

EC-Earth Climate Prediction Working Group

Etienne Tourigny

and the Climate Prediction Group at BSC

V. Guemas, F. Doblas-Reyes, R. Bilbao, O. Bellprat L. Brodeau, R. Cruz-García, E. Exarchou, N. Fučkar, J. García-Serrano, M. Ménégoz, C. Prodhomme, V. Sicardi, F. Massonnet, J.C. Acosta Navarro

- Climate prediction with EC-Earth
- Initial conditions for CP
- CMIP6 plans at BSC CP Group
- DCPP

Climate prediction time scales

Progression from initial-value problems with weather forecasting at one end and multi-decadal to century projections as a forced boundary condition problem at the other, with climate prediction (sub-seasonal, seasonal and decadal) in the middle. Prediction involves initialization and systematic comparison with a simultaneous reference.

Adapted from Meehl et al. (2009)

Climate prediction experiments

Climate prediction experiments

Climate prediction experiments

Climate Prediction Workflow

Forecasts with EC-Earth 3.2.2

Atmosphere
Reanalysis
(ERA-Interim)
Interpolated with PrepIFS

10 Members

Ocean reanalysis (ORAS4) Interpolated

Land reanalysis (ERA-Land)

lce

Reanalysis (IC3/BSC)

LIM3 forced by ERA-int with ocean nudged toward ORAS4

EC-Earth coupled model

- NEMO 3.6: ORCA1L75-LIM3

- IFS 36r4: T255L91

- **Version 3.2.2**

JJA (1993-2009) Niño3.4 skill

EC-Earth Nino3.4 Skill (1993-2009) (HadISST)

JJA (1993-2009) SAT bias (°C)

JJA (1993-2009) SAT skill

JJA (1993-2009) Precip. Bias (mm/day) (BSC Supercomputing Sever Center Centro Nacional de Supercomputación

JJA (1993-2009) Precip. Skill

JJA (1993-2009) Arctic Sea Ice extent

Month

EC-Earth NH SIE Skill (1993-2008) (NSIDC)

Initial conditions for climate prediction

- Atmospheric initial conditions are interpolated from ERA reanalyses (ERA-Interim, 40, 20C)
- Generated using prepIFS with FULLPOS for three different resolutions of IFS. FULLPOS conducts a physical interpolation and therefore ensures little model drift.
- We are investigating how to generate these without relying on prepIFS, open to suggestions!!!
 - Using FULLPOS inside EC-Earth IFS to read the ERA files and interpolate them at the required vertical levels
 - Using conservative vertical interpolators such as CDMS or python scripts promoted by Glenn Carver
 - running the IFS component of EC-Earth nudged to atmospheric reference files, to generate both atmospheric and land surface fields
 - Land surface surface ICs could be done with offline HTESSEL runs

Initial conditions for climate prediction

Atmosphere:

- 1960 2015 using ERA-40 (1960-1978)
- ERA-Interim (1979-2015)
- ERA-Land (1979-2015) forced by GPCP, replaces surface model fields (E. Dutra)
- 10-member (SST perturbation), Start dates each year in February, May, August,
 November

Ocean:

- ORAS4 interpolated/extrapolated 5-member restarts in the configuration ORCA1L75 covering the 1958-2013 period, at ECFS ec:/c3y/restarts ORAS4
- Many more available, and more can be produced easily

Sea Ice:

- 5-member ORCA1 reconstructions
- 1-member ORCA1 and ORCA025 reconstructions
- 24-member ORCA1 reconstructions with sea ice data assimilation (done using NEMO or EC-Earth)
- ORCA025 reconstruction under development
- Work by F. Massonet and N. Fuckar

Generation of sea ice initial conditions with the Ensemble Kalman Filter in EC-

Free

Sea ice extent N

16

François Massonnet (UCL/BSC) N. Fučkar (BSC)

NH SIE

A prototype coupled data assimilation scheme has been developed

- SIC is assimilated monthly in EC-Earth3.2
- The EnKF provides a good constraint on sea ice extent

SH SIE

DCPP - Decadal Prediction at BSC

Initial Conditions:

- prepared by BSC (atmosphere, ocean, sea ice)
- for all years 1960-present
- 4 start dates : **November**, February, May, August
- Component A: Decadal hindcasts (6000 years)
 - Every year from 1960-present
 - Starting in November of every year
 - 5 members, extended to 10
 - 5 year predictions, extended to 10 years
- Component B : Semi-operational decadal forecast (100 years)
 - 10 years x 10 members

DCPP - Decadal Prediction at BSC

- Component C Volcano effects on decadal prediction (M. Menegoz)
- Component C Idealized impact of AMV/Pacemaker experiments, also for PRIMAVERA (R. Bolbao)
- Carbon cycle :
 - LPJ-Guess for seasonal-to-decadal prediction of fire risk (E. Tourigny)
 - PISCES for ocean CO2 uptake (V. Sicardi, R. Bernardello)
- "Extra" seasonal prediction hindcasts
 - Use the first months of the decadal runs initialized in November
 - Run short (4 month) predictions initialized in February, May, August
- High Resolution Hindcasts (optional, 3000 years)
 - 5 members, IF we obtain the hours from PRACE (as part of ENES) and only after we have completed everything else (HiResMIP and DCPP standard)

Breakout Session & conclusions

- EC-Earth 3.2.2 (untuned) hindcasts slightly better than 2.3 (CMIP5)
- Many ICs available for climate prediction experiments, ongoing work to produce atm. + land conditions independently and more sophisticated methods (assimilation)
- Workflow manager is essential for seasonal prediction experiments
- BSC leading DCPP efforts
 - Component A: more members could help, if may members
 - Component C: other partners could help in sensitivity experiments and the carbon cycle, discussed in the Land & Vegetation working group
- Beyond CMIP6 can we have a full-fledged ESM model which does seasonal / decadal / climate with a more complex land surface/dynamic vegetation model?

Thank you!

For further information please contact etienne.tourigny@bsc.es