Climate Forecasting for Wind Energy

Verónica Torralba-Fernández, Nube González-Reviriego, Melanie Davis, Francisco Doblas-Reyes

Outline

1. Make products useful for the end users
2. Simple and understandable visualisations for specific regions
3. Produce wind power-density predictions

- Bias corrected hindcast
- Calibrated hindcast
- Projection of hindcast over impact surfaces

1. Product and validation

ENSEMBLE MEAN of 10m Wind Speed. Winter, ECMWF S4, 1month lead time from 2011

CORRELATION SKILL of 10m Wind Speed.
Winter, ECMWF S4, 1month lead time and ERAINTERIM from 1981-2010

2. Visualisation example

NORTH SEA.

10m Wind Speed.
Winter, ECMWF S4, 1month lead time from 1981 to 2013

Climate Forecasting Unit

3. Bias correction

LONDON. Scatter-plots with marginal distributions
10m Wind Speed and 2m Temperature
November, ECMWF S4, 0 month lead time, 2011

Method 1: Simple

10-m wind speed

Method 2: Percentile Matching

- The simple method moves the mean but the slope is equal.
- The percentile matching method change the slope of T against WS because this method is a nonlinear operation.

3. Bias correction

10m wind Speed and 2 m Temperature
November, ECMWF S4, 0 month lead time, 1981-2010

Difference between correlation skill maps

 CorrSkillMap(Simple Method)-CorrSkillMap(Percentile Matching)
Wind speed

Temperature

Better correlation skill for the simple method than the percentile matching

Future work

- Calibration of wind speed and temperature hindcasts
- Impact surfaces for wind power predictions
- Extremes (daily data)
> Repeat for solar energy and hydro energy

EUPORIAS Prototype: RESILIENCE semi-operational climate service for energy management

