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Summary 
Validation of the past predictions of 10-metre wind speed of the monthly forecast system of 

the ECMWF revealed the existence of statistically significant skill over many areas of the 

world. This report aims to identify windows of opportunity, regions where monthly forecasts 

have a higher predictability than simple climatology for certain lead times, focusing on four 

key regions where wind power is generated: Europe, North Sea, Iberian Peninsula and North 

America. Results identified many windows of opportunity even beyond the first week of lead 

time, mainly during the winter half of the year. 
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1. Introduction 

Monthly forecasting, also known as sub-seasonal forecasting, fills the gap between medium-

range weather forecasting (up to two weeks) and seasonal forecasting (1-6 months). At 

monthly time scale, the atmospheric system has lost most of its memory from the initial 

conditions, which are relevant mainly during the first week; furthermore, the monthly scale is 

too short for the influence of the ocean state to differ significantly from its initial state and 

thus to beat persistence forecasts (Vitart et al. 2015). As a consequence, predicting hourly 

variations after the first week, particularly for a discontinuous variable such as wind speed, 

has little or no skill. However, there is opportunity for skilful predictions over longer time-

averaging windows, for example by considering weekly averages, in which the unpredictable 

short-term fluctuations are reduced and predictive skill arises from the slow changes in the 

boundary forcing (Rodwell & Doblas-Reyes 2006). Weekly averages of monthly forecasts of 

surface wind speed, temperature and geopotential height have already demonstrated to 

produce statistically significant skill (Lynch et al. 2014, Weigel et al. 2008; Hudson et al. 

2011). Forecast skill has been found during winter and over some European areas (particularly 

the United Kingdom) for weekly averaged wind speed over days 14-20 (Lynch et al. 2014). 

Thus, end users could gain potential economic value using the forecasts instead of the 

climatology to base their decisions. 

A decade ago few operational meteorological services were producing sub-seasonal forecasts 

but progressively they have been incremented in number, partially due to initiatives such as 

the Sub-seasonal to Seasonal Prediction project (S2S), aimed to improve forecast skill, 

quantify its uncertainty and understanding systematic errors and bias at the subseasonal to 

seasonal timescale. It’s focused also on identifying windows of opportunity for increased 

forecast skill, establishing multi-model database of ensemble of forecasts and promoting their 

uptake by operational centres and exploitation by the applications community. In the last 

decades forecast systems have slowly enhanced their skill, due to the increasing spatial 

resolution, the improved physical parametrizations (especially convection), better initial 

conditions and extended reforecast set. In recent years, many operational forecasting systems 

dedicated to sub-seasonal predictions have been implemented and now the majority of the 

Global Producing Centres (GPC) has a forecasting system designed to target the sub-seasonal 

time range. One of the more advanced sub-seasonal prediction systems is the multi-member 

ensemble monthly forecast system of the European Centre for Medium-range Weather 

Forecasts (ECMWF). In addition, other sub-seasonal prediction systems have also been 

developed by different institutions around the world, such as the Japan Meteorological 

Agency (JMA), the China Meteorological Administration (CMA), the National Centre for 

Environmental Prediction (NCEP/NCAR) or Météo-France (MF). 

Many management decisions fall into the sub-seasonal scale, thus the predictability at this 

timescale promises to be of great economic and societal value (Robertson et al. 2015). 

Examples of sub-seasonal prediction applications can be found in many sectors, such as 

agriculture, where the end-users can support operational decision making on the timing of 

cultivating, irrigating, spraying and harvesting; insurance companies or financial institutions, 

where the end-users can also improve the decision making by trading commodities that are 
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impacted by weather; supermarket chains as the sales volume of certain products is 

dependent upon temperature or health services and disaster mitigation. In the case of 

renewable energy, and most specifically the wind energy sector can benefit from the sub-

seasonal forecasts helping to stabilize energy costs and supply by improving scheduling and 

trading, maintenance scheduling, reducing curtailments and imbalance penalties, improving 

decisions about reserve energy sources, maximizing grid integration, and planning capacity 

commitments (Foley et al. 2012). 

Inside of the wind energy context, the aim of this work is to examine the skill of the ECMWF 

monthly probabilistic forecast system in simulating the observed 10-metre wind speed at 

global scale, looking for so-called ‘windows of opportunity’, spatial regions where monthly 

forecasts have a higher skill than simple climatology for certain lead times. The first quality 

assessment of the European monthly wind speed forecasts was performed by Lynch et al. 

(2014) during winter, the season with the highest predictability, while Weigel et al. (2008) 

validated the monthly mean temperature at annual time scale. To the best our knowledge, 

this is the first attempt of validating seasonal 10-m wind speed forecasts both at world spatial 

scale and outside winter months. 

Section 2 of this report outlines the data sources and methodology used. Section 3 examines 

the forecast quality assessment of the predictions using verification measures and focusing on 

the identification of windows of opportunities. In section 4, the main findings are discussed 

and general conclusions are drawn. 
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2. Data and methodology  

2.1. Data and pre-processing 

The version of the ECMWF monthly prediction system (ECMWF-MPS) employed in this study 

was publicly released in 2014. The ECMWF-MPS (Molteni et al. 2011) provides two forecasts 

per week with 51 members (simulations) each and forecasts 32 days long. Associated to the 

two forecasts of each week, one retrospective forecast (hindcast) is provided with 4 

perturbed ensemble members, which have different initial conditions and/or physical 

parameters, for the past 20 years (1994-2013) and a spatial resolution of roughly 0.70°. For a 

full description of the ECMWF system, see Vitart et al. (2015). The reference dataset chosen 

for the quality assessment of the predictions was ERA-Interim reanalysis (Dee et al. 2011), 

with native spatial resolution of 0.75°. Forecast data was regridded to this resolution with a 

bilinear interpolation. See Figure 1 for an overview of the steps followed in data pre-

processing. 

In this work, we have only selected the 10m wind speed forecasts started on Thursday of each 

week and the analyses have been done for all the weeks through the year, being 4 or 5 

different start dates available for each month (one for each week). For each start date, four 

lead times were selected averaging the 6-hourly raw forecast data (0000, 0600, 1200 and 

1800 UTC) during weekly periods corresponding to days 5-11, 12-18, 19-25, 26-32. For each 

individual start date and lead time, daily anomalies were obtained at each grid point for both 

ERA-interim reanalysis and ECMWF-MPS forecasts separately, having as reference the 

climatology of the respective dataset for the period 1994-2013. 

2.2. Methodology 

To be able to develop a forecast quality assessment of the predictions, where the 

simultaneous predicted and observed values are compared, a time series of data long enough 

to provide strong verification measures is needed. Since the hindcast period is 20 years long 

(1994-2013), assessing the verification scores for a particular week only on the basis of such a 

short hindcast would not lead to robust scores. Instead, we obtained the verification 

measures for individual months using a novel technique in the bibliography where all the 

hindcasts in a month (one per week) were concatenated. Each verification score was obtained 

from a time series with a size of 80-100 pairs of observational and predicted values, result of 

concatenating the 4 or 5 weekly start dates in a month. This new approach provides a number 

of pairs sufficiently high to measure robust values of the skill scores (Wilks 2011). 

A set of four verification measures, such as correlation of the ensemble mean (EnsCorr), fair 

rank probability skill score (FairRPSS), fair continuous rank probability skill score (FairCRPSS) 

and reliability diagrams, was applied in this study to assess the past performance of the 

predictions. All these measures were applied to the forecast anomalies rather than the 

absolute values, as there is a clear seasonality in wind speed. The first metric considered was 

EnsCorr, which is a deterministic score evaluating the predictions in terms of the temporal 

correlation coefficient between the anomalies of the ensemble mean and the observations, 
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on a grid point basis. The second metric is the commonly used probabilistic score RPSS, which 

measures the skill of the forecasts for categorical events (Wilks 2011). In this study, an 

enhanced version of the standard RPSS, known as FairRPSS (Ferro 2014), has been employed 

due to its advantage of not penalizing the intrinsic unreliability induced by small ensemble 

sizes. This property is favourable in the present work, since the ensemble size of the ECMWF-

MPS is only of a few members. The FairRPSS applied here has been computed based on 

categorical tercile events. Values of FairRPSS below zero indicates that the predictions are 

unskilful, those equal to zero don’t provide extra information than the climatology, and 

anything above zero is an improvement upon climatology, up to a maximum of 1, which 

indicates a ‘perfect’ forecast. The third metric, FairCRPSS (Ferro 2014), is also a probabilistic 

score but evaluate the skill of the full probability distribution instead of only three 

categories. As for the FairRPSS, values of FairCRPSS below 0 are defined as unskilful, those 

equal to 0 don’t provide extra information than the climatology and anything above 0 is an 

improvement upon climatology, up to a maximum of 1, the “perfect” forecast (Joliffe & 

Stephenson 2011). To make inferences about the true value of the FairRPSS and the 

FairCRPSS, their p-value was estimated with a nonparametric approach, by means of the 

bootstrap method (Mason 2008), measuring 1000 skill scores obtained by resampling data with 

replacement. 

Finally, reliability diagrams (Hartmann et al. 2002) of the forecasts examine the forecast 

frequency of the weekly average wind speed occurring in the lower, medium or upper tercile 

categories. They are simply graphs of the observed frequency of an event plotted against the 

forecast probability of the same event (in this case, the probability to belong to one of the 

tercile categories). This effectively tells the user how often (as a percentage) a forecast 

probability actually occurred and allows identifying any conditional or unconditional bias that 

may be exhibited by the forecasts. A perfect forecast system will result in forecast 

probabilities equal to the observed ones that correspond to the diagonal line of the reliability 

diagram. 
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Figure 1. Flow chart of the quality assessment of the ECMWF-MPS. 

Flow chart with the sequence of the steps followed for the validation of the 10-metre wind speed 
forecasted with the ECMWF-MPS, including pre- and post-processes. 
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3. Results 

3.1. Global quality assessment 

Global maps of EnsCorr, FairRPSS and FairCRPSS are shown in Figure 2 for the five start dates 

of January (Thursday 2nd, 9th, 17th, 23th and 30th) and four possible lead times, corresponding 

to days 5-11, 12-18, 19-25, 26-32. It is evident that for all lead times, the EnsCorr has a 

higher skill compared to the FairRPSS or the FairCRPSS, since it represents the potential skill 

that the forecast system might. 
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Figure 2. January skill scores. 

Skill scores for January start dates. (a) EnsCorr, (b) FairRPSS and (c) FairCRPSS. Each row shows a 
different lead time: days 5-11, 12-18, 19-25, or 26-21. Reference dataset: ERA-Interim (1994-2013). 
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By default, also the FairCRPSS is always slightly lower than the FairRPSS. Notwithstanding, the 

three scores show a spatial distribution globally similar (not considering both magnitude and 

significance). It is also clear that skill mainly decreases in the transition from the first lead 

time (days 5-11) to the second one (days 12-18). Skill decrease from the second to the third 

lead time (or from the third one to the fourth one) is considerably lower. Skill also exhibits 

seasonal variability, with a maximum in winter and a minimum in summer (see figures in the 

ESS web catalogue1). Such characteristics are typical not only of the start date of January but 

of all start dates. 

If we focus only on the second lead time, we can make a few general remarks on January skill 

that are also mostly valid for the two subsequent lead times. Over oceans, EnsCorr are often 

significantly positive (at 95% confidence level), particularly along the tropical belt, and with 

many areas with correlations above 0.5 (Figure 3). Over continents, correlations are mostly 

positive and significant over North America, South America and Africa. Asia, Europe and 

Australia have mainly positive correlations, even though in many areas they are not 

significant. 

 

                                            
1 www.bsc.es/ESS/catalogue 

 

 

Figure 3. January EnsCorr for the second lead time (days 12-18). 

EnsCorr for January start dates and lead time 12-18 days. Dashed lines show areas where correlation is 
significant at 95% confidence level, obtained with a bootstrapping test. Reference dataset: ERA-Interim 
(1994-2013). 
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As expected, FairRPSS is much less significant and positive than EnsCorr (Figure 4). Over 

oceans, the highest FairRPSS, with significant values around 0.5, is still found along the 

tropics, particularly in the eastern Pacific Ocean, in the Indian Ocean and Indonesia. On the 

contrary, in the western Pacific Ocean close to Indonesia, a large area shows the highest 

negative skill measured for the whole globe (<0.5), even though these values are not 

significant. Atlantic Ocean is a region with moderate skill (usually above 0.2), especially near 

the northern part of South America and Caribes, where FairRPSS is often significant too, and 

in the North Sea. Over continents, significant values of FairRPSS show a less homogeneous 

spatial distribution. In North America fewer significant areas are observed, compared to South 

America. In Europe, England, Germany, Holland and Denmark illustrate positive skill, but it is 

rarely significant. In Africa, skill is significant in roughly half of the territory, without showing 

a clear spatial pattern. In Asia and Australia, FairRPSS doesn’t show any significant extended 

region. 

 

FairCRPSS has a total significant area similar to the FairRPSS, even if skill values are globally 

lower (Figure 5). Overall, spatial distribution of significative correlations is similar to the 

FairRPSS, both over oceans and continents. 

 

 

 

Figure 4. January FairRPSS for the second lead time (days 12-18). 

FairRPSS for January start dates and lead time 12-18 days. Dashed lines show areas where the skill is 
significant at 95% confidence level, obtained with a bootstrapping test. Reference dataset: ERA-Interim 
(1994-2013). 
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Globally, January monthly forecasts show that the areas with positive skill for the three 

verification measures are more extended than those with negative skill (even at high lead 

times), meaning that the monthly forecasts perform better than climatology in most part of 

the world. Verification measures for the other months of the year are shown in the ESS web 

catalogue2. 

 

3.2. Regional quality assessment 

3.2.1. European region 

Values of EnsCorr averaged over the European region (15°W-45°R, 35°N-75°N) are always 

greater than 0.5 from October to April (Figure 6, left) for the first lead time (days 5-11), with 

a maximum of 0.6-0.7 in November. They decrease to 0.3-0.5 from May to September. 

Correlations between the ensemble mean of the ECMWF S4 and ERA-Interim are considerably 

lower for other lead times different than the first one: highest values only reach 0.2-0.3 in 

December and February for the second lead time (days 12-18). At higher lead times, 

correlations are almost always positive but small (0-0.1). February is the only month when 

                                            
2 http://www.bsc.es/ESS/catalogue 

 

 

Figure 5. January FairCRPSS for the second lead time (days 12-18). 

FairCRPSS for January start dates and lead time 12-18 days. Dashed lines show areas where the skill is 
significant at 95% confidence level, obtained with a bootstrapping test. Reference dataset: ERA-Interim 
(1994-2013). 
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EnsCorr is always over 0.1, even at high lead times. 

Both FairRPSS and FairCRPSS, averaged over Europe, show similar values for all start dates 

and lead times (Figure 6, center and right), even if overall the FairCRPSS measures a skill 

slightly inferior than the FairRPSS, as it is expected by default (Wilks, 2011). Maximum 

FairRPSS values are measured from September to June for the first lead time (days 5-11), 

with a maximum in November (0.3-0.4). Lead time three and four (days 19-25 and 25-32) 

sometimes have negative FairRPSS (worse than climatology). Thus, ECMWF-S4 shows no little 

or no skill over climatology beyond the first lead time. 

Reliability diagrams for all lead times and the central month of each season are shown in 

Figure 7. The five points shown in each diagram correspond to the forecast probability, which 

can have only five possible values: 0% if none ensemble members predict the tercile, 25% if 

one of the four members predict the tercile, 50% if two members predict it, 75% if three 

members predict it or 100% if all the four members predict it. It is evident from Figure 7 that 

for both upper and lower terciles, that the forecasts present a conditional bias, because they 

systematically underestimates events with small forecast probabilities (0% or 25%), and at the 

same time they overestimates all events with large forecast probability (50%, 75% or 100%), 

especially at lead times greater than 5-12 days. All months show a similar conditional bias, 

and the only intermonthly variability is observed for the last forecast class of 100%. 

 

Figure 6. Skill scores for the European region. 

From left to right: EnsCorr (a), FairRPSS (b) and FairCRPSS (c) for each start date and lead time 
averaged over the European region (15°W-45°R, 35°N-75°N). Reference dataset: ERA-Interim (1994-
2013). 
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Figure 7. Reliability diagrams for the European region. 

Reliability diagrams of the upper (top) and lower (bottom) terciles for all the four lead times and four 
monthly start dates of January, April, July and October (the central month of each season) measured 
for the European region (15°W-45°R, 35°N-75°N). Reference dataset: ERA-Interim (1994-2013). 

3.2.1. North Sea 

Average ensemble correlations over the North Sea are shown at left in Figure 8. During the 

first lead time (days 5-11), EnsCorr is high (>0.5) from September to April, with a maximum 

from November to March (>0.6) while in the other months it is only slightly smaller (0.4-0.5). 

Ensemble correlations are lower during the other lead times: only December and January of 

the second lead time (days 12-18) have correlations above 0.3. February shows a constant 

skill between 0.2 and 0.3, even at high lead times. Negative correlations are observed in 

August for all lead times except the first and also during other months, but never for the first 

two lead times. Globally, compared to the European region (Figure 6), EnsCorr over the North 

Sea are slightly higher during winter months and slightly lower during summer months. 
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Figure 8. Skill scores for the North Sea. 

As Figure 6, but averaged over the North Sea region (4°W-15°R, 50°N-65°N). 

 

A similar behaviour can also be observed for the FairRPSS and the FairCRPSS (Figure 8, center 

and right: skill varies seasonally, with a winter maximum and a summer minimum, and it is 

capped at 0.4 for FairRPSS and at 0.3 for FairCRPSS during the first lead time (5-11 days). 

Skill degrades for subsequent lead times, even if the forecasts keep being better than 

climatology (positive skill values), except during summer months and sometimes also outside 

summer for high lead times (days 19-25 or 26-32). Compared to the European region (Figure 

6), the FairRPSS obtain higher values from December to March, but only during the first two 

lead times (5-11 and 12-18 days), while the FairCRPSS only shows a modest improvement over 

the same period and lead times. However, negative skill values are more frequent for both 

FairRPSS and FairCRPSS, especially during summer months. 

Reliability diagram for the North Sea is shown in Figure 9. Conditional bias are similar to 

those observed for the European region, even if there is a higher intermonthly variability. 
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Figure 9. Reliability diagrams for the North Sea. 

As Figure 7, but for North Sea. 

 

3.2.2. Iberian Peninsula 

Average EnsCorr for the Iberian Peninsula are shown in the left part of Figure 10. Very high 

values (0.6-0.7) are observed from October to March for lead time 5-12 days, while other 

months of the same lead time range from 0.4 to 0.6. Other lead times have lower 

correlations: 0.1-0.4 for lead time 12-18 and up to 0.1 for lead times 19-25 and 26-31. 

February is the only month with average EnsCorr above 0.3 for lead time 12-18, and in 

general is the month with the highest potential skill, followed by April. Negative correlations 

sometimes are measured for lead times 19-25 and 26-32. Compared to the average European 

EnsCorr (Figure 6), correlations over the Iberian Peninsula are much higher from October to 

March (except in November), but only for the first lead time. 

Both the FairRPSS and the FairCRPSS show moderate skill during the first lead time (0.3-0.4 

during NDJ and MA months for FairRPSS and during DJ for FairCRPSS), and lower skill at higher 

lead times (up to 0.2), with negative skill measured during some months at high lead times, 

except July, which has negative FairRPSS even at lead time 12-18. Overall, the skill of the 

Iberian Peninsula, as measured by the FairRPSS and FairCRPSS, shows a similar interannual 

variation as the European skill (Figure 6) but with higher maximum values, even if limited to 

the first lead time. Reliability diagrams shown in Figure 11 reveal conditional bias similar to 

those of the North Sea (see Figure 9). 
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Figure 10. Skill scores for Iberian Peninsula. 

As Figure 6, but averaged over the Iberian Peninsula (10°W-4°E, 36°N-44°N). 

 

 

Figure 11. Reliability diagrams for the Iberian Peninsula. 

As Figure 7, but for Iberian Peninsula. 
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3.2.3. North America 

Average EnsCorr for North America is shown in Figure 12, left. Ensemble correlations are high 

(>0.5) from October to June of the first lead time (5-11 days), with a maximum of 0.6-0.7 in 

December. Other months have EnsCorr between 0.4-0.5. Second lead time (12-18) always has 

positive EnsCorr and between 0.1-0.2, except in December and February (0.2-0.3) and in 

September (0-0.1).Third lead time (19-25 days) always shows a positive EnsCorr, which is 

higher in January and February (0.1-0.2). Fourth lead time (26-32 days) has negative EnsCorr 

only in June and September. Compared to the European EnsCorr (Figure 6), North America 

EnsCorr has higher skill during spring months of the first lead time (5-11 days), while 

correlations for the other lead times and months are remarkably similar to the European 

ones. 

 

Figure 12. Skill scores for North America. 

As Figure 6, but averaged over North America (130°W-60°W, 30°N-50°N). 

 

FairRPSS has a maximum value of 0.3-0.4 in December for the first lead time, while it is 

constantly above 0.2 from October to June and above 0.1 in the other months. Other lead 

times have FairRPSS values that don’t exceed 0.1, but they are for the most part positive 

(forecasts better than climatology), On the contrary, FairCRPSS values are more negative than 

positive, except during the first lead time, when they are above 0.2 from October to April 

and above 0.1 in the other months, and during the second lead time, when they are above 0 

during all months except May and July. 

Figure 13 shows the reliability diagram for North America. Its conditional bias is of the same 
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type of that described for Europe (Figure 7). Measuring reliability over a larger area 

(compared to Iberian Peninsula or North Sea) reduces the differences between curves. 

 

Figure 13. Reliability diagrams for the North America. 

As Figure 7, but for North America. 
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4. Discussion and conclusions  

This report was developed in the framework of the RESILIENCE project (objective O1d3), and 

provides an exhaustive description of the predictability of the ECMWF monthly forecast 

system in simulating 10-m wind speed. For each monthly start date and weekly lead times, 

the wind speed forecasts are firstly assessed comparing them with observations from ERA-

Interim reanalysis, employing one deterministic verification score and three probabilistic 

scores, respectively the correlation coefficient of the anomalies (EnsCorr), the fair ranked 

probability skill score (FairRPSS), the fair continuous ranked probability skill score (FairCRPSS) 

and the Reliability Diagram. A novel technique was introduced to be able to assess both 

monthly verification scores from weekly start dates and to increase the robustness of the 

validation. Four different key regions, crucial for generation of wind power, were selected 

and employed to measure the average of verification scores over the chosen area: Europe, 

North Sea, Iberian Peninsula or North America. 

Results identified many regions with positive forecast skill, e.g. where monthly forecasts have 

higher predictability than climatology (‘windows of opportunity’) for several different lead 

times, usually during the winter half of the year. A number of reasons may explain the higher 

skill during winter months: larger SST gradients, stronger coupling between the stratosphere 

and the troposphere, and influence from the MJO (Lynch et al. 2014). Skill decreases 

particularly in the transition from the first lead time (days 5-11) to the second one (days 12-

18), and it is usually highest and more significant around the equator region and all tropics in 

general, especially in the eastern part of the Pacific and in the Indian Ocean.  

Lead time of 5-11 days, in particular, always shows positive skill in all regions considered, up 

to a maximum EnsCorr of 0.7. Focusing only on subsequent lead times, and on regions with 

FairRPSS >0.1 (to select only the strongest windows), it is interesting to notice that North 

America presents a good windows of opportunity in December during the second lead time, 

while Iberian Peninsula presents four, one in December for lead time 12-18, two in February 

for lead times 12-18 and 19-25, and one in October for lead time 26-32. The last window is 

the only one detected with FairRPSS above 0.1 and lead time 26-32, for all the regions 

considered in this study. North Sea also presents four windows of opportunity with FairRPSS > 

0.1, but they are all circumscribed to the second lead time (12-18 days). European region is 

the only one that doesn’t present any month and lead time (beyond the first) with FairRPSS > 

0.1. Detailed figures of the skill for each start date and lead time are available in the ESS web 

catalogue3. 

Globally, wind speed monthly forecasts perform better than climatology in most part of the 

world. Sometimes, a negative FairRPSS and/or FairCRPSS can be observed, especially during 

summer months, and more frequently at higher lead times. It is worth mentioning that even 

when FairRPSS and/or FairCRPSS is negative (i.e: climatology is better than forecasts), the 

average of the skill over the study region never drops below the value of -0.1, meaning that 

                                            
3 http://www.bsc.es/ESS/catalogue 
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the forecasts are never much worse than climatology. Finally, reliability diagrams detected a 

conditional bias that underestimates low-probability forecast probabilities and overestimates 

high-probability ones, for all start dates, lead times, terciles and regions considered. 
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