

On the best use of HPC resources for ensemble climate forecasting with EC-Earth

M. Asif, O. Mula, D. Manubens, V. Guémas, F.J. Doblas-Reyes

Outline

- HPC Resources Available
- Autosubmit (a tool)
- A Typical Climate Forecasting Experiment
- Scaling EC-Earth v3.1 (Lindgren, PDC)
- Wrapper Performance
- Future Work (Autosubmit)

HPC Resources Available

- The EC-Earth and NEMO models are used at the CFU
- The CFU's internal capability to perform expensive experiments is very limited and has to apply for competitive resources on different HPC platforms
- The CFU has following computing platforms available:
 - Ithaca (IC3): Sun Blade X6270 Servers with Dual Quad-Core Intel Xeon 5570 processors (2.93GHz), Interconnected with Infiniband and Comprises of 384 Cores
 - MareNostrum (BSC): IBM BladeCenter JS21 with IBM Power PC 970MP processors (2.3GHz) and Myrinet Interconnect
 - ECMWF: IBM pSeries Power 575 SMP Servers with IBM POWER6 processors (4.7GHz) and Interconnected by Using Infiniband
 - HECToR: Cray XE6 system,16-core AMD Opteron Interlagos processors (2.3GHz) and Cray Gemini Communication Chips Used as Interconnect
 - Lindgren (PDC): Cray XE6 system with AMD Opteron 12-core "Magny-Cours" processors (2.1GHz) and Cray Gemini Technology Used as Interconnect.

Autosubmit

- Autosubmit is a tool developed at CFU using Python (with object-oriented concepts) and SQLite (to document the experiments) to create, manage and monitor experiments
- Interacts with HPC platforms remotely via ssh
- Easily installable on any desktop/server machine with GNU/Linux
- Queuing Systems tested:
 - SGE (Ithaca IC3)
 - SLURM (MareNostrum BSC)
 - PBS (HECToR and Lindgren PDC)

Autosubmit (contd.)

- Major Goals:
 - HPC-independent framework to perform experiments
 - Efficient utilization of available computing resources at HPC's
 - User-friendly interface to start, stop, document and monitor experiments
 - Auto restarting the experiment or some part of experiment (in case of failure)
 - Ability to reproduce the completed experiments either fully or partially
- Why not SMS or ECflow? For increased portability and improved interaction with PRACE/ENES tools (e.g. SAGA) and METAFOR (e.g. CIM)

Web Access and Database Schema

Current Version

tile Edit	t \//m	u History	Baakmarka Taala Hala							
Die Edit Ziew Lifton's Done Lieh										
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	G 🛛 1	🔉 🗱 http://cfu.ic3.cat:8000/autosubmit_v2/default/index 🗘 🖌 Google 🔍							
🗟 Most Visited 🛩 🖒 CFU (Wiki) 👘 Inventory 🗸 C ECMWF Manuals: S 👖 Data Recovery and 🔲 Essential Database 🏷 HA 🗸 👘										
₩ autosubmit_v2 +										
ł	b027	nemo	historical NEMO3.2/LIM2 forced with DFS4.3 nudged toward NEMOVAR-COMBINE started from b00v spin-up							
i	i00o	ecearth	atmosphere only perturbation e.g. b013							
ł	b028	nemo	Booked by mistake							
ł	b029	nemo	historical NEM03.2/LIM2 forced with DFS4.3 not nudged started from b00v spin-up							
ł	b02a	nemo	Booked by mistake							
ł	b02b	nemo	historical NEM03.2-LIM forced with ERAint, nudged toward NEMOVAR-COMBINE started from b027 1979							
E	b02c	nemo	NEMO3.2-LIM forced with ERAint, unnudged, b027 restarts							
ł	b02d	nemo	Booked by mistake							
ł	b02e	nemo	spin-up NEMO3.2/LIM2 from LEVITUS T/S + 3m/1m ice in Arctic/Antarctic forced with DFS4.3, not nudged							
i	i00p	ecearth	ocean only perturbation							
ł	b02f	ecearth	sesonal forecast with zero seaice							
ł	b02g	ecearth	sesonal forecast with zero seaice							
ł	b02h	nemo	historical NEM03.2/LIM2 forced with DFS4.3 not nudged started from b00e spin-up							
ł	b02i	nemo	historical NEMO3.2/LIM2 forced with DFS4.3 nudged toward NEMOVAR-S4 started from b00v spin-up							
E	b02j	nemo	historical NEM03.2-LIM forced with corrected ERAint (radiative flux correction), nudged toward NEMOVAR-							
			COMBINE started from b027 1979							
ł	b02k	nemo	historical NEMO3.2-LIM forced with ERAint interpolated offline instead of online, nudged toward NEMOVAR-S4							
			started from b027 1979 Useless							
ł	b02l	nemo	historical NEMO3.2-LIM forced with qsw+qlw+precip+snow DFS4.3 + u10+v10+t2+q2 ERAint nudged toward							
			NEMOVAR-S4 started from b02i 1979 Useless							
1	b02m	nemo	Booked by mistake							
1	b02n	nemo	historical NEMO3.2-LIM forced with precip+snow DFS4.3 + qsw+qlw+u10+v10+t2+q2 ERAint nudged toward							
			NEMOVAK-54 started from b02I 1979 Useless							
1	6020	nemo	spin-up NEMO3.2/LIM2 from LEVITUS T/S + 3m/1m ice in Arctic/Antarctic forced with DFS4.3, not nudged, with							
	-02e	assarth	historia na statica francisco 2000							
	bo2p	eceann	nistoric run starting from 1950							
	ouzq	nemo	spin-up ixemos.z/Lim2 from Levinos i/s + sin/Lim ice in Arctic/Antarctic forced with ERAInt, not hudged, with							
i	i00a	ecearth	historical run starting from 1950-01-01							
Done										
00.10										

#### **Upcoming Version**



#### Currently using SQLite and in future shifting to MySQL



# A Typical Forecasting Experiment

In a typical climate forecast experiment with five members and ten start dates, each start date and member is being run for ten years. Many EC-Earth partners run them using 10 chunks of one year forecast length, with accompanying post-processing and cleaning jobs. The experiment will be made of **50 independent simulations**, each submitting 30 jobs (10 simulations, 10 post-processing and 10 cleaning) with specific dependencies between them.





#### Autosubmit Graphical Monitoring





Temperature (K)

#### e.g.: 10 Start Dates and 5 Members





# Scaling EC-Earth v3.1 (Lindgren, PDC)













### **Increasing Climate Model Resolution**



http://noc.ac.uk/science-technology/climate-sea-level/changing-circulation/high-resolution-global-modelling



### Increasing Start Date Numbers

Performance (measured by ensemble-mean correlation) of EC-Earth v2.3 for near-surface air temperature during the first forecast year. Verification Data: combination of GHCN, ERSSTv3b and GISS



Black Dots: correlation significant at the 95% level



# Why Need More Resources?

- To increase resolution, no. of start dates and ensemble size
- EC-Earth could be scaled efficiently up to a few hundred cores
  - As far as IFS is concerned^{*}:
    - I/O and/or Coupling could be bottleneck; if scaled beyond 2000 cores
    - Two "MPI_Alltoallv" (Transpose Data) calls at every time step
    - BLAS routine "DGEMM" (Direct Legendre Transform)
- How to run EC-Earth at HPC's with restrictions of minimum scalability?
  - PRACE tier-0 machines: 8,192 cores at JUGENE, 4,096 at SuperMUC, 2,048 at HERMIT and MareNostrum
  - US DOE INCITE project: 60,000 cores at Oak Ridge Leadership Computing Facility (OLCF)
- Options are being explored: Wrapping many independent simulations (start dates or ensemble members) and run as "a big single job"

* http://www.prace-project.eu (PRRACE/IS-ENES collaboration)



# Why Need More Resources? (contd.)

EC-Earth v3.1 (IFS+OASIS+NEMO) at Lindgren, PDC										
No. of Start Dates		1	5	10	10	20				
No. of Members		1	5	5	10	10				
No. of Independent S	1	25	50	100	200					
	Cores (10+1+4)*24	360	9,000	18,000	36,000	72,000				
T255I 62-	Wallclock Time (Hours) / 1y	5	5	5	5	5				
	CPU Time (Hours) 1y	1,800	45,000	90,000	180,000	360,000				
URCAIL40	Output Size (GB) / 1y	48	1,200	2,400	4,800	9,600				
	I/O									
	Cores (2+1+15)*24	432	10,800	21,600	43,200	86,400				
T255I 62-	Wallclock Time (Hours) / 1y	25	25	25	25	25				
	CPU Time (Hours) / 1y	10,800	270,000	540,000	1,080,000	2,160,000				
URCAU25L40	Output Size (GB) / 1y	1,176	29,400	58,800	117,600	235,200				
	I/O									
	Cores (30+1+15)*24	1,104	27,600	55,200	110,400	220,800				
T7991 62-	Wallclock Time (Hours) / 1y	40	40	40	40	40				
	CPU Time (Hours) / 1y	44,160	1,104,000	2,208,000	4,416,000	8,832,000				
URCAUZ5L40	Output Size (GB) / 1y	1,800	45,000	90,000	180,000	360,000				
	I/O									



# Wrapper Performance

- <u>MareNostrum</u>
  - EC-Earth v2.3
  - T159L62-ORCA1
  - Store Output at Disk After 6h
  - Coupling Frequency 3h
  - Forecast Length 2 days
  - I/O Time Step 0,3,6,...
  - Total NPROC 45 per Single Independent Simulation

- Lindgren
  - EC-Earth v3.1
  - T255L62-ORCA1
  - Store Output at Disk After 6h
  - Coupling Frequency 3h
  - Forecast Length 10 days
  - I/O Time Step 0,4,8,...
  - Total NPROC 360 per Single Independent Simulation

Climate Forecasting Unit

# Wrapper Performance (contd.)

A "big single job" was run by increasing no. of wrapped jobs from 1, 5, 10, ... 20. Each "big single job" was run thrice and <u>wallclock time</u> (elapsed time) is plotted. The range of colors depicted below cover the range of wrapped jobs.



No. of Jobs Wrapped



# Wrapper Performance (contd.)

The % time spent for <u>I/O time step</u> is plotted below against increasing no. of wrapped jobs.



No. of Jobs Wrapped



# Wrapper Performance (contd.)

# The % time spent for <u>non I/O time step</u> is plotted below against increasing no. of wrapped jobs.



No. of Jobs Wrapped



# Wrapper Performance (contd.)

<u>CPU time used</u> is determined by adding the wallclock times used by all wrapped jobs per "big single job" and <u>CPU time charged</u> is determined on the basis of the slowest job among wrapped jobs.





# Future Work (Autosubmit)

- Explore options to implement wrapper to ensemble simulation jobs, this piece of work will be done by IC3 under IS-ENES2
- Integration of HPC's using SAGA (Simple API for Grid Applications)
  - BLISS-SAGA (a light-weight implementation for Python) comply with OGF (Open Grid Forum) standards (how to interact with the middleware)
  - A number of adaptors are already implemented, to support different grid and cloud computing backends
  - SAGA provides units to compose high-level functionality across distinct distributed systems (e.g. submit jobs from same experiment to different platforms)
- Documenting experiments on simplified METAFOR standards by using relational databases (MySQL)
- Designing a web front-end for experiment creation and monitoring
- Storing user-defined job dependency tree in XML Scheme file
- Installation package and open source license

