

8th International Workshop on Sand/Duststorms and Associated Dustfall Lisbon, 1 – 4 May 2016

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Mediterranean desert dust outbreaks' direct radiative effects based on regional model simulations

A. Gkikas¹, V. Obiso¹, L. Vendrell¹, S. Basart¹, O. Jorba¹, C.P. Garcia-Pando^{2,3}, N. Hatzianastassiou⁴, S. Gassó⁵, J.M. Baldasano^{1,5}

🖆 COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

MDRAF MC-IEF-Intra-European Fellowships (IEF)

Introduction – Aim of the study

- Mediterranean is affected by desert dust outbreaks throughout the year

EXCELENCE

Barcelona

- ➤ Interaction of dust aerosols with the incoming solar (shortwave, SW) and outgoing terrestrial (longwave, LW) radiation → Perturbation of the Earth-Atmosphere system's radiation budget
- Direct, semi-direct and indirect radiative effects
- Impact on atmospheric processes from short- (weather) to long-term (climate) temporal scales
- Direct Radiative Effects (DREs)
 - Scattering and absorption of SW radiation
 - Absorption and re-emission of LW radiation
- Consideration of dust radiative impacts Improvement of regional model weather forecasts (Pérez et al., 2006)

Calculation of DREs, induced by intense and widespread Mediterranean dust outbreaks, based on regional model simulations → weather forecasts and feedbacks

Gridded daily satellite retrievals provided at 1°x1° spatial resolution (Level 3) MODIS – Terra (Mar. 2000 – Feb. 2013), Collection 051 (C051)

- Aerosol Optical Depth at 550nm (AOD_{550nm})
- Ångström exponent (land \rightarrow 470 660nm, sea \rightarrow 550-865nm)
- Fine Fraction
- Effective radius (over sea)

Earth Probe TOMS (2000 – 2004)

- Aerosol Index (AI)
- ➢ OMI-Aura (2005 2013)
 - Aerosol Index (AI)

Satellite data

Baseline Surface Radiation Network (BSRN)

- Downwelling shortwave (SW) and longwave (LW) radiation
- Sede Boker (South Israel)

AERosol RObotic NETwork (AERONET)

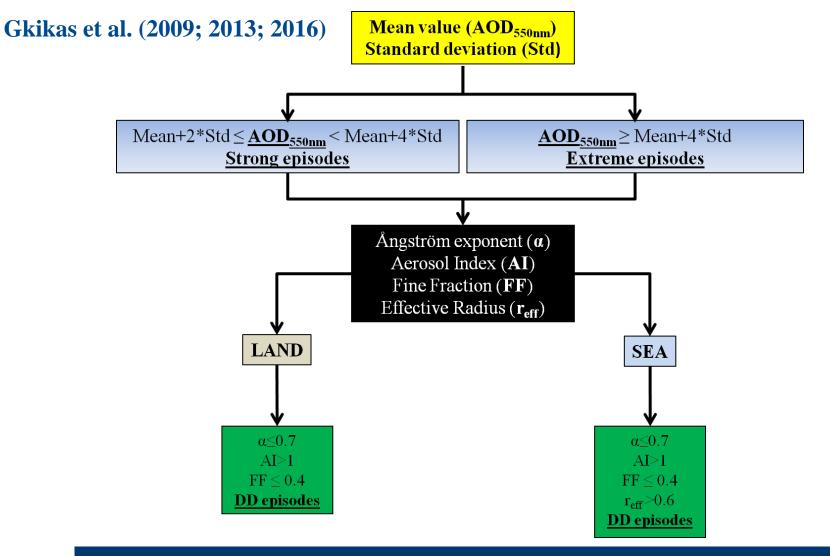
- Aerosol Optical Depth (AOD) at 550nm
- Level 2.0
- Sede Boker (South Israel)

Ground data

NMMB/BSC-Dust regional model

Physics schemes Model features Radiation: RRTM (Mlawer et al., 1997) Non-hydrostatic Multiscale Model NMMB Convection: Betts-Miller-Janjic (BMJ) (Janjic et al., 2004) Arakawa B grid (Arakawa and Lamb, 1977) (Betts, 1986) Clouds and microphysics: Ferrier (Ferrier et \blacktriangleright Vertical hybrid σ -pressure coordinate system al., 2002) (Simmons and Burridge, 1981) > A rotated longitude-latitude coordinated Turbulence: Mellor-Yamada-Janjic (MYJ) system is used for regional simulations (Janjic, 2001) ► Land model: NCEP NOAH (Eck et al., 2003)Aerosols **Model configuration** \blacktriangleright Horizontal: 0.25° x 0.25° Dust model: Coupled with the NMMB model (Pérez et al., 2011; Haustein et al., \blacktriangleright Vertical: 40 σ -pressure levels up to 50hPa 2012) Initial and 6-hourly boundary conditions: NCEP final analyses (FNL) at 1° x 1° ▶ 8 size bins (Tegen and Lacis, 1996; Pérez et Forecast range: 84 hours al., 2006) > Initialization: at 00UTC of the desert dust ➢ GOCART (Chin et al., 2002) optical properties (extinction efficiency, SSA, g) outbreak day Other aerosol types: OC, BC, SS, sulfate Forecast outputs: every 3 hours Spin-up period: 10 days (24h reinitialization) (2000-2007) – GOCART climatology

Simulation (NSD) and satellite (MSD) domains



EXCELENCIA SEVERO

45°N NMMB Simulation Domain (NSD) 43°N 41°N 39°N 37°N 35°N 33°N **5**[°] 31°N Φ 0 29°N 27°N Mediterranean Satellite Domain (MSD 25°N σ 23°N 21°N 19°N 17°N 15°N Sahara Desert Domain (SDD) 15°W 10°W 5°W **0**° 5°E 10°E 15°E 20°E 25°E 30°E 35°E Longitude

> **NSD: NMMB/BSC-Dust short-term (84 h) forecasts MSD:** Identification of desert dust outbreaks

Identification of desert dust (DD) episodes at pixel level (MSD domain)

Implementation of the satellite algorithm in each 1° x 1° grid cell

Operation period: 1 March 2000 – 28 February 2013

EXCELENCIA SEVERO OCHOA

Barcelona Supercomputing Center

ntro Nacional de Supercomputación

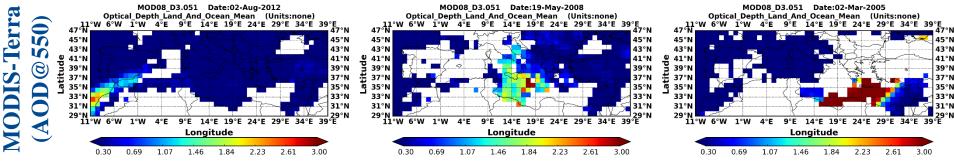
Selection of desert dust outbreaks at regional level (MSD domain)

Barcelona Supercomputing Center Centro Nacional de Supercomputación

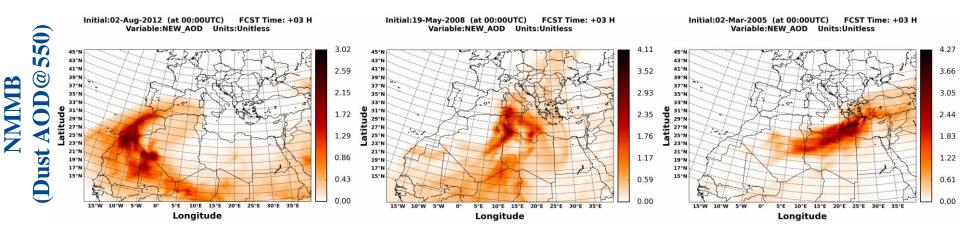
Selection criteria

- Days where at least 30 pixel-level DD episodes (either strong or extreme) have been identified by the satellite algorithm (Gkikas et al., 2012; 2015)
- > Calculation of the mean regional AOD considering only pixels undergoing a DD episode
- Ranking of days based on dust outbreaks' intensity (MODIS-Terra regional AOD)
- > 20 widespread and intense Mediterranean desert dust outbreaks are analyzed

	Sta	Statistics	
	Dust outbreaks	Percentage (%)	MSD Sector
Winter	5	25%	Eastern – Central
Spring	11	55%	Central – Eastern
Summer	4	20%	Western
Autumn	0	0%	-
Total	20	100%	


Number of DD episodes: 30 (28/7/2005) – 85 (31/7/2001) Intensity of dust outbreaks: 0.74 (31/7/2001) – 2.96 (2/3/2005)

Intense dust outbreaks over the broader Mediterranean basin


2 March 2005

2 August 2012

19 May 2008

Satellite observations of the desert dust outbreaks

NMMB short-term (84 hours) regional simulations initialized at 00 UTC of the desert dust outbreak day

Direct Radiative Effects (DREs)

Top of Atmosphere (TOA)

$$DRE_{TOA} = F_{TOA, RADOFF}^{\uparrow} - F_{TOA, RADON}^{\uparrow}$$

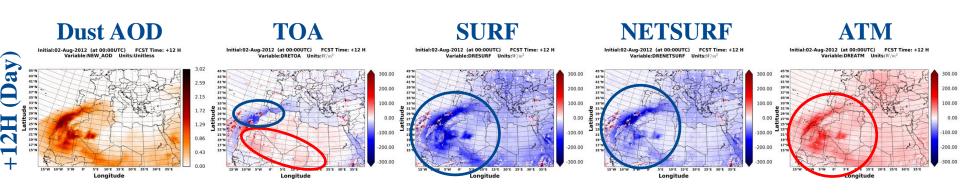
Downwelling radiation at surface (SURF)

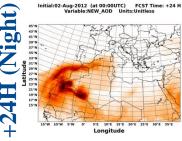
$$DRE_{SURF} = F_{SURF, RADON}^{\downarrow} - F_{SURF, RADOFF}^{\downarrow}$$

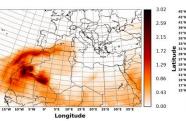
Absorbed radiation at surface (NETSURF)

$$DRE_{NETSURF} = F_{NETSURF}, RADON - F_{NETSURF}, RADOFF$$

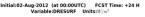
$$Into the Atmosphere (ATM)$$

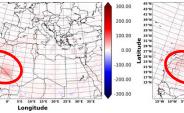

$$DRE_{ATM} = DRE_{TOA} - DRE_{NETSURF}$$


- RADON/RADOFF: Activated/deactivated dust-radiation interactions
- Shortwave (SW), longwave (LW) and NET (SW+LW) radiation


Positive DREs indicate **warming effect** while **negative** DREs indicate **cooling effect**

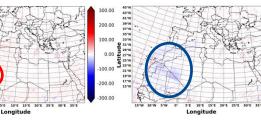
Instantaneous NET DREs based on NMMB simulations (2nd August 2012)




Longitude

Initial:02-Aug-2012 (at 00:00UTC) FCST Time: +24 H

Variable:DRETOA Units



TOA Warming/cooling

over desert/sea at noon Higher/lower albedos

SURF & NETSURF

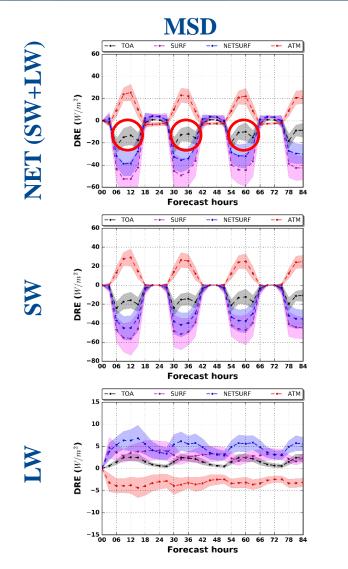
Cooling/warming

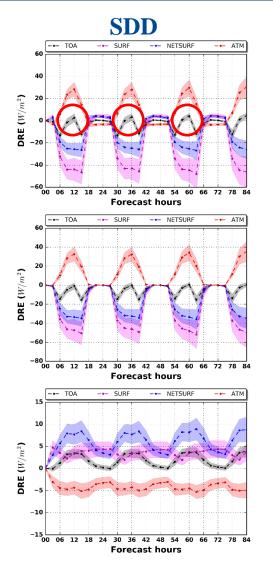
during day/night SW/LW effects

ATM Warming/cooling during day/night SW/LW effects

Strong impacts driven by the desert dust outbreaks' patterns

100.00


0.00


100.00

200.00

Regional DREs under clear sky conditions for the 20 desert dust outbreaks

Surface **cooling** (up to 60 W/m²) Atmospheric **warming** (up to 30 W/m²) Planetary **cooling** (up to 20 W/m²)

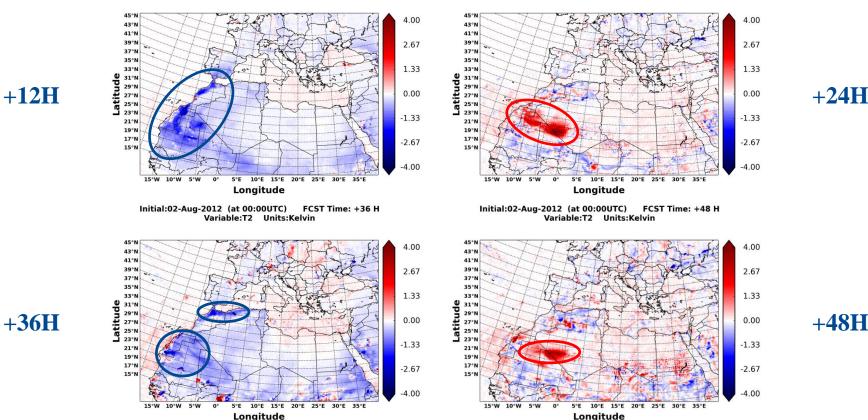
Slightly **higher** SW DREs compared to NET DREs

Reverse LW effects of **lower** magnitude compared to SW ones

Predominance of SW effects

Planetary warming and cooling in SDD and MSD, respectively, at noon
 Higher albedos across the Sahara desert
 Increase of atmospheric warming

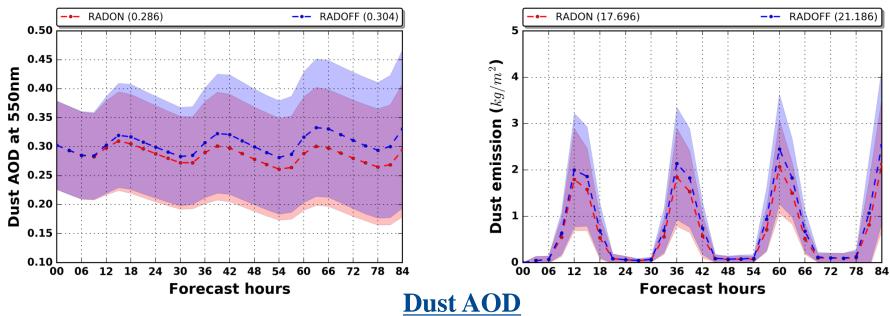
Impact on temperature at 2 meters: 2nd August 2012


Nighttime

Initial:02-Aug-2012 (at 00:00UTC) FCST Time: +24 H

Variable:T2 Units:Kelvin

Daytime


- SW DREs \rightarrow Reduction of temperature at 2 meters (up to 4 °C) during daytime
- ≻ LW DREs → Increase of temperature at 2 meters (up to 3-4 °C) during nighttime
- Reduction of the diurnal temperature range

Feedbacks on dust AOD and dust emission (NSD)

Barcelona Supercomputing Center Centro Nacional de Supercomputación

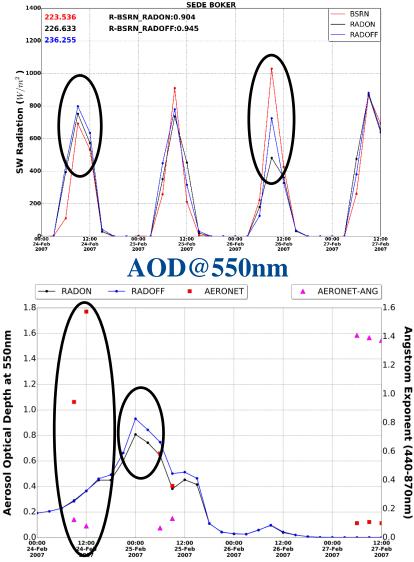
Dust AOD@550

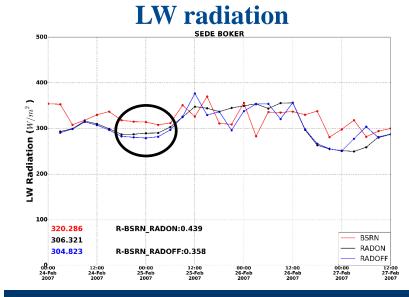
Dust emission

Increasing RADOFF-RADON biases (negative feedback) for increasing forecast hours

Reduction by 6.3% of the regional (NSD) dust AOD over the forecast cycle (84 hours)

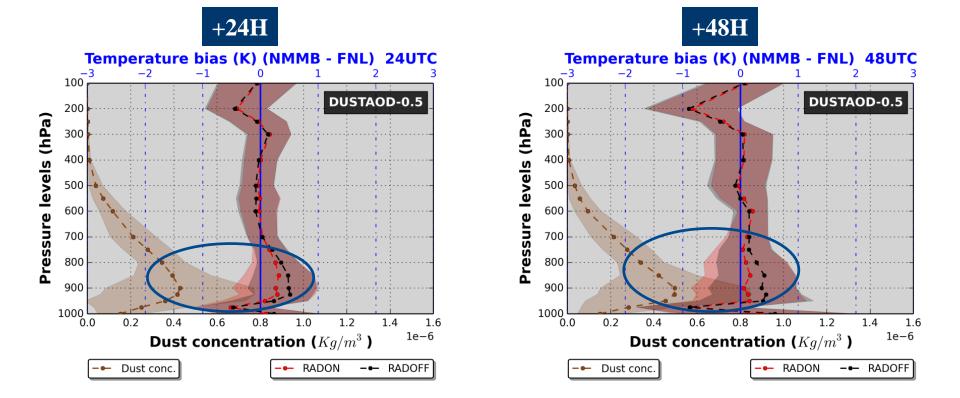
Dust emission


- Reduction of dust emission at noon-late noon for the RADON simulation
- Reduced outgoing surface sensible heat flux from the ground
- Reduction by 19.7% of the regional (NSD) dust emission over the forecast cycle (84 hours)


Negative feedbacks on dust emission and dust AOD when dust radiative effects are considered into the numerical simulations

Downwelling SW and LW radiation: Comparison NMMB – BSRN

SW radiation


Sede Boker (Israel) | 24 Feb. 2007

- Misrepresentation of the dust outbreak by the model → Overestimation (by 30-40 Wm⁻²) of the SW radiation
- ➤ LW effect → Reduction (by 20-30 Wm⁻²) of the LW underestimation by the model (RADON)
 - ➤ Underestimation (by 300-600 Wm⁻²) of the SW radiation by the model → Development of low clouds based on model simulations

Reduction of NMMB-BSRN differences for the RADON simulation

Temperature vertical profiles: Comparison NMMB – FNL (NSD)

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Dust AOD \geq 0.5

LW effect → Reduction by 0.2-0.3 °C, for the RADON simulation, of the model warm biases during nighttime

Conclusions

- Identification of 20 intense and widespread Mediterranean dust outbreaks based on an objective and dynamic satellite algorithm
- Calculation of the instantaneous DREs based on short-term (84 hours) simulations of the NMMB/BSC-Dust regional model
 - <u>TOA</u>: Cooling (up to 250 Wm⁻²)/warming (up to 50 Wm⁻²) over sea/desert at noon → higher albedos across desert areas
 - <u>SURF & NETSURF</u>: Cooling (up to 300 Wm⁻²)/warming (up to 50 Wm⁻²) during daytime/nighttime → SW/LW effect
 - <u>ATM</u>: Warming (up to 200 Wm⁻²)/cooling (up to 50 Wm⁻²) during daytime/nighttime
 → SW/LW effect
 - Predominance of the SW effects
- **Reduction/increase** of temperature at 2 m (by up to 4 °C) during daytime/nighttime
- Negative feedbacks on dust AOD and emission
- Reduction of the NMMB-BSRN biases, for the downwelling SW and LW radiation, when dust-radiation interactions are activated (RADON simulation)
- Better representation of the temperature fields during nighttime when dust radiative effects are considered into the numerical simulations (RADON simulation)

8th International Workshop on Sand/Duststorms and Associated Dustfall Lisbon, 1 – 4 May 2016

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Mediterranean desert dust outbreaks' direct radiative effects based on regional model simulations

A. Gkikas¹, V. Obiso¹, L. Vendrell¹, S. Basart¹, O. Jorba¹, C.P. Garcia-Pando^{2,3}, N. Hatzianastassiou⁴, S. Gassó⁵, J.M. Baldasano^{1,5}

🖆 COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

MDRAF MC-IEF-Intra-European Fellowships (IEF)

