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Abstract15

Atlantic tropical cyclone activity is known to oscillate between multi-annual periods of16

high and low activity. These changes have been linked to the Atlantic Multidecadal Os-17

cillation (AMO), a mode of variability in Atlantic sea surface temperature which modi-18

fies the large-scale conditions of the tropical Atlantic. Cyclone activity is also modulated19

at higher frequencies by a series of other climate factors, with some of these influences20

appearing to be more consistent than others. Using the HURDAT2 database and a sec-21

ond set of tropical cyclone data corrected for possible missing storms in the earlier part22

of the record, we investigate, through Poisson regressions, the relationship between a23

series of climate variables and a series of metrics of seasonal Atlantic cyclone activity24

during both phases of the AMO.25

26

We find that, while some influences, such as El Niño Southern Oscillation, remain27

present regardless of the AMO phase, other climate factors show an influence during28

only one of the two phases. During the negative phase, Sahel precipitation and the29

North Atlantic Oscillation (NAO) are measured to play a role, while during the posi-30

tive phase, the 11-year solar cycle and dust concentration over the Atlantic appear to be31

more important. Furthermore, we show that during the negative phase of the AMO, the32

NAO influences all our measures of tropical cyclone activity, and we go on to provide33

evidence that this is not simply due to changes in steering current, the mechanism by34

which the NAO is usually understood to impact Atlantic cyclone activity. Finally, we35

conclude by demonstrating that our results are robust to the sample size as well as to36

the choice of the statistical model.37

38

Keywords: Tropical cyclones; Atlantic variability; Poisson regression, Atlantic Multi-39

decadal Oscillation40
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1 Introduction41

Atlantic tropical cyclone (TC) activity has been observed to vary over a wide range of42

timescales, from (sub)seasonal to decadal (and possibly longer), and multiple attempts43

have been made to relate these variations to a large array of climate variables. The lower44

frequency variations are generally considered to be related to the slowly varying ther-45

modynamic conditions(Emanuel et al., 2013), driven in large part by changes in local46

SSTs, whereas higher (annual) frequencies tend to be driven by teleconnections from47

factors external to the tropical Atlantic, such as El Niño Southern Oscillation (ENSO).48

Table 1 offers an overview of the different climate factors that have been linked to an-49

nual and decadal changes in Atlantic cyclone activity (the timescale we are interested in50

here) as well as a non-exhaustive list of references discussing these relationships.51

52

The understanding of the relationship between large-scale fields and Atlantic TC ac-53

tivity has led to the development of TC seasonal forecasts and, more recently, to multi-54

annual forecasts. If decadal forecasts are still in the early stages of development (Smith55

et al. (2010); Caron et al. (2013)), seasonal forecasts are now routinely performed by nu-56

merous groups using a range of different techniques (Camargo et al., 2007a). Often,57

such techniques rely on linking the presence or absence of certain large-scale features58

to an increase or decrease in TC activity above or below the climatological mean. For59

example, the presence of El Niño (La Niña) conditions in the tropical Pacific are usually60

associated with a decrease (increase) in Atlantic TC activity.61

62

Another well-known influence on Atlantic hurricane activity is Western Sahel rain-63

fall, which was previously used as a predictor in hurricane seasonal forecasts. Land-64

sea and Gray (1992) and Landsea et al. (1992) showed that Sahel rainfall was highly65

correlated with the strongest Atlantic cyclones. However, the link between these two66

variables began to deteriorate in the late 1990’s to the point where Western Sahel precip-67

itation is no longer included in these seasonal forecasts. Fink et al. (2010) later showed68

that the influence of Western Sahel precipitation on Atlantic TC activity is cyclical and69
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tends to be strong in years when conditions over the Atlantic are unfavourable to TC for-70

mation, and much weaker in years where conditions are more favourable. Although not71

as dramatic, a similar behaviour was highlighted by Klotzbach (2011a) and Klotzbach72

(2011b) which showed that the influence of ENSO on Atlantic cyclone activity tends to be73

stronger/weaker when the background thermodynamic conditions are unfavourable/favourable74

to cyclogenesis.75

76

Since the influence of at least one parameter from table 1 can be "switched on/off"77

by the general conditions over the tropical Atlantic whilst another can be strength-78

ened/weakened, this begs the question as to whether or not other known influences on79

TC activity are also modulated in a similar fashion. Here, we are investigating whether80

the links between different measures of Atlantic TC activity and the various predictors81

from table 1 remain stationary between more active and quieter periods of TC activity.82

83

Changes in the Atlantic Multidecadal Oscillation (AMO) have been linked to the84

slow (decadal) variation in Atlantic cyclone activity (see AMO references in table 1).85

Defined as the (linearly) detrended Atlantic SST anomaly north of the equator (Knight86

et al. (2006); Zhang and Delworth (2006)), the positive (negative) phase produces climate87

conditions more conducive (detrimental) to TC formation, such as higher (lower) SSTs88

and lower (higher) wind shear. Thus, the AMO index provides a straightforward way89

to sort conducive from non-conducive years. The AMO timeseries is shown in figure 1a,90

while table 2 shows the years sorted according to their AMO value.91

92

Section 2 describes the different datasets used for this study while section 3 gives a93

short description of the Poisson regression, the technique used here to investigate the94

relationship between TC activity and various climate indices. Section 4 contrasts the95

relationship between different climate indices and TC activity during both phases of the96

AMO and section 5 discusses the robustness of the results presented. Section 6 concludes97

with a short discussion.98
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2 Data99

2.1 Tropical cyclone data100

The HURDAT2 database (HURDAT second version; Landsea and Franklin (2013)) main-101

tained by the National Hurricane Centre is the most comprehensive collection of tropical102

cyclone information for the Atlantic basin, with yearly TC information (location, wind103

intensity, minimum pressure, 34/50/64 kt wind radii per quadrant, landfall location)104

available from the mid-19th century to the present. The origin of the data that went105

into creating this best-track database changed over time as technology improved and as106

the observational network evolved: TC information up to the mid-20th Century comes107

exclusively from ship encounters and data collected at landfalls, whereas starting in the108

mid-20th Century, additional data was collected using aircraft reconnaissance missions109

and, from the 1960’s onward, from orbiting satellites (Vecchi and Knutson, 2008). The110

evolution in observational practices over the Atlantic is reflected in the increased quality111

and reliability of this dataset with time. Due to patchy coverage, it is likely that a fair112

number of storms were missed in the earlier period, this number decreasing as coverage113

improved.114

115

Landsea et al. (2010) showed that a steady increase in the number of short-lived116

systems1 was present in the hurricane database and argued that it was the result of117

changing observational practices. Similarly, by comparing data of Atlantic TC activity118

over the 20th century against large-scale environmental variables, Villarini et al. (2011)119

concluded that the increase in short-lived tropical cyclones present in the database was120

spurious. Bruyère et al. (2012) additionally noted a spurious discontinuity in these short-121

lived storms around 1960, at the advent of satellite imagery, but further observed that122

the proportion of short-lived storms to the total number of storms remained constant123

both before and after that discontinuity, suggesting that part of the detected increase124

might indeed be real. An increase in the number of short-lived storms was also detected125

in downscaled simulations performed over the 20th century (Emanuel, 2010). Thus, the126

1A short-lived system is one for which the lifetime is shorter than 48 hours.
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extent to which the upward trend in short-lived systems is real is not yet entirely estab-127

lished, however, any uncertainty which these storms may introduce into the database128

can be circumvented by limiting the focus to those storms which lasted more than two129

days.130

131

Recent work by Landsea et al. (2008) and Landsea et al. (2012) has led to the detection132

of previously missed storms and thereby to corrections in HURDAT for the early part133

of the 20th century. Continuing work of this nature will no doubt contribute to further134

reducing any artificial biases in the database. Unfortunately, there is no substitute for135

storms that were completely missed by the observational network of the day. This has136

led Vecchi and Knutson (2008), Landsea et al. (2010) and Vecchi and Knutson (2011) to137

attempt to estimate, respectively, the number of tropical cyclones, long-lived tropical cy-138

clones (>48h) and hurricanes that could have been missed given the deficient coverage139

present in the early years of the database using TC tracks from other years. Obviously,140

these estimations are subject to high uncertainties.2 For example, any shift in geographi-141

cal distribution of storms over time, or any increase in activity in an area where coverage142

used to be poor (e.g. Eastern Atlantic) will be mistakenly interpreted as missed storms143

thus causing the database to be over-corrected. Nonetheless, we believe that these three144

studies offer the best current estimates of bias-corrected timeseries of tropical cyclone145

activity in the HURDAT2 database and they will therefore be used in this study. For146

comparison purposes, we will also include the non-corrected values for the same three147

timeseries (total number of TCs, long-lived TCs and hurricanes) taken directly from the148

HURDAT2 database3, as well as the total number of major hurricanes (category 3-5 on149

the Saffir-Simpson scale), for which there currently exists no corrections. It should be150

mentioned that these timeseries are constructed using all of the storms that occurred151

during any given year. Finally, we also use the number of US landfalling hurricanes152

taken directly from HURDAT2. This assumes that the U.S. coastline was sufficiently153

2For a full discussion on this issue, we refer the interested reader to Vecchi and Knutson (2008).
3We are using the latest version of HURDAT2, which was last updated in June 2013 to revise the 1851-

1945 hurricane seasons.
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populated to record every U.S hurricane landfall since 1878. Although this assumption154

is likely overly optimistic (Landsea, 2007), the number of missed storms is also likely to155

be sufficiently small to have a negligible impact on the conclusion of this study.156

157

Figure 2 shows the five timeseries, both in their original and bias-corrected forms158

(when applicable). Decadal variability in basin-wide TC activity can be observed (fig-159

ure 2a-d), with periods of both high (e.g. 1940’s+1950’s, 1995 to present) and low (e.g.160

early 20th century, 1980-1994) activity. As mentioned earlier, this variation in TC activ-161

ity has been previously linked to the slowly varying AMO. And although landfalling162

hurricanes (figure 2e) show no such obvious signs of decadal variability, a regression163

between U.S. landfalling hurricanes and the AMO is significant at the 5% level.164

2.2 Climate Indices165

The choice of the climate indices used in this study is based on previous literature dis-166

cussing climate-cyclone interactions and is summarized in table 3. The influence of167

ENSO is studied using the Niño3.4 index (Trenberth, 1997), during the months of ASO.168

The Niño index is computed using the mean of NOAA extended reconstructed SSTs169

(ERSST; Smith et al. (2008)) and Hadley Center reconstructed SSTs (HadISST; Rayner170

et al. (2006)) based on a 30-year sliding climatology, updated every five years. The ab-171

solute Atlantic SST (AtlSSTs) and relative SST (RelSST) are also computed using the172

average of ERSSTs and HadSSTs, defined respectively by the mean SST limited by 10◦N,173

25◦N, 80◦W and 20◦ (the Main Development Region, or MDR) and by the difference be-174

tween the former and the mean tropical SST limited by 30◦N and 30◦S. The West African175

Monsoon (WAM) influence is represented by the Western Sahel rainfall anomalies com-176

piled at Washington University. The NAO index is provided by the Climate Research177

Unit (CRU) of East Anglia (Jones et al., 1997). Sunspot numbers (SSNs) are produced by178

the Solar Influences Data Analysis Center (SIDC) of the Royal Observatory of Belgium179

and are obtained through the NOAA.4 The Quasi-Biennial Oscillation (QBO) is given by180

4Following results from the available literature, we performed our analyses using both September

SSNs and SSNs averaged over ASO. We found that September SSNs generally returned smaller p-values.
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zonal winds at 30 hPa, which are provided by the University of Berlin (Naujokat, 1986).181

Information on dust concentration over the tropical Atlantic can be found in Evan and182

Mukhopadhyay (2010). Finally, since timeseries of stratospheric ozone concentration183

which currently exist do not cover a sufficiently long period to be useful here, we have184

instead selected the 100 hPa temperature directly, keeping in mind that other factors be-185

sides ozone concentration might influence temperature at that level. The temperature at186

100 hPa over the MDR is calculated by averaging temperatures in NCEP (Kalnay et al.,187

1996) and a combination of ERA-40 (Uppala et al., 2005) and ERA-Interim (Dee et al.,188

2011) reanalyses. Finally, the AMO is taken from NOAA’s database (Enfield et al., 2001).189

Figure 1 shows the different timeseries of these indices for the available period.190

2.3 Genesis Potential Index191

Gray (1979) showed that it was possible to assess the potential for TC genesis through192

the use of environmental parameters, and over the years, this concept has been used193

to develop a number of different genesis indices. These indices aim to communicate194

whether or not the atmosphere-ocean system is conducive to cyclogenesis over a partic-195

ular area. Here, we use a Genesis Potential Index (GPI) recently developed by Emanuel196

(2010):197

GPI = |η|3 χ−
4
3 max((PI − 35), 0)2 (25 + Vshear)

−4 (1)

where η is the absolute vorticity (s−1) at 850 hPa, χ is the moist entropy deficit in198

the middle atmosphere, PI is the potential intensity (m s−1; Emanuel (1995), Bister and199

Emanuel (1998)) and Vshear is the vertical wind shear (m s−1) between 850 and 200 hPa.200

The large-scale fields used to compute the GPI are taken from the NCEP reanalyses for201

the August-October seasons spanning the period 1960-2012. Figure 3 shows the mean202

GPI values for that period as well as the location of all the ∼600 cyclogenesis events203

observed during that 53-year period. Changes in the GPI field will be used to explain204

some of the detected changes in cyclogenesis locations.205

We thus chose to include only those results obtained using September SSNs.
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3 Poisson Regression206

To analyze the effect of the various climate indices on the number of TCs, we use a207

Poisson regression, which is a classical approach to analyze count data. The Poisson re-208

gression has been applied successfully in climatology to analyze the determinants of TC209

frequency in Solow and Nicholls (1990), Elsner (2003), Elsner and Jagger (2006), Villarini210

et al. (2010), Tippett et al. (2011), and Kozar et al. (2012). The Poisson regression is a type211

of generalized linear model (GLM) with a Poisson distribution and a logarithmic link212

function.213

214

When we represent by Nk the number of TCs during year k, then a Poisson distribu-215

tion (or Poisson process), given by216

Pr(Nk = n) =
e−λλn

n!
, n = 0, 1, 2, ... (2)

assumes that the mean number of events during any given year k is constant at λ. The217

apparent presence of cycles in figure 2 shows that it is very unlikely that TC formation218

is consistent with the Poisson process of equation 2 (with constant mean).219

220

When it is believed that the mean number of events may evolve over time due to221

p time-varying determinants (also known as predictors or covariates), then a Poisson222

regression is considered a more appropriate approach. In a Poisson regression, the co-223

variates influence the mean number of events such that224

Pr(Nk = n) =
e−λk λn

k
n!

, n = 0, 1, 2, ... (3)

where225

log(λk) = β0 + β1X1,k + β2X2,k + ... + βpXp,k (4)

is a logarithmic link function and X1,k, X2,k, ..., Xp,k are a set of p covariates observed at226

time k.227

228

One can also view the Poisson regression as229

E[Nk|Xk] = exp (Xkβ) (5)
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meaning that

βi =

∂E[Nk|Xk]
∂Xi,k

E[Nk|Xk]
, i = 1, 2, ...p.

In other words, βi represents the relative variation (or percentage change) in E[Nk|Xk]230

per unit of Xk,i. Note that we have collapsed the predictors Xi,k into a single vector Xk231

and done similarly for βi to simplify the presentation.232

3.1 Methodology233

As a first step, we select the years when the AMO was positive and perform regression234

analyses on that subset of the data. Only one predictor is used (p = 1) for each regres-235

sion, meaning that for each of the 8 count variables, 10 regressions were carried out (one236

per climate index). The process is then repeated for those years when the AMO was237

negative. The value of the various β1’s can be found in table 4.238

239

β’s are obtained using maximum likelihood estimation (MLE) which is a standard240

(frequentist) approach to estimate coefficients in Poisson regressions (see for instance241

McCullagh and Nelder (1989), Winkelmann (2010)). To assess the statistical significance242

of a predictor, we use the (asymptotic) p-value associated with that variable, where the243

null hypothesis is β1 = 0 and the alternative hypothesis is β1 6= 0. The p-value as-244

sociated to a given estimate of β is the probability that the statistic associated to the245

aforementioned hypothesis test is at least as high as the one observed in the sample, if246

the true value of β was 0 (which is the null hypothesis). The computation is based upon247

a normal distribution because β1 obtained with MLE is asymptotically Gaussian. When248

facing uncertainty with respect to the true model while being additionally limited to a249

small sample size, it is always more prudent to use low significance levels, in the order250

of 1% or below. In this vein, we perform a robustness analysis in section 5 to validate the251

results, specifically with respect to the sample size and the choice of regression model.252

253

Another potential challenge here is that by analyzing multiple indices, we increase254

the likelihood of finding a significant variable only by chance, which is common when255
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carrying out multiple testing. In the statistics literature, there are methods that correct256

for multiple testing biases, namely the Bonferroni or Sidak corrections (Dickhaus (2014);257

Shaffer (1995) ). The effective p-value that is equivalent to the usual 5% cut-off lies258

between 0.5% and 2%, depending on the level of correlation observed between the 10259

covariates used in this paper.260

261

This being said, however, predictors that generate p-values between 2% and 5% will262

also be considered in this analysis for various reasons. Firstly, there might be a true263

physical or natural explanation linking a predictand and its predictor but the relation-264

ship may be hard to observe because data is noisy or the phenomenon is too complex.265

Second, some of these relationships which are borderline significant might nonetheless266

be supported by the literature. And thirdly, the goal of this paper being the assessment267

of the significance of usual TC predictors during the positive and negative phases of the268

AMO, the difference in p-values during both phases might also be a very interesting269

metric to evaluate. Hence, a variable that has a p-value of 90% (which is extremely un-270

significant) during the positive AMO phase and a borderline p-value of 5% during the271

negative AMO phase, would still merit some attention. The significance of each covari-272

ate as well as the sign of that relationship for both phases of the AMO are displayed in273

figure 4.274

4 Modulation of large-scale influences on Atlantic cyclones275

4.1 Local and remote Sea Surface Temperatures276

Results from figure 4 suggest that some large-scale influences remain stationary dur-277

ing both phases of the AMO. Both the MDR SST with respect to the mean tropical SST278

(RelSST) and the absolute MDR SST (AtlSST) generally remain very significant predic-279

tors of Atlantic tropical cyclone activity, with RelSST returning the smallest p-values.280

Since both Atlantic and tropical SSTs influence the local thermodynamic conditions (i.e.281

instability of the ocean-atmosphere system), the prime modulator of TC activity in the282
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Atlantic over the recent past, this result is not entirely unexpected. Of course, RelSST283

and AtlSST are not entirely independent from one another, as RelSST is simply a mea-284

sure of how warm the Atlantic is with respect to the other tropical oceans or, put another285

way, how fast the tropical Atlantic warms with respect to these oceans.286

287

At the interannual timescale, the prime driver of Atlantic TC variability is generally288

considered to be El Niño Southern Oscillation (ENSO). ENSO is driven by changes in289

ocean temperature in the tropical Pacific, where above average conditions (El Niño) in290

the Central and Eastern Pacific shift the convective activity in the tropical Pacific east-291

ward, and modify the Walker cell throughout the tropics. The influence of ENSO on292

Atlantic TC activity is well documented and is understood to occur mainly through lo-293

cal changes in vertical wind shear: during El-Niño (La Niña) conditions, the eastward294

(westward) shift in convection in the tropical Pacific leads to anomalous upper-level295

westerlies (easterlies) over the Atlantic, which then increases (decreases) the vertical296

wind shear, thus decreasing (increasing) TC activity (Camargo et al. (2007b); Golden-297

berg and Shapiro (1996); Klotzbach (2011a)). The strong influence of ENSO can be seen298

clearly here with significant p-values for all the regressions between Niño3.45 and basin-299

wide predictands, regardless of the phase of the AMO. And although the differences300

between AMO+ and AMO- are small, our results are consistent with Klotzbach (2011a)301

and Klotzbach (2011b) which showed that the influence of ENSO on major hurricanes302

and landfalling hurricanes was stronger during the negative phase of the AMO.303

304

It is interesting to note that the significance of the remaining predictors (NAO, Sahel305

rainfall, SSNs, dust, stratospheric temperature) varies considerably depending whether306

we are in a positive or a negative phase of the AMO. During the negative phase, only307

the NAO and the Western Sahel precipitation consistently return significant coefficients,308

5We performed the regressions using a range of ENSO indices and found the Niño3.4 and Niño4 in-

dices to return the smallest p-values. Regressions performed using the Southern Oscillation Index (SOI),

Niño3 and Niño1+2 indices were, in general, also significant, but returned larger p-values. Only the

results obtained with the Niño3.4 are shown here.
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and neither the dust nor sunspot numbers appear to have any significant influence. On309

the other hand, during the positive phase, the significance of the predictors tends to be310

opposite: the NAO and the Western Sahel do not appear to play a role, whereas dust and311

sunspot numbers appear to be significant. Finally, the upper-tropospheric temperature312

shows indications of influencing different measures of TC activity during both phases313

of the AMO. We investigate the influence of each climate variable more closely in the314

following sections.315

4.2 Western Sahel Precipitation316

As stated earlier, previous studies have shown that Sahel rainfall used to be strongly317

correlated with the strongest storms of the Atlantic (Landsea and Gray (1992); Land-318

sea et al. (1992)). The influence of Western Sahel precipitation on TC activity has been319

explored by Goldenberg and Shapiro (1996), which linked changes in convective precip-320

itation over the Sahel region to anomalous zonal winds in the upper-troposphere, which321

in turn modulate vertical wind shear over the MDR and the likelihood of cyclogenesis322

over that region. This link between Sahel precipitation, vertical wind shear over the323

MDR and Atlantic TC activity has also been observed in high-resolution climate mod-324

els (Caron et al., 2012). It is possible that changes in the nature of the African Easterly325

Waves (AEWs) coming off the African continent might be playing a role (Thorncroft and326

Hodges, 2001).327

328

Figure 4 clearly shows that the relationship varies considerably between the neg-329

ative and positive phase of the AMO and confirms the findings of Fink et al. (2010),330

which showed, using simple linear regressions, that the influence of Western Sahel pre-331

cipitation on Atlantic TC activity is cyclical and tends to be strong (weak) in years where332

conditions over the Atlantic are detrimental (favorable) to cyclone formation.6 During333

the negative phase of the AMO, Western Sahel precipitation data shows no relationship334

to the total number of TCs, yet shows a positive relationship with the number of long-335

6Whereas Fink et al. (2010) used data covering the period 1921-2007, we used data covering 1900-2012.

We repeated our analysis using their dataset and the results were not significantly affected.
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duration TCs, hurricanes, major hurricanes and U.S. landfalling hurricanes, with the336

significance of the relationship increasing with the intensity category of the storms. For337

long-duration cyclone and hurricane numbers, we note that the significance increases338

when one uses the corrected data as opposed to the uncorrected HURDAT2 data. Since339

the strongest storms are likely to require a certain amount of time to reach high intensi-340

ties, the results are consistent with Landsea and Gray (1992) and Landsea et al. (1992).341

However, during the positive phase of the AMO, the relationship breaks down and the342

Western Sahel precipitation does not appear to influence TC activity.343

344

In figure 5, we compare the difference in cyclogenesis density of major hurricanes345

constructed using the 15 years with the largest positive Western Sahel rainfall anoma-346

lies and the 15 years with the largest negative Western Sahel rainfall anomalies, during347

both phases of the AMO. During AMO- (figure 5a), we see an increase in major hurri-348

canes associated with high Western Sahel precipitation. During AMO+ (figure 5b), we349

detect a similar increase (shifted slightly northward) in years of high precipitation, but350

it is compensated, in years of low Sahel precipitation, by an increase in major hurricanes351

in two different areas of the tropical Atlantic: i) at the eastern edge of the MDR and ii)352

off the coast of South America, at around 60◦W.353

354

We suggest that the increase in i) is caused by more favourable background condi-355

tions in AMO+ compared to AMO- which allow for more rapid development of AEWs356

into TCs such that these storms can better sustain the higher shear conditions prevailing357

over the Atlantic basins during years of low Sahel precipitation, whereas the increase in358

ii) likely represents AEWs which will have been sustained as they propagated along the359

southern edge of the MDR such that they avoid most of the higher shear conditions. It360

is not clear why years of lower precipitation over the western Sahel region would yield361

more TCs in these two particular areas compared to years of high precipitation during362

AMO+, but it seems clear that increase TC formation in the MDR region in years of low363

Sahel precipitation during AMO+ explains the different behaviour between AMO+ and364

AMO- as well as the breakdown of the significant relationship between major hurricane365
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number and Western Sahel precipitation. At this stage, we cannot yet speculate whether366

or not changes in AEW characteristics also play a role.367

4.3 North Atlantic Oscillation368

The North Atlantic Oscillation is a north-south dipole of sea level pressure anomalies369

between Iceland and the Azores: when pressures are high (low) over Iceland, they tend370

to be low (high) over the Azores (the NAO index is commonly taken as the difference371

in pressures between the two locations). Here we consider the NAO in two different372

seasons: spring NAO (May-June), and NAO (ASO) during the active hurricane season.373

We find that during the negative phase of the AMO, the NAO index is negatively cor-374

related to basin-wide Atlantic TC activity as well as to the number of U.S. landfalling375

hurricanes. This relationship holds only if the NAO is measured over the preceding376

months of May and June (MJ) however, and is not significant when measured during377

the hurricane (ASO) season, in accordance with previous results (Villarini et al., 2012).378

However, this coupling between NAO (MJ) and cyclone activity appears to break down379

during the positive phase of the AMO.380

381

The influence of the NAO on landfalling hurricanes has been previously documented382

(see references in table 1) and is generally assumed to occur through changes in the383

strength and location of the Atlantic subtropical high, which in turn impact the steering384

current in which the Atlantic TCs propagate (Elsner (2003); Kossin et al. (2010)). Dur-385

ing the negative phase of the NAO, the subtropical high is weaker and extends further386

south, which would favour westward propagation of TCs towards the U.S. In addition,387

such systems would tend to spend more time over the warm tropical waters than do388

early-recurving systems, thus also increasing the seasonal total of hurricanes. However,389

a recent paper by Colbert and Soden (2012) found no significant differences in TC tracks390

in NAO+ years compared to NAO- years and furthermore showed no simultaneous391

association between the NAO and the steering flow during the peak of the hurricane392

season. Here, we suggest a different mechanism by which the NAO impacts cyclone393
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activity.394

395

Figure 6 shows the difference in cyclogenesis density between the 15 most negative396

NAO (MJ) years and the 15 most positive NAO (MJ) years, during the negative (figure397

6a) and the positive phase of the AMO (figure 6b). More storms are seen forming in the398

MDR during AMO+ compared to AMO- (as expected), and although there appear to be399

regional differences during AMO+ years (e.g. east-west shift over the MDR), the influ-400

ence of the NAO (MJ) during AMO+ appears to be neutral overall, in terms of the total401

number of storms. The situation is noticeably different during AMO-. In the negative402

phase, fewer storms are observed in the MDR, with most of them forming exclusively403

during NAO- years. Furthermore, there is a large increase in cyclogenesis events east of404

the Caribbean Sea and east of Cuba and Florida during NAO- (MJ) compared to NAO+405

(MJ) years.406

407

These changes can be contrasted with changes in GPI (second row in figure 6), where408

the difference in detrended GPI between NAO- (MJ) and NAO+ (MJ) years is expressed409

as a percentage change with respect to the mean climatological value.7 Red (blue)410

colours mean higher GPI values during NAO- (NAO+) years. During NAO- (MJ) years,411

there is a large increase in GPI east of the Florida panhandle and Cuba, where a large412

increase in cyclogenesis is also detected. Westward propagating AEWs will thus en-413

counter more favourable conditions upon reaching the western part of the MDR and414

will be more likely to develop into TCs. The large increase in GPI over this part of the415

Atlantic during NAO- (MJ) years seems to be driven mostly by a decrease in vertical416

wind shear, itself driven by changes in upper-level winds.417

418

Although this result requires further study, it suggests that the influence of the May-419

June NAO on TCs goes beyond that of simply modulating the direction of propagation,420

7The difference has been constructed using the ten most negative and ten most positive NAO (MJ)

years during the period for which NCEP reanalysis is available, 1960-2012. Furthermore, failure to remove

the linear trend from the GPI timeseries does not significantly impact the result.
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but rather acts to change the overall large-scale conditions such that it can be detected in421

basin-wide cyclogenesis statistics. This influence appears to occur through anomalous422

upper-level easterlies over the western Atlantic, suggesting a (new) possible interaction423

between the NAO and TC activity through changes in the position or velocity of the424

subtropical jet stream during AMO- years. Exactly how the May-June NAO could be425

associated with these wind anomalies remains to be explained.426

4.4 Solar Activity427

Elsner and Jagger (2008) were the first to detect a negative relationship between sunspot428

numbers and U.S. landfalling hurricanes. They suggested that the eleven-year solar cy-429

cle can influence Atlantic cyclone activity in two counteracting ways. First, increased430

solar activity increases downward radiation, which in turn increases the heat content of431

the ocean, a condition favourable to cyclone formation. On the other hand, higher levels432

of UV emission during years of high solar activity also increase interactions with the433

ozone layer in the upper-troposphere/lower stratosphere, which then raise upper-level434

temperature and reduce potential intensity (increasing vertical stability) and cyclone435

formation. More recently, Hodges and Elsner (2012) showed that there was a clear west-436

east shift in Atlantic cyclone activity between minimum and maximum solar activity,437

with an increase in the eastern part of the basin partly compensating for the decrease in438

the west during years of high solar activity. They attributed this shift to the two com-439

peting effects of the solar cycle, the first being predominant in the Eastern part of the440

tropical Atlantic where SSTs are cooler, and the second in the western part where SSTs441

are warmer. Here, we find that solar activity, as measured by the September sunspot442

numbers (SSNs), has a significant negative impact on long-duration storms (adjusted443

and non-adjusted), total number of TCs (adjusted) and landfalling hurricanes only dur-444

ing the positive phase of the AMO. This result is consistent with Hodges and Elsner445

(2010), which showed that correlations between solar activity and hurricane activity in-446

crease with Atlantic SSTs.447

448
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Figures 7a,b show the difference in cyclogenesis density in long-duration TCs for449

years with low and high SSNs. In both phases of the AMO, we observe the east-west450

shift detected by Hodges and Elsner (2012). However, while during the AMO- the shift451

is seen to be globally neutral, during the positive phase of the AMO the large increase452

in activity in the western part of the MDR (when SSNs are low) is not entirely compen-453

sated by the increase in the eastern part of the basin (when SSNs are high). There thus454

seems to be an asymmetry in the strength of the response to lower solar activity between455

the two phases of the AMO. Whereas higher solar activity produces a similar increase456

in TC activity in the eastern part of the MDR during both phases of the AMO, lower457

solar activity leads to a much stronger increase in TC activity in the western part during458

AMO+ than during AMO-. These results suggest that high solar activity is very efficient459

at decreasing TC activity in the western Atlantic during AMO+.460

461

Composites of potential intensity do not show any obvious east-west shift during462

either AMO+ or AMO- (not shown). This could be due to limitations of the NCEP re-463

analysis in estimating PI, or it could be that the east-west shift in cyclone activity is464

caused by some other factor(s). For example, changes in the steering flow linked to465

solar activity could potentially steer cyclones towards the subtropics sooner (the exact466

mechanism for this remains unknown). The shift could also be due to the beta-drift,467

whereby storms forming earlier due to higher SSTs also recurve earlier towards the sub-468

tropics. On the other hand, inspection of wind composites reveals an area of lower wind469

shear collocated with the area of higher cyclogenesis detected during years of low SSNs470

during AMO+ periods (not shown), which suggests that changes in the dynamic, driven471

by solar activity, could also be playing a role.472

473

Although we cannot conclude at this stage which mechanism is responsible for this474

east-west shift or for the asymmetrical response, the negative relationship measured475

here between SSNs and the number of U.S. landfalling storms and long-duration storms476

is consistent with the results obtained in the publications listed in table 1.477
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4.5 Dust478

Given the comparatively shorter length of the remaining timeseries (all three climate479

indices are only available for ∼50 years, resulting in less than 30 years of data for either480

AMO+ and AMO-), conclusions relative to the influence of these parameters are some-481

what more uncertain than the other parameters discussed so far, which go back to 1878,482

with the exception of the Sahel rainfall record which began in 1900.483

484

Dust outbreaks from West Africa over the tropical North Atlantic have been shown to485

be linked to Atlantic TC activity (Evan et al., 2006). These outbreaks impact TC activity486

through changes in underlying tropical SSTs, with dust optical depth anomalies and487

monthly mean SSTs showing a maximum in cross-correlation when the SST lags the488

dust by one to three months (Evan and Mukhopadhyay, 2010). Furthermore, episodes489

of dust outbreak are associated with extremely dry air coming from the Sahara, which490

is another factor detrimental to cyclone formation. We find that the amount of dust in491

the atmosphere, measured over the months of August-October, has a significant and492

negative impact on all measures of TC activity, but only during the positive phase of493

the AMO. Figures 8a,b show the difference in cyclogenesis density between years with494

low and high dust concentration during the negative (8a) and positive (8b) phase of495

the AMO. In both cases, years with lower dust concentration are associated with more496

storms over the MDR. This increase in activity appears to be stronger during AMO+,497

which is not surprising since the MDR is more conducive to TC formation. However,498

during AMO-, the increase observed when dust is low is compensated by an increase499

in TC activity in the western, subtropical part of the basin. It is not clear at this stage500

if this apparent link between increased dust concentration and higher TC activity in501

the subtropical Atlantic is a real feature, with the dust possibly acting as an inhibitor502

and delaying cyclogenesis of AEWs, or is simply due to the fact that we don’t have a503

sufficiently long dust dataset to produce an appropriate composite.504
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4.6 Ozone Concentration - Upper tropospheric temperature505

A recent paper by Emanuel et al. (2013) suggests that the recent decrease in ozone con-506

centration in the upper-troposphere is in part responsible for the large and recent in-507

crease in power dissipation index (PDI) in the Atlantic. They argue that the decrease508

in ozone concentration influences Atlantic hurricane activity by decreasing the temper-509

ature near the tropopause, which in turn modifies the thermodynamic environment in510

which Atlantic hurricanes develop, more specifically their outflow temperature. The511

influence of ozone concentration on Atlantic TC activity is supported by the inability512

of dynamically downscaled AGCM simulations driven by observed SSTs to capture the513

recent increase in hurricane activity, unless the decrease in tropopause temperature is514

taken into consideration (Caron and Jones (2011); Emanuel et al. (2013)).515

516

As indicated earlier, the existing timeseries of stratospheric ozone concentration over517

the MDR do not cover a sufficiently long period to verify this hypothesis using the tech-518

nique we are applying here. Instead, we have selected the MDR 100 hPa temperature519

directly. We find a strong and negative impact between temperature at 100 hPa and the520

total number of TCs and long-duration TCs during AMO+, as well as a weaker but still521

significant impact on the total number of TCs, hurricanes and major hurricanes during522

AMO-. Given that the recent increase in PDI is largely driven by an increase in storm523

numbers (Emanuel, 2007), these two results are consistent with one another. On the524

other hand, p-values for landfalling hurricanes are not measured to be significant in ei-525

ther phase of the AMO. In order to rule out the possibility that this relationship comes526

from the influence of the 11-year solar cycle on stratospheric temperature, we repeated527

the regressions after filtering out the ASO MDR 100 hPa temperature using a 9-13 year528

bandstop filter. Doing so tends to slightly decrease the p-values, but the significance529

levels were not impacted.530

531

It can be seen in figure 1j that MDR temperatures at 100 hPa differ significantly be-532

tween ERA and NCEP for most of the available reanalysis period. NCEP reanalyses533
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display a stronger cooling trend than other reanalysis products at that level and some of534

this trend is likely to be spurious (see figure 1a in Vecchi et al. (2013)). As such, we also535

computed our regressions using individual reanalysis timeseries instead of the average536

of the two. The p-values obtained using ERA (NCEP) data are smaller (larger) than537

those obtained using the mean, but generally remain significant in all cases.8 Since our538

results tend to improve with what is generally considered the better reanalysis while the539

second set of reanalysis still returns significant p-value, we conclude that our results are540

not dependent upon the choice of the reanalysis.541

542

We suggest that the difference in significance measured between AMO+ and AMO-543

is due to the relatively short length of the record combined with the fact that the down-544

ward trend in stratospheric temperature which began in the early 90’s occurs almost545

entirely during an AMO+ phase. Besides the fact that there are fewer storms during546

AMO- and thus a signal of ozone concentration/stratospheric temperature might be547

weaker, we see no apriori reasons as to why that influence should differ during the neg-548

ative and positive phase of the AMO. This interpretation is supported by results shown549

in figures 9, 10 and 11. If this is indeed the case and the negative temperature anomaly550

in upper-tropospheric temperature were to persist during the next negative AMO pe-551

riod, we could observe an above average number of cyclones during that period (with552

respect to past AMO- years).553

554

4.7 The Quasi-Biennal Oscillation555

The quasi-biennial oscillation (QBO) is an oscillation of the tropical zonal winds in the556

stratosphere. Its highly predictable nature, even a year in advance, initially made it very557

interesting in the context of long-range seasonal forecasts. However, the relationship558

between the QBO and Atlantic TC activity seems to have broken down in recent years559

and as such is no longer used as a predictor by any of the groups producing such fore-560

8The exact p-values are given as supplementary information.
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casts. The reason behind this change in behaviour is currently unknown and the phys-561

ical mechanism possibly linking the QBO to Atlantic hurricane activity still remains to562

be established (Camargo and Sobel, 2010). In this study, we found no influence of the563

QBO on Atlantic TC activity in either phase of the AMO.564

5 Robustness analysis565

Before we conclude, we analyze the results presented in section 4 in terms of their ro-566

bustness to various factors. There are two main elements here which require further567

investigation, namely model error and sample size.568

5.1 Model error569

It is well known that the Poisson regression assumes equidispersion, that is, the condi-570

tional (upon regressors) mean is identical to the conditional variance. We now investi-571

gate whether the preceding results are robust to the presence of overdispersion (variance572

greater than expectation), which is a common feature in many count variables. Although573

Gourieroux et al. (1984b) and Gourieroux et al. (1984a) showed that the value of β1 is574

robust to model mis-specification in regressions with count data (consistent estimator),575

overdispersion or underdispersion can have an effect on standard errors and hence on576

any other significance measure (such as confidence intervals and p-values).577

578

To analyze the robustness with respect to overdispersion, two different approaches579

are used. First, we compute a standard error that is robust to such mis-specification us-580

ing the sandwich covariance estimator. Second, we use a GLM that is not based upon581

the Poisson distribution. Hence, we use the quasi-Poisson model and the negative bino-582

mial regression (and its special case, the geometric distribution). That leaves us with a583

total of four robustness checks with respect to the regression model.584

585

Instead of presenting the p-values (or the various shades of grey) for each of the586
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latter robustness checks, we show in figure 9 the number of times (out of four) which587

the p-value of a given predictand/predictor combination was below 5% for any given588

check. In the very large majority of cases, the relationships obtained in section 4 are589

maintained, thus validating earlier results.9590

591

5.2 Sample size592

Although annual climate data usually spans over 130 years of data, the experiments593

presented in this paper rely on a sample that is approximately split in two (AMO+ and594

AMO- years). Thus, the effective sample size generally drops to about 65-70, and even595

to ∼30 for some of the climate indices observed only from the 1950’s onward. Small596

sample sizes may affect the reliability of significance tests and in this section we check if597

it might have affected the results.598

599

To do so, we use both a non-parametric and a parametric bootstrap, which are stan-600

dard techniques in such cases. Quantiles of the bootstrapped parameters are used in601

order to assess the significance of a predictor. Figure 10 shows the significance of each602

predictand/predictor pair, for both bootstrap methods, using various shades of grey. We603

observe that the results are generally robust to the size of the sample; the non-parametric604

bootstrap being the method which adjusts standard errors the most, especially for in-605

dices starting in the 1950’s. For example, with the non-parametric bootstrap, the rela-606

tionship between the dust concentration and the number of TCs (in general) is weak or607

non-existent, whereas it appears to be relatively strong for almost all TC counts when608

using the parametric bootstrap. Therefore, the overall conclusions seem to be unaffected609

by the split in the sample size.610

9For the exact p-values of each regression, please consult the two Excel files associated with the sup-

plementary information.
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6 Concluding remarks611

The results presented here suggest that climate controls of Atlantic TC activity vary612

along with the slowly varying AMO. While the influence of local and remote SSTs re-613

mains present in both phases of the AMO, the influence of other factors is distinctly614

concentrated in either one phase or the other. During the negative phase of the AMO,615

when hurricane activity is in a lull, TC activity is linked, through changes in large-scale616

circulation, to precipitation over the Western Sahel and the phase of the May-June NAO,617

whereas during the positive phase of the AMO, when the basin is generally more active,618

TC activity is strongly associated with solar variability and dust concentration over the619

Atlantic basin. Finally, upper-tropospheric temperatures show a significant relationship620

to different measures of cyclone activity during the two phases of the AMO and we621

speculate that, if it were available, a longer timeseries of upper-level temperature would622

likely reduce the p-values in both phases of the AMO.623

624

For comparison purposes, we also evaluate the significance of the covariates for625

the entire 1878-2012 period. In doing so, we are also considering the lower frequency626

timescale which was essentially filtered out in our previous analysis. The p-values are627

shown in figure 11 and the β values are provided in table 5. We observe that whenever628

a covariate is important in either the AMO + or AMO - phase, it is generally relevant629

when the entire timeseries is considered.630

631

Since that by sorting years according to their AMO index we are isolating the years632

when a given physical influence is strongest, one might expect to obtain more significant633

relationships when the sample is divided into AMO + and AMO - than when we use the634

full sample (figure 4 compared to figure 11). Although intuitive, this might not be the635

case for two reasons. First, by splitting the sample into two, we are also increasing the636

statistical uncertainty on a parameter estimate, potentially increasing the resulting p-637

value. Furthermore, the transition of relevant climate influences on Atlantic TC activity638

between AMO+/- is likely to be progressive, shifting with the background conditions639
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as the latter go from conducive to marginal or vice-versa, and the effect of a covariate is640

unlikely to change abruptly from one regime to another as the AMO reaches 0, a some-641

what arbitrary cutoff point. Therefore, by isolating AMO +/- periods, we have removed642

some of the noise, but we likely also rejected some years during which a given covariate643

would still be influencing TC activity. One notable exception appears to be the influence644

of solar activity, which tends to decrease when the entire period is taken into consid-645

eration (compared to AMO+ only), thus suggesting that the influence of solar activity646

on basin-wide TC statistics is concentrated in years when the general thermodynamic647

conditions over the Atlantic are most favourable to cyclone formation.648

649

The results of this paper have important implications for hurricane seasonal fore-650

casts, as they suggest that such forecasts could be improved by making a pre-selection651

of the appropriate factors simply based upon the phase of the AMO. We are currently652

investigating this avenue.653

7 Acknowledgements654

The authors would like to thank all the people and organizations who made their data655

available: Gabriel Vecchi, Amato Evan, the National Hurricane Center, the Climate Re-656

search Unit of East Anglia, the Hadley Centre, the Earth System Research Laboratory, the657

National Climatic Data Center, the Solar Influences Data Analysis Center, the National658

Geophysical Data Center, ECMWF, the Department of Earth Sciences at the University659

of Berlin and the Joint Institute for the Study of the Atmosphere and Ocean at the Uni-660

versity of Washington. Special thanks to Andreas Fink and Malvin Schneidewind who661

provided us with additional data, and to Thomas Jagger for some valuable feedback662

in the earlier stage of this project. We would also like to thank Katherine Barrett for663

putting her proofreading skills at our disposal and Jean-Philippe Boucher for providing664

additional comments on the statistics of this paper. We are also most grateful to Chris665

Landsea and an anonymous reviewer for taking the time to review an earlier version of666

this document, and for their most helpful comments and suggestions. Finally, Mathieu667

25



Boudreault would like to acknowledge support from the Natural Sciences and Engineer-668

ing Research Council of Canada, and Louis-Philippe Caron would like to acknowledge669

financial support from the EU-funded SPECS project (Grant # 3038378).670

26



References671

Bell, G. D. and Chelliah, M. (2006). Leading Tropical Modes Associated with Interan-672

nual and Multidecadal Fluctuations in North Atlantic Hurricane Activity. Journal of673

Climate, 19(4):590–612.674

Bister, M. and Emanuel, K. A. (1998). Dissipative heating and hurricane intensity. Mete-675

orology and Atmospheric Physics, 65(3-4):233–240.676

Bruyère, C. L., Holland, G. J., and Towler, E. (2012). Investigating the Use of a Genesis677

Potential Index for Tropical Cyclones in the North Atlantic Basin. Journal of Climate,678

25(24):8611–8626.679

Camargo, S. J., Barnston, A. G., Klotzbach, P. J., and Landsea, C. W. (2007a). Seasonal680

tropical cyclone forecasts. 56(October):297–309.681

Camargo, S. J., Emanuel, K. A., and Sobel, A. H. (2007b). Use of a Genesis Potential Index682

to Diagnose ENSO Effects on Tropical Cyclone Genesis. Journal of Climate, 20(19):4819–683

4834.684

Camargo, S. J. and Sobel, A. H. (2010). Revisiting the Influence of the Quasi-Biennial685

Oscillation on Tropical Cyclone Activity. Journal of Climate, 23(21):5810–5825.686

Camargo, S. J., Ting, M., and Kushnir, Y. (2012). Influence of local and remote SST on687

North Atlantic tropical cyclone potential intensity. Climate Dynamics, 40(5-6):1515–688

1529.689

Caron, L.-P. and Jones, C. G. (2011). Understanding and simulating the link between690

African easterly waves and Atlantic tropical cyclones using a regional climate model:691

the role of domain size and lateral boundary conditions. Climate Dynamics, 39(1-692

2):113–135.693

Caron, L.-P., Jones, C. G., and Doblas-Reyes, F. (2013). Multi-year prediction skill of694

Atlantic hurricane activity in CMIP5 decadal hindcasts. Climate Dynamics, 5.695

27



Caron, L.-P., Jones, C. G., Vaillancourt, P. a., and Winger, K. (2012). On the relation-696

ship between cloud-radiation interaction, atmospheric stability and Atlantic tropical697

cyclones in a variable-resolution climate model. Climate Dynamics, 40(5-6):1257–1269.698

Colbert, A. J. and Soden, B. J. (2012). Climatological Variations in North Atlantic Tropical699

Cyclone Tracks. Journal of Climate, 25(2):657–673.700

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae,701

U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., Van De702

Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haim-703

berger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kå llberg, P., Köhler, M.,704

Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey,705

C., De Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F. (2011). The ERA-Interim706

reanalysis: configuration and performance of the data assimilation system. Quarterly707

Journal of the Royal Meteorological Society, 137(656):553–597.708

Dickhaus, T. (2014). Simultaneous Statistical Inference: With Applications in the Life Sciences.709

Springer.710

Dunstone, N. J., Smith, D. M., Booth, B. B. B., Hermanson, L., and Eade, R. (2013). An-711

thropogenic aerosol forcing of Atlantic tropical storms. Nature Geoscience, 6(7):1–6.712

Elsner, J. B. (2003). Tracking Hurricanes. Bulletin of the American Meteorological Society,713

84(3):353–356.714

Elsner, J. B. and Jagger, T. H. (2006). Prediction Models for Annual U.S. Hurricane715

Counts. Journal of Climate, 19:2935–2952.716

Elsner, J. B. and Jagger, T. H. (2008). United States and Caribbean tropical cyclone activity717

related to the solar cycle. Geophysical Research Letters, 35(18):L18705.718

Elsner, J. B., Jagger, T. H., and Niu, X.-F. (2000a). Changes in the Rates of North Atlantic719

Major Activity during the 20th Century. Geophysical Research Letters, 27(12):1743–1746.720

28



Elsner, J. B., Kara, A. B., and Owens, M. A. (1999). Fluctuations in North Atlantic Hurri-721

cane Frequency. Journal of Climate, 12:427–437.722

Elsner, J. B. and Kocher, B. (2000). Global Tropical Cyclone Activity: A Link to the North723

Atlantic Oscillation. Geophysical Research Letters, 27(1):129–132.724

Elsner, J. B., Liu, K.-B., and Kocher, B. (2000b). Spatial Variations in Major U.S. Hurricane725

Activity : Statistics and a Physical Mechanism. Journal of Climate, 13:2293–2305.726

Emanuel, K. A. (1995). Sensitivity of Tropical Cyclones to Surface Exchange Coefficients727

and a Revised Steady-State Model Incorporating Eye Dynamics. Journal of the Atmo-728

spheric Sciences, 52:3969–3972.729

Emanuel, K. A. (2005). Increasing destructiveness of tropical cyclones over the past 30730

years. Nature, 436(7051):686–8.731

Emanuel, K. A. (2007). Environmental Factors Affecting Tropical Cyclone Power Dissi-732

pation. Journal of Climate, 20(22):5497–5509.733

Emanuel, K. A. (2010). Tropical cyclone activity downscaled from NOAA-CIRES Re-734

analysis, 1908-1958. Journal of Advances in Modeling Earth Systems, 2:1–12.735

Emanuel, K. A., Solomon, S., Folini, D., Davis, S., and Cagnazzo, C. (2013). Influence of736

Tropical Tropopause Layer Cooling on Atlantic Hurricane Activity. Journal of Climate,737

26(7):2288–2301.738

Enfield, D. B., Mestas-Nuñez, A. M., and Trimble, P. J. (2001). The Atlantic Multidecadal739

Oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical740

Research Letters, 28(10):2077–2080.741

Evan, A. T. (2012). Atlantic hurricane activity following two major volcanic eruptions.742

Journal of Geophysical Research, 117:D06101.743

Evan, A. T., Dunion, J., Foley, J. A., Heidinger, A. K., and Velden, C. S. (2006). New744

evidence for a relationship between Atlantic tropical cyclone activity and African dust745

outbreaks. Geophysical Research Letters, 33(19):L19813.746

29



Evan, A. T., Heidinger, A. K., Bennartz, R., Bennington, V., Mahowald, N. M., Corrada-747

Bravo, H., Velden, C. S., Myhre, G., and Kossin, J. P. (2008). Ocean temperature forcing748

by aerosols across the Atlantic tropical cyclone development region. Geochemistry,749

Geophysics, Geosystems, 9(5):Q05V04.750

Evan, A. T. and Mukhopadhyay, S. (2010). African Dust over the Northern Tropical751

Atlantic: 1955-2008. Journal of Applied Meteorology and Climatology, 49(11):2213–2229.752

Fink, A. H., Schrage, J. M., and Kotthaus, S. (2010). On the Potential Causes of the Non-753

stationary Correlations between West African Precipitation and Atlantic Hurricane754

Activity. Journal of Climate, 23(20):5437–5456.755

Goldenberg, S. B., Landsea, C. W., Mestas-Nunez, A. M., and Gray, W. M. (2001).756

The recent increase in Atlantic hurricane activity: Causes and implications. Science,757

293(5529):474–479.758

Goldenberg, S. B. and Shapiro, L. J. (1996). Physical Mechanisms for the Association of759

El Niño and West African Rainfall with Atlantic Major Hurricane Activity. Journal of760

Climate, 9:1169–1187.761

Gourieroux, C., Monfort, A., and Trognon, A. (1984a). Pseudo maximum likelihood762

methods: applications to Poisson models. Econometrica, 52(3):701–720.763

Gourieroux, C., Monfort, A., and Trognon, A. (1984b). Pseudo maximum likelihood764

methods: Theory. Econometrica, 52(3):681–700.765

Gray, W. M. (1979). Hurricanes: Their formation, structure and likely role in the tropical766

circulation. In Shaw, D., editor, Meteorology Over Tropical Oceans, pages 155–218. Royal767

Meteorological Society, James Glaisher House, Grenville Place, Bracknell, Berkshire,768

RG12 1BX.769

Gray, W. M. (1984a). Atlantic Seasonal Hurricane Frequency. Part I: El Niño and 30 mb770

Quasi-Biennial Oscillation influences. Monthly Weather Review, 112:1649–1668.771

30



Gray, W. M. (1984b). Atlantic Seasonal Hurricane Frequency. Part II: Forecasting its772

Variability. Monthly Weather Review, pages 1669–1683.773

Gray, W. M. and Landsea, C. W. (1992). African Rainfall as a Precursor of Hurricane-774

Related Destruction on the U.S. East Coast. Bulletin of the American Meteorological Soci-775

ety, 73(9):1352–1364.776

Gray, W. M., Landsea, C. W., Mielke Jr, P. W., and Berry, K. J. (1993). Predicting Atlantic777

Basin Seasonal Tropical Cyclone Activity by 1 August. Weather and Forecasting, 8:73–778

86.779

Hodges, R. E. and Elsner, J. B. (2010). Evidence linking solar variability with US hurri-780

canes. International Journal of Climatology, 31(13):1897–1907.781

Hodges, R. E. and Elsner, J. B. (2012). The Spatial Pattern of the Sun-Hurricane Connec-782

tion across the North Atlantic. ISRN Meteorology, 2012:1–9.783

Hoyos, C. D., Agudelo, P. A., Webster, P. J., and Curry, J. A. (2006). Deconvolution of the784

factors contributing to the increase in global hurricane intensity. Science, 312(5770):94–785

7.786

Jagger, T. H., Elsner, J. B., and Niu, X.-F. (2001). A Dynamic Probability Model of Hur-787

ricane Winds in Coastal Counties of the United States. Journal of Applied Meteorology,788

40(5):853–863.789

Jones, P. D., Jonsson, T., and Wheeler, D. (1997). Extension to the North Atlantic Oscil-790

lation using early instrumental pressure observations from Gibraltar and South West791

Iceland. International Journal of Climatology, 17:1433–1450.792

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M.,793

Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M.,794

Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne,795

R., and Joseph, D. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the796

American Meteorological Society, 77(3):437–471.797

31



Kim, H.-M., Webster, P. J., and Curry, J. A. (2009). Impact of shifting patterns of Pacific798

Ocean warming on North Atlantic tropical cyclones. Science, 325(5936):77–80.799

Klotzbach, P. J. (2011a). El Niño-Southern Oscillation’s Impact on Atlantic Basin Hurri-800

canes and U.S. Landfalls. Journal of Climate, 24(4):1252–1263.801

Klotzbach, P. J. (2011b). The Influence of El Niño-Southern Oscillation and the Atlantic802

Multidecadal Oscillation on Caribbean Tropical Cyclone Activity. Journal of Climate,803

24(3):721–731.804

Knight, J. R., Folland, C. K., and Scaife, A. A. (2006). Climate impacts of the Atlantic805

Multidecadal Oscillation. Geophysical Research Letters, 33(17):L17706.806

Kossin, J. P., Camargo, S. J., and Sitkowski, M. (2010). Climate Modulation of North807

Atlantic Hurricane Tracks. Journal of Climate, 23(11):3057–3076.808

Kossin, J. P. and Vimont, D. J. (2007). A More General Framework for Understanding At-809

lantic Hurricane Variability and Trends. Bulletin of the American Meteorological Society,810

88(11):1767–1781.811

Kozar, M. E., Mann, M. E., Camargo, S. J., Kossin, J. P., and Evans, J. L. (2012). Stratified812

statistical models of North Atlantic basin-wide and regional tropical cyclone counts.813

Journal of Geophysical Research, 117(D18):D18103.814

Landsea, C. W. (2007). Counting Atlantic Tropical Cyclones Back to 1900. EOS,815

88(18):197–208.816

Landsea, C. W., Feuer, S., Hagen, A., Glenn, D. A., Sims, J., Perez, R., Chenoweth, M.,817

and Anderson, N. (2012). A Reanalysis of the 1921-30 Atlantic Hurricane Database.818

Journal of Climate, 25(3):865–885.819

Landsea, C. W. and Franklin, J. L. (2013). Atlantic Hurricane Database Uncertainty and820

Presentation of a New Database Format. Monthly Weather Review, 141(10):3576–3592.821

32



Landsea, C. W., Glenn, D. a., Bredemeyer, W., Chenoweth, M., Ellis, R., Gamache, J.,822

Hufstetler, L., Mock, C., Perez, R., Prieto, R., Sánchez-Sesma, J., Thomas, D., and Wool-823

cock, L. (2008). A Reanalysis of the 1911-20 Atlantic Hurricane Database. Journal of824

Climate, 21(10):2138–2168.825

Landsea, C. W. and Gray, W. M. (1992). The strong association between Western Sahelian826

Monsoon Rainfall and Intense Atlantic Hurricanes. Journal of Climate, 5:435–453.827

Landsea, C. W., Gray, W. M., Mielke Jr, P. W., and Berry, K. J. (1992). Long-Term Varia-828

tions of Western Sahelian Monsoon Rainfall and Intense U.S. Landfalling Hurricanes.829

Journal of Climate, 5:1528–1534.830

Landsea, C. W., Pielke Jr, R. A., Mestas-Nunez, A. M., and Knaff, J. A. (1999). Atlantic831

basin hurricanes: indices of climatic changes. Climatic Change, 42:89–129.832

Landsea, C. W., Vecchi, G. A., Bengtsson, L., and Knutson, T. R. (2010). Impact of Dura-833

tion Thresholds on Atlantic Tropical Cyclone Counts. Journal of Climate, 23(10):2508–834

2519.835

Latif, M., Keenlyside, N., and Bader, J. (2007). Tropical sea surface temperature, vertical836

wind shear, and hurricane development. Geophysical Research Letters, 34(1):L01710.837

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Boca Raton: Chapman838

and Hall/CRC, 2nd edition.839

Naujokat, B. (1986). An Update of the Observed Quasi-Biennial Oscillation of the Strato-840

spheric Winds over the Tropics. Journal of Atmospheric Sciences, 43(17):1873–1877.841

Pielke, R. A. J. and Landsea, C. N. (1999). La Niña, El Niño and Atlantic Hurricane Dam-842

ages in the United States. Bulletin of the American Meteorological Society, 80(10):2027–843

2033.844

Rayner, N. A., Brohan, P., Parker, D. E., Folland, C. K., Kennedy, J. J., Vanicek, M., Ansell,845

T. J., and Tett, S. F. B. (2006). Improved Analyses of Changes and Uncertainties in846

33



Sea Surface Temperature Measured In Situ since the Mid-Nineteenth Century: The847

HadSST2 Dataset. Journal of Climate, 19(3):446–469.848

Saunders, M. A. and Lea, A. S. (2008). Large contribution of sea surface warming to849

recent increase in Atlantic hurricane activity. Nature, 451(7178):557–60.850

Shaffer, J. P. (1995). Multiple Hypothesis Testing. Annual Review of Psychology, 46:561–851

584.852

Shapiro, L. J. (1989). The Relationship of the Quasi-biennial Oscillation to Atlantic Trop-853

ical Storm Activity. Monthly Weather Review, 117:1545–1552.854

Shapiro, L. J. and Goldenberg, S. B. (1998). Atlantic Sea Surface Temperatures and Trop-855

ical Cyclone Formation. Journal of Climate, 11(4):578–590.856

Smith, D. M., Eade, R., Dunstone, N. J., Fereday, D., Murphy, J. M., Pohlmann, H., and857

Scaife, A. a. (2010). Skilful multi-year predictions of Atlantic hurricane frequency.858

Nature Geoscience, 3(12):846–849.859

Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J. (2008). Improvements860

to NOAA’s Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006).861

Journal of Climate, 21(10):2283–2296.862

Solow, A. and Nicholls, N. (1990). The Relationship between the Southern Oscillation863

and Tropical Cyclone Frequency in the Australian Region. Journal of Climate, 3:1097–864

1101.865

Swanson, K. L. (2008). Nonlocality of Atlantic tropical cyclone intensities. Geochemistry,866

Geophysics, Geosystems, 9(4):Q04V01.867

Thorncroft, C. and Hodges, K. I. (2001). African easterly wave variability and its rela-868

tionship to Atlantic tropical cyclone activity. Journal of Climate, 14(6):1166–1179.869

Tippett, M. K., Camargo, S. J., and Sobel, A. H. (2011). A Poisson Regression Index for870

Tropical Cyclone Genesis and the Role of Large-Scale Vorticity in Genesis. Journal of871

Climate, 24(9):2335–2357.872

34



Trenberth, K. E. (1997). The Definition of El Niño. Bulletin of the American Meteorological873

Society, 78(12):2771–2777.874

Uppala, S., Kå llberg, P., Simmmons, A., Andrea, U., da Costa Bechtold, V., Fiorino, M.,875

Gibson, J., Haseler, J., Hernandez, A., Kelly, G., Li, X., Onogi, K., Saarinen, S., Sokka,876

N., Allan, R., Andersson, E., Arpe, K., Balmaseda, M., Beljaars, A., de Berg, L. V.,877

Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher,878

M., Fuentes, M., Hagemann, S., Hólm, E., Hoskin, B., Isaken, L., Janssen, P., Jenne, R.,879

McNally, A., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N., Saunders, R., Simon, P., Sterl,880

A., Trenberth, K., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J. (2005). The881

ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131:2961–3012.882

Vecchi, G. A., Fueglistaler, S., Held, I. M., Knutson, T. R., and Zhao, M. (2013). Impacts883

of Atmospheric Temperature Trends on Tropical Cyclone Activity. Journal of Climate,884

26(11):3877–3891.885

Vecchi, G. A. and Knutson, T. R. (2008). On Estimates of Historical North Atlantic Trop-886

ical Cyclone Activity. Journal of Climate, 21(14):3580–3600.887

Vecchi, G. A. and Knutson, T. R. (2011). Estimating Annual Numbers of Atlantic Hur-888

ricanes Missing from the HURDAT Database (1878-1965) Using Ship Track Density.889

Journal of Climate, 24(6):1736–1746.890

Vecchi, G. A., Zhao, M., Wang, H., Villarini, G., Rosati, A., Kumar, A., Held, I. M., and891

Gudgel, R. (2011). Statistical-Dynamical Predictions of Seasonal North Atlantic Hur-892

ricane Activity. Monthly Weather Review, 139(4):1070–1082.893

Villarini, G., Vecchi, G. A., Knutson, T. R., and Smith, J. A. (2011). Is the recorded increase894

in short-duration North Atlantic tropical storms spurious? Journal of Geophysical Re-895

search, 116(D10):D10114.896

Villarini, G., Vecchi, G. A., and Smith, J. A. (2010). Modeling the Dependence of Tropical897

Storm Counts in the North Atlantic Basin on Climate Indices. Monthly Weather Review,898

138(7):2681–2705.899

35



Villarini, G., Vecchi, G. A., and Smith, J. A. (2012). U.S. Landfalling and North Atlantic900

Hurricanes: Statistical Modeling of Their Frequencies and Ratios. Monthly Weather901

Review, 140(1):44–65.902

Vimont, D. J. and Kossin, J. P. (2007). The Atlantic Meridional Mode and hurricane903

activity. Geophysical Research Letters, 34(7):L07709.904

Wang, C., Dong, S., Evan, A. T., Foltz, G. R., and Lee, S.-K. (2012). Multidecadal Covari-905

ability of North Atlantic Sea Surface Temperature, African Dust, Sahel Rainfall, and906

Atlantic Hurricanes. Journal of Climate, 25(15):5404–5415.907

Winkelmann, R. (2010). Econometric Analysis of Count Data. Springer.908

Zhang, R. and Delworth, T. L. (2006). Impact of Atlantic multidecadal oscillations on In-909

dia/Sahel rainfall and Atlantic hurricanes. Geophysical Research Letters, 33(17):L17712.910

36



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Figure 1: Timeseries of a) AMO index, b) MDR SST, c) Relative SST, d) Niño3.4 index, e) NAO

(MJ), f) NAO (ASO), g) Sahel rainfall anomaly (w.r.t. 1900-2012 climatology), h) SSNs, i) MDR

dust concentration, j) MDR 100 hPa temperature. MDR SST and relative SST are expressed as

anomalies with respect to the climatological mean. The period over which each index is calcu-

lated is given in table 3.
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(a) (b)

(c) (d)

(e)

Figure 2: Timeseries for all Atlantic a) tropical cyclones, b) long-lived tropical cyclones, c) hur-

ricanes, d) major hurricanes and e) U.S. landfalling hurricanes. Original HURDAT2 data are in

black and bias-corrected data are in red.
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Figure 3: Mean ASO GPI, for the period 1960-2012. Only values greater than 0.005 are shown.

Green cross: total cyclogenesis events detected during the period 1960-2012.
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Figure 4: P-values for the significance of a given covariate. The different shadings correspond

to, from darkest to lightest: < 0.1% to < 10% significance. White is > 10%. A red shading indicates

that β1>0 and a blue shading indicates that β1<0.
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(a) AMO- (b) AMO+

Figure 5: Difference in cyclogenesis density of major hurricanes between the 15 years with the

largest positive and negative Western Sahel rainfall anomalies. Data are taken from a) AMO-

years and b) AMO+ years. Yellow-red (blue) colors represent more TCs during years with pos-

itive (negative) rainfall anomalies. Units are cyclone number per 2◦×2◦ grid box. Cyclogenesis

density is smoothed by averaging the eight-grid points surrounding the main grid point with 1:8

weighting and the total divided by 2.
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(a) AMO- (b) AMO+

(c) AMO- (d) AMO+

Figure 6: First row: Difference in cyclogenesis density between the 15 most negative (MJ) NAO

and 15 most positive (MJ) NAO years. Data are taken from a) AMO- years and b) AMO+ years.

Units are cyclone number per 2◦×2◦ grid box. Yellow-red/blue colors represent more TCs dur-

ing NAO-/NAO+ years. Cyclogenesis density is smoothed by averaging the eight-grid points

surrounding the main grid point with 1:8 weighting and the total divided by 2. Second row: Dif-

ference in GPI between the 10 most negative (MJ) NAO and 10 most positive (MJ) NAO years.

Data are taken from c) AMO- years and d) AMO+ years. Units are percent change with respect

to the climatological mean. Yellow-red (blue) colors represent conditions more conducive to TC

formation during NAO- (NAO+) years.
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(a) AMO- (b) AMO+

Figure 7: Difference in cyclogenesis density between the 15 years with the lowest and 15 years

with the highest September SSNs. Data are taken from AMO- years (first column) and AMO+

years (second column). Units are cyclone number per 2◦×2◦ grid box. Yellow-red (blue) colors

represent more TCs during years with low (high) SSNs. Cyclogenesis density is smoothed by

averaging the eight-grid points surrounding the main grid point with 1:8 weighting and the

total divided by 2.

43



(a) AMO- (b) AMO+

Figure 8: Difference in cyclogenesis density between the 10 years with the lowest and the 10

years with the highest concentration of dust over the MDR. Data are taken from AMO- years

(first column) and AMO+ years (second column). Units are cyclone number per 2◦×2◦ grid box.

Yellow-red (blue) colors represent more TCs during years with low (high) dust concentration.

Cyclogenesis density is smoothed by averaging the eight-grid points surrounding the main grid

point with 1:8 weighting and the total divided by 2.
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Figure 9: Number of times (out of four) the p-value of a given predictand/predictor combina-

tion is below 5% for any given robustness check (with respect to the regression model). Black

corresponds to 4, dark grey corresponds to 3, grey corresponds to 2, light grey to 1, white is 0.
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Figure 10: Significance of a predictor computed with quantiles of bootstrapped parameters (non-

parametric and parametric bootstrap). Black corresponds to the case when the estimated pa-

rameter is outside the interval given by the 0.05-th and 99.95th percentiles, whereas dark grey

corresponds to the interval given by the 0.5-th and 99.5th percentiles, grey is 2.5-th and 97.5-th

percentile, whereas light grey is 5-th and 95-th percentiles.
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Figure 11: P-values for the significance of a given covariate. The different shadings correspond

to, from darkest to lightest: < 0.1% to < 10% significance. White is > 10%. A red shading indicates

that β1>0 and a blue shading indicates that β1<0.
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Table 1: List of climate indices which have been linked to annual and multi-annual frequency

variations in Atlantic tropical cyclone activity.

Climate Index Short name References

Atlantic Multidecadal Oscillation AMO Zhang and Delworth (2006); Knight et al.

(2006); Goldenberg et al. (2001)

Atlantic Meridional Mode AMM Vimont and Kossin (2007); Kossin and Vi-

mont (2007)

El Niño Southern Oscillation ENSO Kim et al. (2009); Camargo et al. (2007b);

Landsea et al. (1999); Pielke and Landsea

(1999) ; Shapiro and Goldenberg (1998);

Gray et al. (1993) ; Klotzbach (2011a) ;

Klotzbach (2011b)

Western Sahel precipitation

(West African monsoon)

WAM Fink et al. (2010); Bell and Chelliah (2006);

Goldenberg and Shapiro (1996); Landsea

and Gray (1992); Gray and Landsea (1992)

Atlantic SSTs AtlSST Saunders and Lea (2008); Bell and Chelliah

(2006); Hoyos et al. (2006); Emanuel (2005);

Shapiro and Goldenberg (1998);

Tropical SSTs

(relative SSTs)

RelSST Camargo et al. (2012); Vecchi et al. (2011);

Swanson (2008); Latif et al. (2007)

North Atlantic Oscillation NAO Kossin et al. (2010); Jagger et al. (2001);

Elsner and Kocher (2000); Elsner et al.

(2000a); Elsner et al. (2000b); Villarini et al.

(2012)

Quasi-Biennial Oscillation QBO Gray (1984a); Gray (1984b); Shapiro (1989);

Elsner et al. (1999)

Solar activity (sunspot numbers) SSN Hodges and Elsner (2012); Hodges and El-

sner (2010); Elsner and Jagger (2008)

Aerosols / Dust —– Dunstone et al. (2013); Wang et al. (2012);

Evan (2012); Evan et al. (2008) Evan et al.

(2006)

Ozone concentration in lower stratosphere

/ upper tropospheric temperature

—– Emanuel et al. (2013); Vecchi et al. (2013)
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Table 2: Hurricane seasons sorted by their AMO value, during ASO, 1878-2012. The 15 years

with the most positive and negative AMO index are in bold.

AMO+ 1878, 1879, 1880, 1882, 1885, 1886, 1887, 1888, 1889, 1891, 1893, 1895, 1896, 1897, 1898, 1899,

1900, 1901, 1915, 1926, 1927, 1928, 1930, 1931, 1932, 1933, 1934, 1936, 1937, 1938, 1939, 1940,

1941, 1942, 1943, 1944, 1945, 1949, 1951, 1952, 1953, 1955, 1957, 1958, 1959, 1960, 1961, 1962,

1966, 1980, 1987, 1990, 1995, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,

2008, 2009, 2010, 2011, 2012

AMO- 1881, 1883, 1884, 1890, 1892, 1894, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911,

1912, 1913, 1914, 1916, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1925, 1929, 1935, 1946,

1947, 1948, 1950, 1954, 1956, 1963, 1964, 1965, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974,

1975, 1976, 1977, 1978, 1979, 1981, 1982, 1983, 1984, 1985, 1986, 1988, 1989, 1991, 1992, 1993,

1994, 1996
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Table 3: Information on the climate indices used in this study.

Climate Index Period Data Provider Years covered

AMO ASO Earth System Research Lab-

oratory (NOAA)

1878-2012

Nino3.4, AtlSST

RelSST

ASO National Climatic Data

Center (NOAA) /

Hadley Centre

1878-2012

WAM JJAS Joint Institute for the

Study of the Atmosphere

and Ocean, University of

Washington

1900-2012

NAO MJ, ASO Climate Research Unit,

University of East Anglia

1878-2012

SSNs September Solar Influences Data Anal-

ysis Center /

National Geophysical Data

Center (NOAA)

1878-2012

Dust concentration ASO A. Evan (Scripps Institution

of Oceanography)

1955-2008

Stratosphere

temperature

(100 hPa)

ASO ECMWF (ERA40/ERA-

Interim) /

NCEP (Earth System Re-

search Laboratory; NOAA)

1958-2012

QBO ASO Department of Earth Sci-

ences, University of Berlin

1953-2012
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http://www.esrl.noaa.gov/psd/data/timeseries/AMO
http://www.esrl.noaa.gov/psd/data/timeseries/AMO
http://www.ncdc.noaa.gov/ersst/
http://www.ncdc.noaa.gov/ersst/
http://www.metoffice.gov.uk/hadobs/hadisst/
http://jisao.washington.edu/data/sahel
http://jisao.washington.edu/data/sahel
http://jisao.washington.edu/data/sahel
http://jisao.washington.edu/data/sahel
http://www.cru.uea.ac.uk/cru/data/nao
http://www.cru.uea.ac.uk/cru/data/nao
http://sidc.oma.be/
http://sidc.oma.be/
http://www.ngdc.noaa.gov/stp/solar/ssndata.html
http://www.ngdc.noaa.gov/stp/solar/ssndata.html
http://evan.ucsd.edu/Data.html
http://evan.ucsd.edu/Data.html
http://data-portal.ecmwf.int/
http://data-portal.ecmwf.int/
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
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http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/
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Table
5:

β
1

values
ofthe

Poisson
regressions

for
the

entire
1878-2012

period.
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A

tlSST
R

elSST
N
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O
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J)

N
A

O

(A
SO
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iño3.4
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estern

Sahel
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ust

concen-

tration

Sunspot
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100
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-

pera-

ture
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s
(H

U
R

D
A

T2)
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0.70
1.06
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-0.026
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0.00021

-4.86
-0.00033

0.00001
-0.26
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C

s
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urricanes
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.S.landfalling
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