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BSC-ES Objectives

What

Environmental modelling and forecasting

How

Develop a capability to model air quality
processes from urban to global and the
impact on weather, health and ecosystems

Implement climate prediction system for
subseasonal-to-decadal climate prediction

Develop user-oriented services that favour
both technology transfer and adaptation

Use cutting-edge HPC and Big Data
technologies for the efficiency and user-
friendliness of Earth system models
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Why

Our strength ...
... research ...
.. operations ...
.. services ...
.. high resolution ...

Climate
prediction
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Climate prediction time scales @m
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Progression from initial-value problems with weather forecasting at
one end and multi-decadal to century projections as a forced
boundary condition problem at the other, with climate prediction
(sub-seasonal, seasonal and decadal) in the middle. Prediction involves
initialization and systematic comparison with a simultaneous
reference.

Subseasonal to seasonal
forecasts (2 weeks-18 Decadal forecasts (18 Climate-change

Weather months) months-30 years) projections
forecasts

Initial-value driven

Boundary-condition driven

Adapted from Meehl et al. (2009, BAMS) 2
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Climate change Is taking place @w

Centro Nacional de Supercomputacion

Rank of the 2015 annual mean temperature over the last 37 years
from ERA Interim.

Annual mean 2m temperature
Rank of year 2015 (reference: 1979-2015)
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Data: ERA-Interim. Figure: F. Massonnet - BSC
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Empirical climate forecasts
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Empirical forecasts of one-month lead temperature using a wide range
of observed predictors. A benchmarking opportunity.

Eden et al. (2015, GMD)



Dynamical climate predictions @w P
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Dynamical climate predictions @w P
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Dynamical climate predictions @w P

Centro Nacional de Supercomputacion

5-member
prediction
started 1 Nov
2014
5-member  --- €Very year... &z
5-member prediction
predcicf(l)\ln started 1 Nov
starte oV
5-member 1970
- 1965
prediction
started 1 Nov
1960
/’ 4 — —
g ==
1960 2015

Observations



Dynamical climate predictions @w P
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Typical sizes: ten members, ten forecast 5-member
_ ; prediction
years, 5.5 start dates -> 550 mdgpendgnt started 1 Nov
simulations -> 5,500 years of simulation 2014 ®
O

5.member  --- €vVery year ...
S-member prediction
prEdc:Cf(l)\ln started 1 Nov
starte oV
5-member 1970
o 1965
prediction
started 1 Nov
1960 @

1960 2015
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Predicting seasonal heat waves @ = L
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JJA near-surface temperature anomalies in 2010 from ERAInt (left) and

experiments with a climatological (centre) and a realistic (right) land-
surface initialisation.

Results for EC-Earth2.3 started in May with initial conditions from
ERAINnt, ORAS4 and a sea-ice reconstruction over 1979-2010.

Land-surface initialization is relevant to predict extreme events.

a) t2m: ERAInt b) t2m: CLIM c) 2m: INIT

Prodhomme et al. (2015, Clim. Dyn.) 10



Predicting seasonal extremes et
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JJA near-surface temperature correlation of the ensemble mean from

experiments with a climatological (top) and difference with one with

realistic (bottom) land-surface initialisation. Results for EC-Earth2.3
started in May over 1979-2010.

a) q90 of Tx b) nb of warm days c)q90 of Tn

d) nb of warm nigths e) qi0of Tn

f) nb of cold nigths

Prodhomme et al. (2015, Clim. Dyn.)
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NAO and model resolution @”
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Predictions of DJF NAO with EC-Earth3 at low and high resolution
started in November over 1993-2009 with ERA-Interim and GLORYS
initial conditions and five-member ensembles. Correlation of the
ensemble mean on top left.
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Prodhomme et al. (2016, J. Clim.) 12
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Difference in winter (DJF) standardised 10-metre wind speed (left) and
capacity factor (right) for seasons with above normal and below

normal North Atlantic Oscillation index.
Daily capacity factor (%) calculated from ERAInterim 10-metre wind speed and

temperature data using an idealised power curve, a log scaling law to transform the
wind to hub height wind, and a Rayleigh distribution to model diurnal variability.

i " £ s l" o \ o
= Wind Speed (m/s) A s Capaaty Factor (%)
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Tropical north Atlantic @"
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A predictable component of TNA SST variability is linked to ENSO. This
could lead to improvements in forecasting the WAM, European heat
waves, Atlantic hurricanes, rainfall in Brazil.

The connection involves a Gill-type response in the Atlantic in spring,
which suggests an added value of Nifio3.4 predictions (beyond

persistence) when the teleconnection is correct in the models.
SST skill (mam)
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Garcia-Serrano et al. (2016, J. Clim.) 14
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Decadal climate predictions
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Global-mean near-surface air temperature and AMV against
GHCN/ERSST3b for forecast years 2-5.

Global mean surface air Atlantic multidecadal variability
temperature (GMST) (AMV)

- Historical
% simulations
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Initialised simulations reproduce the global temperature and some
of the AMV tendencies and suggest that initialization corrects the
forced model response and phases in internal variability.

Doblas-Reyes et al. (2013, Nat. Comms.) 15
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Atlantic multidecadal variability (AMV) pattern from ERSST data (left)
and regression of the AMV index on the GPCC precipitation (right) over
1960-2010 using four-year averages.

30N

AMV x ERSS AMV-ERSST x GPCC

40N

Garcia-Serrano et al. (2014, Clim. Dyn.) 16



The forcings in a prediction context (@ &=~ ?
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SLP anomaly (hPa) induced by a Pinatubo eruption in the first three
years after the eruption. Thirty-member simulations performed with
CNRM-CMS5.

NAO+ signal occurring the third winter after the eruption, only when
the AMO is negative (in this model).
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Service-driven research

SUCCESSFUL CLIMATE
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Ethical Framework for Climate Services four core elements: integrity,
transparency, humility and collaboration.

18
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Seasonal wind speed predictions
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ASSESSMENT REPORT 1: Dec-Jan-Feb 2009, US

R Es I I I E N ' : E Key event characterisation
/ US ERA-Interim 10m wind speed
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Time series of 10-m wind speed calibrated from ECMWF Skill assessment and probability density
System 4 and ERA-Interim reanalysis (DJF 1981-2009) function (DJF 2009 prediction)
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Service-driven predictions: TCs @ R
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Tropical cyclone (TC) predictions: SST averaged over the subpolar gyre
and North Atlantic SLP to estimate basin-wide accumulated cyclone
energy (ACE). Results are for 1-5 year averages 1961-2006. Statistically

significant scores are in bold.
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Caron et al. (2015, GRL) 20
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Factors affecting different tropical cyclone (TC) characteristics
stratified by the phase of the AMO. The colour scale corresponds to
the p-value of the correlation.
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10.00% 21
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The WMO dust forecast centres @ = S

NMMB is used for, among many other things, producing operational
dust forecasts.

DATA
ASSIMILATION

RUN TIME DOMAIN

BSC-DREAM8b 12 Regional No

MACC 00 Global MODIS ACD

DREAM-NMME- . .
MACC 12 Regional MACC analysis

= NMMB/BSC-Dust 12 Regional No g

Zod MetUM 00 Global MODIS AOD
== MODIS
S GEOS-5 00 Global reflectances
S NGAC 00 Global No
EMA REG CM4 12 Regional No F
WMO San{ DREAMABOL 12 Regional No ter

Advisory and Assessment System
Regional Center for Northern Africa, Middle
East and Europe 22



http://sds-was.aemet.es/
http://sds-was.aemet.es/
http://sds-was.aemet.es/
http://dust.aemet.es/

EXCELENCIA
Barcelona SEVERO

The WMO dust forecast centres
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Barcelona Dust Forecast Center
NMMB/BSC-Dust Res:0.1°x0.1° Dust AOD
Run: 12h 02 APR 2014 Valid: 12h 02 APR 2014 (H+00)
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Barcelona, dust layer at 1200-1500 m
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A comprehensive programme (-

Fundamental Research
from weather to climate
scales

WMO
SDS-WAS
BDFC

Technology
Tools, models, forecasts,
computing

AXA Chair Private Services

Sand and Dust Storms Sector Impact research,
technology transfer,
services development

Earth Education and outreach

Sciences
Services
Group

Computer

Sciences
Department

24



EXCELENCIA
SEVERO

The AXA Chair (o Y Qs

Centro Nacional de Supercomputacion

AXA Chair Holder: Carlos Pérez Garcia-Pando, starting October 2016

AXA CHAIR on Sand and Dust Storms

GOAL 1 GOAL 2 GOAL 3 GOAL 4 GOAL 5
GOA LS DUST PROCESSES & EFFECTS UPON FORECASTS & PRODUCTS IMPACTS & MITIGATION DISSEMINATION & PUBLIC
VARIABILITY WEATHER & CLIMATE ENGAGEMENT
FOCUS ® Present-day dust sources ® Dust composition @ Data assimilation and model ® Health ® Scientific community
luati
AREAS ® Wind gusts and dust ® Weather and climate evalation ® Agriculture ® Industry
e ° .
mobiliztion ® Atmospheric chemistry and Gloval gnd regional dust ® Solar energy and ® National Weather Services &
B . forecasting - -
® Dust variability iron transportation decision-makers

@ Ensemble dust forecasting ® General public

@ |ong-range dust prediction

@ Dust reanalysis

N Scientific community

TWO-WAY
GOALS
INTERACTIONS

National weather
services, Industry &
\ Decision-makers

HOST ATHMOSPHERIC COMPOSITON GROUP
INSTITUTION:
EARTH
SCIENCES COMPUTATIONAL EARTH SCIENCES GROUP
DEPARTMENT

STRUCTURE

CLIMATE PREDICTION GROUP

BSC Communication Dpt. **

* Centers in collaboration with AEMET / ** Support service of the BSC-CNS to all its departments
25
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e Long-term observation programs: what have we learnt?

No climate research is possible without long-term observations. New
variables are required.

e How long-term observation programmes should evolve?
In collaboration with modelling efforts to identify common needs.
e Capabilities to assess the impacts of future climate?

Observations should come along with uncertainty measures. In
particular, gridded (satellite?) products should provide solutions to
propagate the uncertainty to different spatial and time scales.

26
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® Requests for climate information for up the next 30 years as a
continuous stream come from a broadening range of users and
should be addressed from a climate services perspective.

® Different tools are available to provide near-term climate
information (global and regional projections, seasonal and decadal
predictions, empirical systems, etc). Merging all this information
into a reliable, unique source is a problem still not solved.

® The BSC Earth Sciences Department is now positioned to develop a
unique programme around the impact of atmospheric composition
changes on climate prediction.

® None of this will materialize without appropriate investment in
observational networks and reduction of all aspects of model error,
plus infrastructures that rationalize the investments in climate-
modelling research.

27



