP_sst_monthly'

grid_name 'AMIP'

oasis_name 'AMIP_sst'

file_pattern FileListSST content from the old namelist file.

netcdf_variable 'tosbcs'

yref_min 1870

yref_max 2016

timestep 'monthly'

interpolate LInterpolate content from the old namelist file.

scale_factor 1

offset 273.15

min 271.38

max None

EC Earth v3.2.2 (PRIMAVERA production)

Property Value

id 'AMIP_sst_daily'

grid_name 'PSST'

oasis_name 'AMIP_sst'

file_pattern AmipFileRoot content from the old namelist file appending '_sst_[year].nc'.

netcdf_variable 'sst'

yref_min 1850

yref_max 2016

timestep 'daily'

interpolate False

scale_factor 1

offset 0

min None

max None

New Python AMIP reader - Rodrigo Martín Page 12 of 17

Add a new field
Adding a new field solely consists on adding the input netCDF files to the runtime folder of the

program and adding a new entry to the Vars(:,:) field in the namelist following the structure
mentioned above (see the new namelist filesection).

Input netCDF files
All input netCDF files must contain the following variables (assuming the dimensions time, lat

and lon are defined):

Variable Type Shape Description

time double (time) Days since the reference year defined as
yref_min in its namelist entry.

lat or latitude double (lat) Latitude.

lon or longitude double (lon) Longitude.

Input variable name double or
float

(time, ..., lat, lon) The variable name must match the
netcdf_variable value in its namelist entry.

Hardcode an operation (inner workings)
If it is necessary to hardcode an operation with respect to one of the coupling fields, it is highly

recommended to edit the code within the AMIPVar class. Right now, there are already hardcoded
operations used to match the old Fortran implementation or read an specific index of the input netCDF
variable. Here are some examples:

logging.debug('{}: no time interpolation t,t2 {} {}'.format(self.id, t_local,

self.t2))

Hardcoded to match Fortran's AMIP clipping avoidance

if self.oasis_name == 'AMIP_sst':

var_min = np.NINF

This section can be "hardcoded" by the user

Hardcoded CO2 emissions data. Read only sector id 1: Energy

if self.var_name == 'CO2_em_anthro':

raw_field = raw_field[1]

While the Python implementation was originally inspired by the Fortran implementation, it has
now been refactored to take advantage of Python's OOP and simpler modules. For a deeper
understanding, in figures 4 and 5 are the simplified sequence and class diagrams of the current
implementation.

New Python AMIP reader - Rodrigo Martín Page 13 of 17

Figure 4. Sequence diagram of the Python AMIP reader implementation.

Figure 5. Class diagram of the Python AMIP reader implementation.

New Python AMIP reader - Rodrigo Martín Page 14 of 17

Run an example
The repository's README.md contains all the information about running an example. It

consists on executing one of the implementations (Fortran or Python) along with a mock component
acting as IFS. This mock component simulates IFS reception behavior as designed in EC Earth
v3.3.3.1. The detailed specification can be found below, with the coupling interval and run length
taken directly from the namelist.amip file.

Constants

NAMELIST_FILE_NAME = 'namelist.amip'

L080_NX = 35718 # number of LAND grid cells at T159 resolution

L128_NX = 88838 # number of LAND grid cells at T255 resolution

L256_NX = 348528 # number of LAND grid cells at T511 resolution

For a more detailed explanation on how to run an example in a local machine or MareNostrum
4, please refer to section Run an example in the repository's README.md file.

Visualize netCDF output files as GIF
In the new Python AMIP reader repository there is also the possibility to visualize the results

from an experiment and save them in a GIF file. First, you must first fix the grid and time axis of the
EXPOUT generated files and then run the script nc_to_gif.py. The exact process can be found under
the section Visualize netCDF output files in the repository's README.md file.

The figures 6 and 7 are visualization examples of the EXPOUT generated files of a run from
1990-01-01 to 1991-01-01 with interpolation activated and L128 IFS grid.

Figure 6. A_SST.nc output from Python's implementation. Source: ec-earth4#13.

New Python AMIP reader - Rodrigo Martín Page 15 of 17

Figure 7. A_Ice_Frac..nc output from Python's implementation. Source: ec-earth4#13.

Conclusion
During my internship, my mission was to switch the current implementation of the AMIP

reader from Fortran to Python. In this process, it was necessary to convert all coupling exchange code
from OASIS3-MCT to pyOASIS. A second objective was to add extensibility to the AMIP reader
interface taking advantage of Python's flexibility as well as to refactor the current implementation
improving its reusability and maintainability. As shown above, all objectives were accomplished
successfully.

One of the main difficulties was matching exactly the same results in Python and Fortran due to
differences in floating point precision differences. I finally switched all Fortran code to float64 to
obtain the maximum precision possible, which is checked by the automated tests in the repository.
This way, if it is necessary to reduce the precision bits, we are sure both implementations will keep
being equivalent.

It should be noted that the final Python implementation has comparable performance to the old
Fortran implementation. This serves as proof that it is a common misconception that Python has
always worse performance than other compiled programming languages such as Fortran. The coupler
provided by pyOASIS, which is just a Python interface to the Fortran OASIS implementation, adds
imperceptible overhead as described in Performance differences between pyOASIS and OASIS
section, the math handling modules like numpy are mostly made up of ultra-optimized C code and
Python's file management system works flawlessly with the most up-to-date techniques.

As for the insecurity provided by the dynamic typing, since Python 3.5 it is possible to add type
hints[6] to the code, which can be checked by any linting software and work as type checking. The
current AMIP reader Python implementation does not provide any typing because of backwards
compatibility, but it could be added later with no modification to the code logic.

In conclusion, thanks to its flexibility and comparable performance, Python has proven to be a
good substitute for Fortran in small components such as the AMIP reader. Even compiled Python code
could be used in larger and more complex components in the EC Earth ecosystem.

New Python AMIP reader - Rodrigo Martín Page 16 of 17

References
[1] OASIS - CERFACS. Available: https://portal.enes.org/oasis

[2] CIMP6 - EC-Earth. Available: http://www.ec-earth.org/cmip6/

[3] OASIS3 - MCT GitLab repository. Available: https://gitlab.com/cerfacs/oasis3-mct

[4] ES GitLab - Fortran to Python OASIS conversion. Available:
https://earth.bsc.es/gitlab/rmarti1/oasis-toy-model-python

[5] ES GitLab - Python AMIP reader. Available:
https://earth.bsc.es/gitlab/rmarti1/oasis-toy-model-python

[6] Support for type hints - Python. Available: https://docs.python.org/3/library/typing.html

New Python AMIP reader - Rodrigo Martín Page 17 of 17

https://portal.enes.org/oasis
http://www.ec-earth.org/cmip6/
https://gitlab.com/cerfacs/oasis3-mct
https://earth.bsc.es/gitlab/rmarti1/oasis-toy-model-python
https://earth.bsc.es/gitlab/rmarti1/oasis-toy-model-python
https://docs.python.org/3/library/typing.html

