EC-Earth Meeting, Reading. 2-3 November. 2016

Barcelona **BSC** Supercomputing Center Centro Nacional de Supercomputación

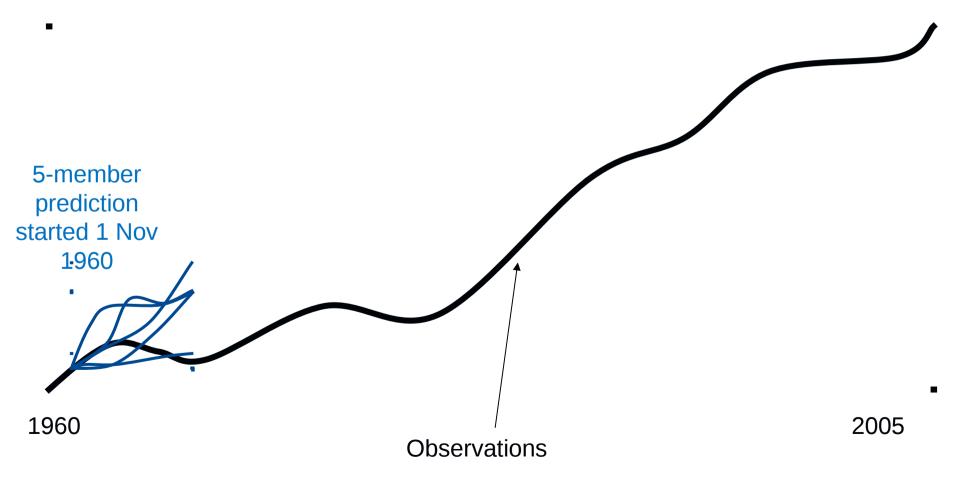
EC-Earth Climate Prediction Working Group

Etienne Tourigny

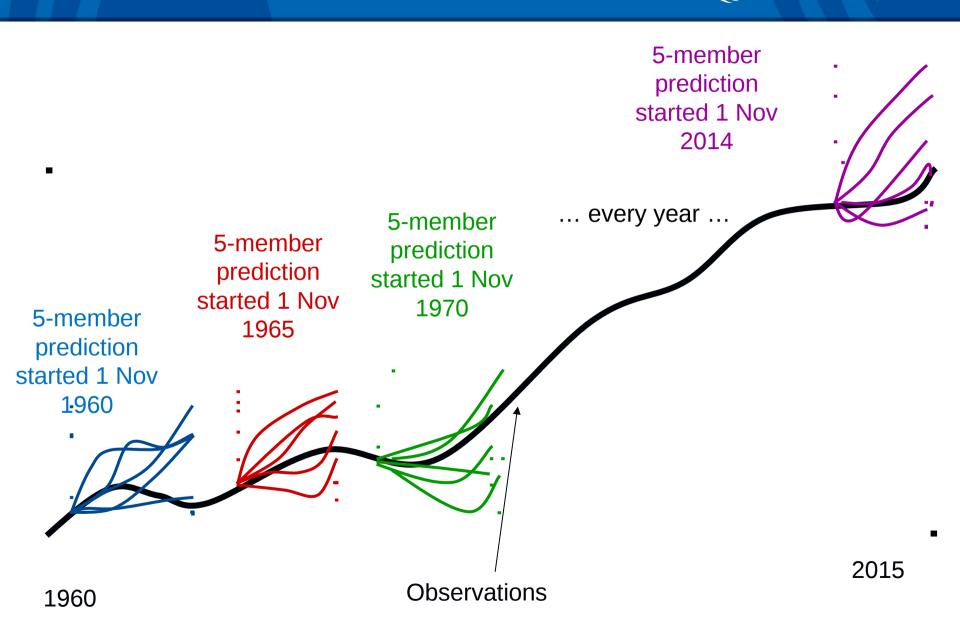
and the Climate Prediction Group at BSC

R. Bilbao, O. Bellprat L. Brodeau, R. Cruz-García, F. Doblas-Reyes, E. Exarchou, N. Fučkar, J. García-Serrano, V. Guemas, M. Ménégoz, C. Prodhomme, V. Sicardi, F. Massonnet

- Climate Prediction Overview
- Climate Prediction Group at BSC
- EC-Earth 3.2 seasonal prediction skill
- Future work : CMIP6 DCPP + HighResMIP



Progression from initial-value problems with weather forecasting at one end and multi-decadal to century projections as a forced boundary condition problem at the other, with climate prediction (sub-seasonal, seasonal and decadal) in the middle. Prediction involves initialization and systematic comparison with a simultaneous reference.


Weather forecasts	Subseasonal to seasonal forecasts (2 weeks-18 months)	Decadal forecasts (18 months-30 years)	Climate-change projections
Initial-va	lue driven		Time
		Bounda	ry-condition driven

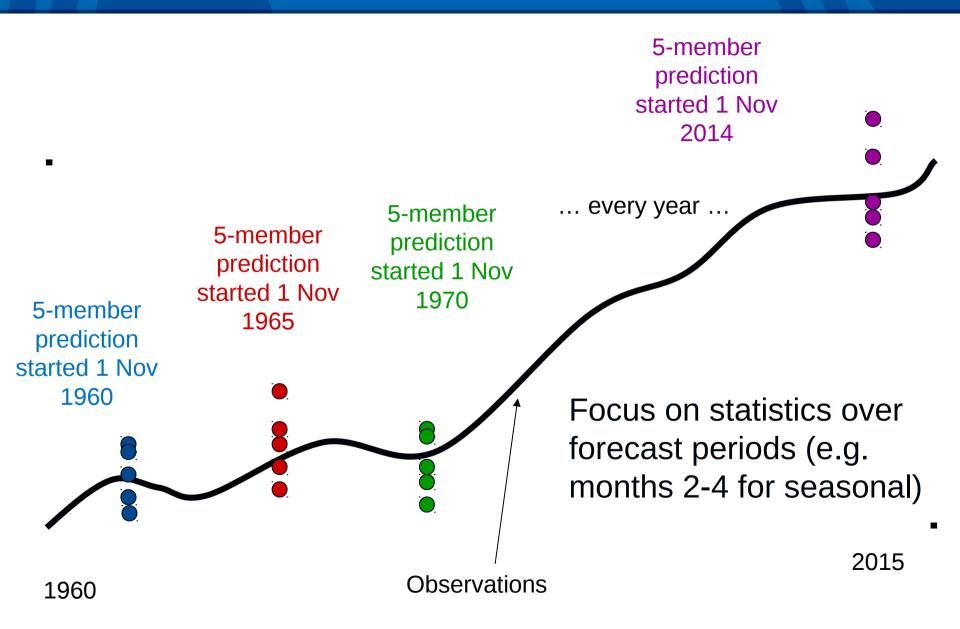
Climate prediction experiments

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Climate prediction experiments

EXCELENCIA SEVERO OCHOA

Barcelona


Center

BSC

Supercomputing

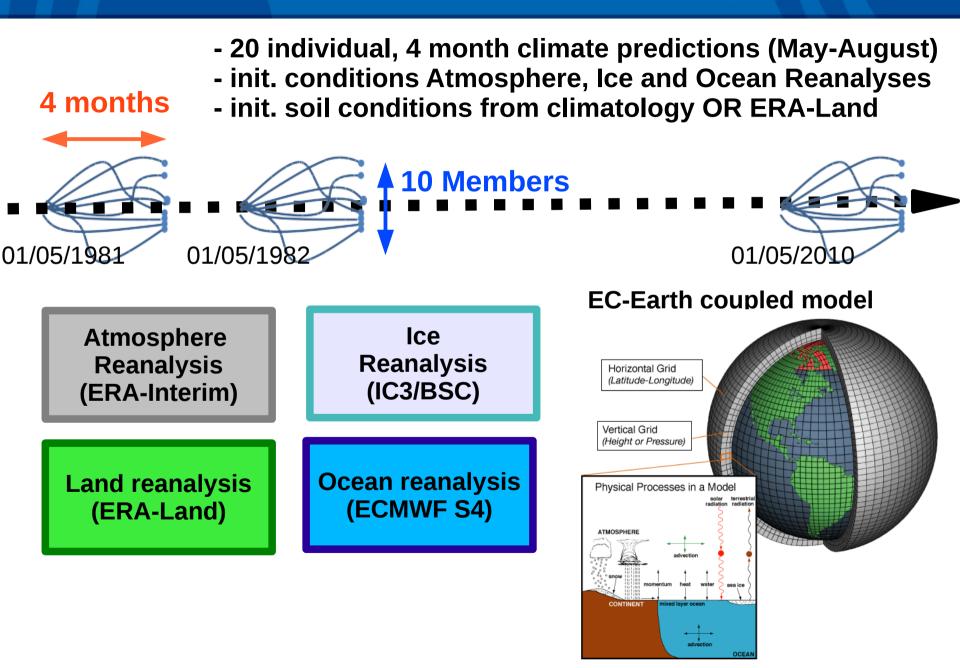
Centro Nacional de Supercomputación

Climate prediction experiments

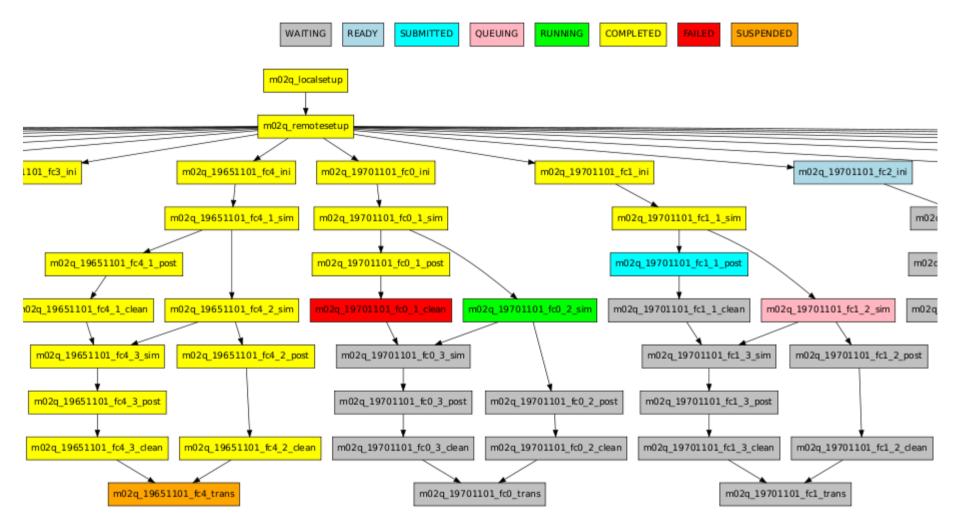
XCELENCIA

Barcelona

Center


BSC

Supercomputing


ntro Nacional de Supercomputación

The EC-Earth forecast system

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Climate Prediction Workflow

•

Barcelona

Center

BSC

Supercomputing

Centro Nacional de Supercomputación

EXCELENCIA SEVERO OCHOA

Climate prediction activities at BSC

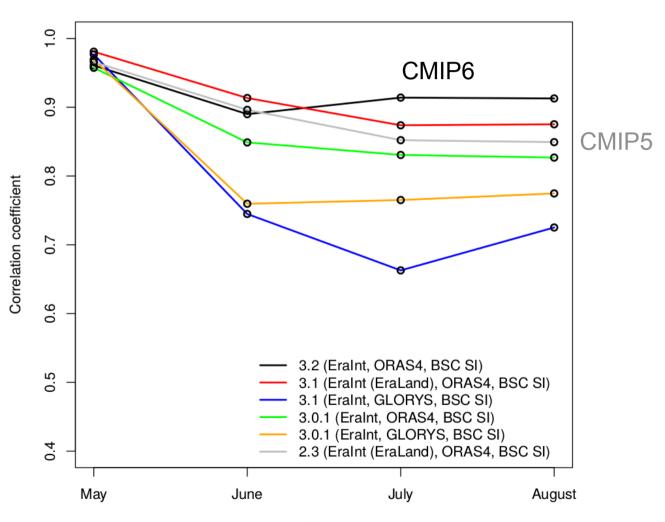
- Generation of in-home sea ice reconstruction / reanalyzes data assimilation techniques to exploit existing atmospheric and oceanic reanalyzes – development of initialization methods (anomaly versus full-field)
- 2) Analyses of mechanisms leading to model bias and development of bias correction techniques accounting for sensitivity of bias to prediction start date
- **3) Improvement of forecast systems** through better process representation : inclusion of new parameterizations, new model components, high resolution, parameter calibration
- 4) Identifying sources of skill such as soil moisture, sea ice thickness, aerosols, biogeochemistry through multi-faceted forecast quality assessment and sensitivity experiments
- 5) Development of reliable techniques for attribution of extreme events, analysis of case studies : 2014 Antarctic sea ice maximum, 2010 heat wave
- 6) Dissemination : Tropical cyclone damages : **hosting of an operational website for the next hurricane season** gathering predictions from all existing centers

XCELENCIA

Barcelona

Supercomputing

- Runs in seasonal prediction mode
- Stratospheric aerosols are being added (M. Ménégoz)
- T511L91/ORCA025L75
 - Fixed compatibility issues (see portal): bathymetry, closed seas, ...
 - Solved numerical instabilities from sea-ice conditions
- PRIMAVERA & HighResMIP output: ongoing (E. Tourigny)
- DCPP : awaiting for EC-Earth version (external & internal)
- BSC & SMHI : MetOffice decadal semi-operational experiment
- Initial Conditions available for climate prediction runs
- Reproducibility tests are underway (Massonnet, Ménégoz, Acosta)
- More in other EC-Earth meeting sessions



XCELENCIA

Barcelona

Supercomputing

EC-Earth Nino3.4 Skill (1993-2009) (HadISST)

Month

EXCELENCIA SEVERO OCHOA

Barcelona

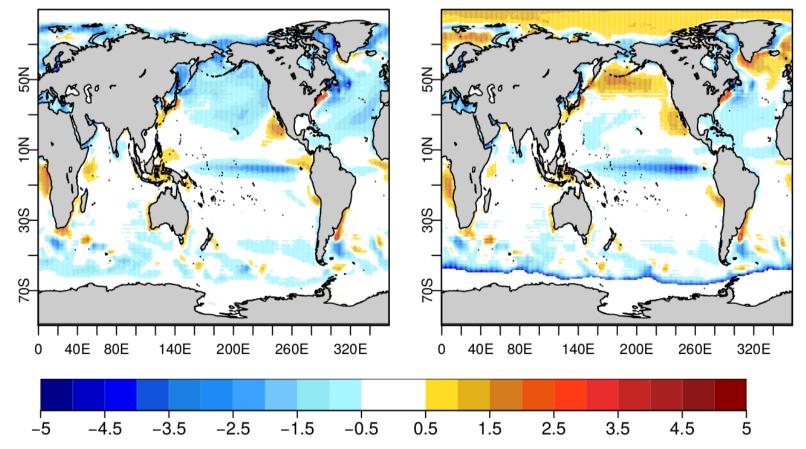
Center

BSC

Supercomputing

Centro Nacional de Supercomputación

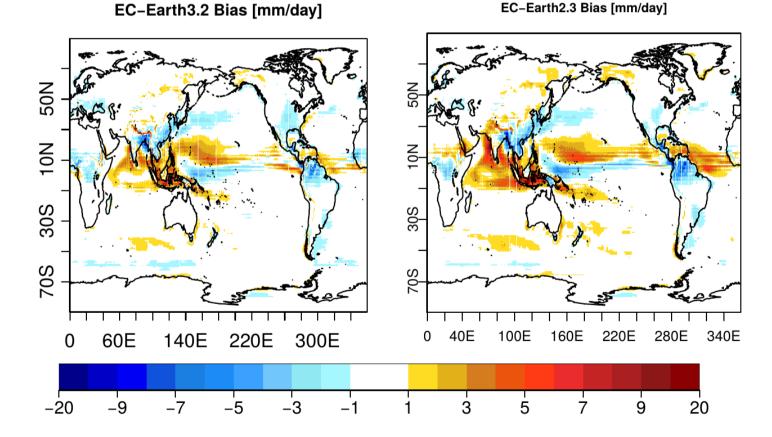
JJA SST 1993-2009 bias



CMIP6

EC-Earth3.2 (CMIP6)

EC-Earth2.3 (CMIP5)


°C

JJA Precipitation bias (1993-2009)

CMIP6

mm/day

Climate Prediction Working Group

- https://dev.ec-earth.org/projects/ecearth3/wiki/Climate_Prediction_Work ing_Group
- WG mailing list : ecearth.climate.prediction@bsc.es
- Terms of reference
 - To tune the EC-Earth 3.2 version in standard and high resolutions in seasonal prediction mode
 - Coordinate the participation of the EC-Earth consortium to DCPP
 - Develop initialization and ensemble generation techniques, share initial conditions to others
 - Assess climate forecast quality on sub-seasonal to decadal timescales
 - Investigate **sources and mechanisms** of predictability
- Experimental protocol for tuning in seasonal prediction mode
 - Run 5-member 4-month-long seasonal predictions initialized Nov. from 1993 to 2009
 - One 10-year-long simulation to be run by BSC at the end of the tuning process
- Repository for initialization, ensemble generation and verification tools
- Repository for initial conditions

Initial conditions for climate prediction

- Atmosphere:
 - Atmospheric initial conditions generated using FULLPOS for three different resolutions of IFS. FULLPOS conducts a physical interpolation using the model executable and therefore ensures little model drift.
 - The initial conditions are prepared for periods:
 - 1960 2015 using ERA-40 (1960-1978)
 - ERA-Interim (1979-2015)
 - ERA-Land (1979-2015) forced by GPCP, replaces surface model fields
 - 10-member (SST perturbation), Start dates each year in February, May, August, November
 - T511L91 & T255L91 resolutions
 - We can produce more on demand!!!

FXCELENCI

Barcelona

Supercomputin

BSC

Initial conditions for climate prediction

Barcelona Supercomputing Center Centro Nacional de Supercomputación

- Ocean:
 - ORAS4 interpolated/extrapolated 5-member restarts in the configuration
 ORCA1L75 covering the 1958-2013 period, at ECFS ec:/c3y/restarts_ORAS4
 - Many more available, and more can be produced easily
- Sea Ice:
 - 5-member ORCA1 reconstruction covering the 1958-2006 period = i056 at ECFS ec:/c3y/restarts_i056
 - 5-member ORCA1 reconstruction covering the 1979-present period = i057 at ECFS ec:/c3y/restarts_i057
 - 1-member ORCA025 reconstructions covering the 1958-2006 period = m063 at ECFS ec:/c3n/restarts_m063
 - 1-member ORCA1 reconstruction covering the 1958-2015 period = a05p
 - 24-member ORCA1 reconstructions with sea ice data assimilation (done using NEMO only), covering 1979-1999 (still ongoing): a0a9
 - 24-member ORCA1 reconstructions with sea ice data assimilation (done using EC-Earth), covering 1993-1995 (still ongoing, to be updated because major bug was found, ticket 289 on this portal) = a09p

DCPP – Decadal Prediction at BSC

- Initial Conditions:
 - prepared by BSC (atmosphere, ocean, sea ice)
 - for all years 1960-present
 - 4 start dates : November, February, May, August
- Component A : Decadal hindcasts (6000 years)
 - Every year from 1960-present
 - Starting in November of every year
 - 10 members
 - 5 year predictions, extended to 10 years
- Component B : Semi-operational decadal forecast (100 years)
 - 10 years x 10 members
- Component C3: Volcano effects on decadal prediction (M. Menegoz)
- "Extra" seasonal prediction hindcasts
 - Use the first months of the decadal runs initialized in November
 - Run short (4 month) predictions initialized in February, May, August
- High Resolution Hindcasts (optional, 3000 years)
 - 5 members, IF we obtain the hours from PRACE (as part of ENES) and only after we have completed everything else (HiResMIP and DCPP standard)

- Recent progress by other groups ?
- Plans for climate prediction experiments ?
- Using a workflow manager for climate prediction experiments
- DCPP
 - Partners and workload sharing
 - 3.2.x releases and tuning strategy
 - Output variables

- Priority levels:
 - Make sure that the basic variables that allow the forecast quality analysis & drift understanding are kept (no model level data because of cpu+space)
 - Priority 1 : all
 - Priority 2 : if not too prohibitive (cpu, space)
 - Priority 3 : those of interest to us

www.bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you!

For further information please contact etienne.tourigny@bsc.es