

Seasonal Climate Prediction in a Climate Services Context

F.J. Doblas-Reyes, CFU/IC3 and ICREA, Barcelona, Spain

M. Asif (IC3), L. Batté (Météo-France), M. Davis (IC3), J. García-Serrano (IPSL), N. González (IC3), V. Guemas (IC3/Météo-France), D. MacLeod (Univ. Oxford), A. Pintó (IC3), C. Prodhomme (IC3), L. Rodrigues (IC3), V. Torralba (C3)

WWOSC - Seasonal climate prediction in a climate services context

Montréal, 19 August 2014

Prediction on climate time scales

Progression from initial-value problems with weather forecasting at one end and multi-decadal to century projections as a forced boundary condition problem at the other, with climate prediction (sub-seasonal, seasonal and decadal) in the middle. Prediction involves initialization and systematic comparison with a simultaneous reference.

Climate services: wind energy

Change in normalised 10-metre wind speed between El Niño (top) and neutral years for SON; for La Niña (bottom).

ERA-Int over 1979-2013 stratified using the Niño3.4 (5°N-5°S, 120°-170°W) SST index with a 0.5 threshold.

Climate services: wind energy

What climate forecasters typically offer

Probability forecast of 10-metre wind speed most likely tercile (%) from Meteofrance System 3 1-month lead JJA forecasts with start date May 2011

Climate services: wind energy

What is actually requested in terms of forecasts:

- Forecasts for locations where the mean is large (wind speed above a threshold), and both variability (something to predict) and skill (something useful to say) are high
- Need energy generated over a period (month, season, etc), with uncertainty estimates, at the wind farm level
- Information for off-shore maintenance (at least 3 weeks lead time)
- Also, energy and consumption in other regions to balance network
- Take into account
 - Management strategies
 - Development plans

WWOSC - Seasonal climate prediction in a climate services context

Oslo

Some of the things missing

- Better understanding of the impact models, and the best way to adapt them to the useful climate information available
- Bias correction, calibration and combination
- Downscaling, when necessary
- Documentation (some stakeholders are used to the IPCC calibrated language, which is different to the climate forecasting language), demonstration of value and outreach
- The EUPORIAS FP7 project, working alongside the SPECS project, is considering solutions to address some of these problems.

Back to the wind energy problem

- To satisfy the users' requirements for sub-seasonal to seasonal forecast information:
- High-frequency wind forecasts at ~100 metre height
- Bias-corrected and calibrated forecast data, i.e. whose statistical properties mimic those of the data measured at the wind turbine height -> Bias correcting and calibrating high-frequency data is extremely complicated and could destroy the little skill available

On top of this:

- Local measurements are not long
- They are not even made available

Adapting impact models

Impact surfaces of a simple wind-energy model over the North Sea for DJF as function of the mean seasonal 10 m wind speed and temperature. (Left) Capacity factor (average power generated divided by the maximum power of a specific turbine) estimates obtained using the XXth Century Reanalysis, a Rayleigh function to estimate high-frequency winds from mean daily values and a wind profile power law to obtain 100 m winds from 10 m winds. (Right) Frequency of occurrence of each bin. D. MacLeod (Univ. Oxford)

It only needs seasonalaverage biascorrected forecast data to make predictions of the capacity factor!

Bias correction and calibration

Bias correction is unavoidable, but it has an impact on skill. Bias correction and calibration have different effects.

DJF 10-m wind speed ECMWF S4 predictions over the North Sea starting in November. Raw output (top), bias corrected (simple scaling, left) and ensemble calibration (right). One-year-out cross-validation

Some open fronts to improve forecasts

- Work on initialisation: initial conditions for all components (including better ocean), better ensemble generation, etc. Link to observational and reanalysis efforts.
- Model improvement: leverage knowledge and resources from modelling at other time scales (improve sea ice, treatment of volcanic and anthropogenic aerosols, vegetation and land, etc); drift reduction; more efficient codes and adequate computing resources.
- Calibration and combination: empirical prediction (better use of current benchmarks), local knowledge.
- Forecast quality assessment: scores closer to the user, reliability as a main target, process-based verification.
- More sensitivity to the users' needs: going beyond downscaling, better documentation (e.g. use the IPCC language), demonstration of value and outreach.

SPECS FP7

SPECS will deliver a new generation of European climate forecast systems, including initialised Earth System Models (ESMs) and efficient regionalisation tools to produce quasi-operational and actionable local climate information over land at seasonal-to-decadal time scales with improved forecast quality and a focus on extreme climate events, and provide an enhanced communication protocol and services to satisfy the climate information needs of a wide range of public and private stakeholders.

WWOSC - Seasonal climate prediction in a climate services context

Montréal, 19 August 2014

Impact of initialisation: Land surface

Difference in the correlation of the ensemble-mean near-surface temperature from two experiments, one using a realistic and another a climatological land-surface initialisation. Results for EC-Earth2.3 started every May over 1979-2010 with ERAInt and ORAS4 initial conditions and a sea-ice reconstruction.

Difference for monthly mean T

Difference for monthly mean daily Tmax

Impact of initialisation: Land surface

Correlation of the ensemble-mean from experiments with a realistic (dashed) and a climatological (solid) land-surface initialisation. Results for EC-Earth2.3 started in May with initial conditions from ERAInt, ORAS4 and a sea-ice reconstruction over 1979-2010 averaged over Europe.

Drift: West African Monsoon

Averaged precipitation over 10°W-10°E for the period 1982-2008 for GPCP (climatology) and ECMWF System 4 (systematic error) with start dates of November (6-month lead time), February (3) and May (0). SST 4S-4N / 15W-10E ECMWF-Syst4 & ERSST **GPCP** climatology 30 (FEB) (MAY) 5 29 15N (NOV) 28 10N 27 27 5N 26 25 ECMWF S4 - GPCP (MAY) ECM'VF S4 - GPCP (FEB) ECMWF S4 - GPCP (IJOV) 24 15N 10N 5N Doblas-Reyes et al. (2013).

WWOSC – Seasonal climate prediction in a climate services context

Montréal, 19 August 2014

Increase in resolution: stochastic physics

RMSE and spread of Niño3.4 SST (versus ERSST) from EC-Earth3 simulations: standard resolution (**SR**, **T255/ORCA1**), high resolution (**HR**, **T511/ORCA025**) without and with stochastic physics (SPPT3). May start dates over 1993-2009 using ERA-Interim and GLORYS and ten-member ensembles.

WWOSC - Seasonal climate prediction in a climate services context

Montréal, 19 August 2014

HiResClim

Predictions over land

Composite precipitation differences (La Niña minus El Niño) based on years which observed seasonal mean Nino3.4 exceeds ± 1 standard deviation over 1982-2009, from GPCP observations (left) and the CHFP ensemble at 1-month lead time (right), for JJA (top) and DJF (bottom).

WWOSC – Seasonal climate prediction in a climate services context

Montréal, 19 August 2014

Climate Historical Forecast Project

- WGSIP's CHFP is the largest public repository of multi-model seasonal hindcasts.
- Data server at CIMA <u>http://chfps.cima.fcen.uba.ar</u> being transferred to an ESGF data node.

Summary

- Sub-seasonal and seasonal forecasting (s2s) are becoming well established operational activities with a solid research base and an increasing application in climate services and adaptation.
- The demand of action-relevant climate information on s2s time scales is growing. However, what forecasters provide is far from what the users demand (even in the absence of skill).
- Bias correction, calibration and combination are essential in the successful application of s2s climate information.
- EUPORIAS, SPECS and many other projects, along with the WWRP and WCRP initiatives (S2S, WGSIP, PPP), work together to bridge the gap and illustrate usefulness.

WCRP Grand Challenges

- Grand Challenge on Regional Climate Information: What gaps in our scientific understanding and information, if addressed, would maximise the value content of regional climate information?
- Steering group: Clare Goodess (WGRC), Francisco Doblas-Reyes (WGSIP), Lisa Goddard (CLIVAR), Bruce Hewitson (WGRC), Jan Polcher (GEWEX & WGRC), supported by Roberta Boscolo (WCRP)

WCRP Organization

CMIP5 predictions and projections

Annual-mean global-mean temperature predictions and projections from CMIP5. Global mean temperature projections (RCP 4.5), relative to 1986–2005

WWOSC – Seasonal climate prediction in a climate services context

Montréal, 19 August 2014