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Climate and renewable energy

Renewable energy is growing fast to decarbonize the energy system.

Both energy supply and demand are strongly influenced by atmospheric
conditions and its evolution over time in terms of climate variability and

change.
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Britain's turbines are producing 40%
less energy as wind 'disappears' for six
weeks across the UK causing record
low electricity production

« Britain got 15 per cent of its power from wind last year — twice as much as coal
« Since the start of June, wind farms have been producing almost no electricity
« The 'wind drought' has seen July 2018 be 40% less productive than July 2017

« In the still weather, solar energy has increased by 10% to help cover the

drop-off
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Predictability sources

Different components of the climate system act as predictability sources
depending on the time scale.

However, converting predictability into actual forecast ability (skill) is not a
trivial task.
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And the chain goes well beyond climate

Even when there is skill in the climate variables, converting it into proven
usefulness for a specific application involves a complex chain.
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Monitoring is key: what we want to predict

Observed weekly means and climatology
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Products and their quality

The prediction process follows a series of steps:

Formulate a prediction from a forecast system. The exact definition of the
prediction is very important.

Select the verification metrics of the prediction that allow us to adequately
represent the attributes of interest and an observational reference.

Choose a comparison standard that provides a reference level (persistence,
climatology or a previous forecast system).

A prediction is of high quality if it predicts the conditions observed according
to some objective criterion better than a reference prediction.

The prediction has value if it helps the user to obtain some kind of benefit
from the decisions he has to make.

Note that the forecast quality is valid for a specific forecast product. Different
products from the same forecast system will show different forecast quality.
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Observational uncertainty is a big issue

Coherence of the 10-metre wind speed trends in three reanalyses (ERA-Interim,
JRA-55 and MERRA) over 1981-2015 during boreal winter.

Negative trend Others Positive trend

* * * ox *

Torralba et al. (2017, ERL)
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DJF wind speed predictions
starting on the first of October,
November and December for the
first trimester of 2015, ECMWF
SEASS, reanalysis: ERA-Interim,
hindcasts over 1993-2015.

Start Date

Oct | Nov | Dec

RPSS | 0.35 | 0.39 | 0.35

CRPSS| 0.14 | 0.11 | 0.14

Corr | 0.55 | 0.54 | 0.51




Forecast quality, calibration, multi-model

* Forecast quality assessment:

* V\erification procedure of existing forecast systems based on scoring rules
(e.g. RPS for multi-category probabilities, CRPS for ensembles)

* Products, and not data, are verified; forecast products are scrutinised

e Calibration (or bias adjustment)
 All bias correction and recalibration methods effectively remove bias

e Added value of sophisticated methods (e.g. EMOS) small to inexistent due to
limited hindcast length (and low skill)

 Multi-model combination
* No forecast system consistently outperforms others

 Multi-model combination is beneficial

* Avoid the temptation of identifying inadequate data sources to e.g. discard
“bad” forecast systems.
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Bias adjustment and forecast quality

Skill of JJA temperature from ECMWEF SEASS + recalibration: CRPSs of JJA near-
surface temperature from, ECMWEF SEAS 5 initialized in May, calibrated with the
climate-conserving recalibration (CCR) and verified against ERA Interim for
1993-2014.
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Bias adjustment and forecast quality

CRPS of DJF temperature from several systems with different bias adjustment
methods, bias adjusted and verified against ERA Interim for 1993-2014.
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Multi-model predictions: how to

Categorical
predictions
requested?

g
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Multi-model and forecast quality

CRPSS of JJA temperature from ECMWEF SEAS 5, Météo-France System 5,
MetOffice GloSea5, initialized in May, all systems recalibrated with CCR and

weighted (RMSE) averaging of forecast PDF and verified against ERA Interim for
1993-2014.

Better
— 0.8
~ 0.6
_ By
| o
o= | e than constant
—=10 a : :
SHEIRE: climatological
54 (@)
T2 e forecast
175} =
~ -0.4
=,

— -0.6

- -0.8

Worse




Bias adjustment and forecast quality

Skill of JJA temperature from ECMWEF SEASS + recalibration: CRPSs of JJA near-
surface temperature from, ECMWEF SEAS 5 initialized in May, calibrated with the
climate-conserving recalibration (CCR) and verified against ERA Interim for
1993-2014.
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Multi-model and forecast quality

CRPSS of DJF temperature from ECMWF SEAS 5, Météo-France System 5,

MetOffice GloSea5, initialized in November and verified against ERA Interim for
1993-2014.
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lllustrating prediction value

Gamification is useful to illustrate the challenges of using and the value of
seasonal climate predictions:

* Play against a reference taken from climatological frequencies.

* The bets are proportional to the predicted probabilities.

* The amount invested in the observed category is multiplied by three.

Climatology

Expected wind speed:
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lllustrating prediction value

Examples of return ratio for 33 betting runs for different points where wind
power plants are installed:

* Top row cases with RPSS=0, but ignorance skill score negative or zero.

e Bottom row cases with RPSS>0.

* Line for the geometric average of return ratios (interest rate).
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X47987 - Mexico

X32373 - Kazakhstan

X24590 - Denmark

.0
RPSS =0 1SS =-0.03
R=096 IR (%)=-349 ROI=-0.69

4.0
RPSS=0 1SS =-0.03

R=097 IR(%)=-3.10 ROI=-0.65

RPSS=0 1SS=0
R=1 IR(%)=0.15 ROI=0.05

Years

X78576 - Vanuatu

Years

X56730 - Colombia

X39788 - US

RPSS =0.31 1SS=0.21
R=125 IR (%)=2545 ROI=1773.77

.0
RPSS =0.35 1SS=0.25
R=132 IR (%)=32.02 ROI=9565.68

RPSS =0.42 1SS =0.31
R=140 IR (%)=39.98 ROI=66049.48
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Elements involved in the prototype
development

et

Real-time forecasts
improvement
34 DST pilot |-

improvement

\op™
Case studies
modelling Development of real-
15t DST pilot | time forecasts Model skill

Map user
needs Economic
impact Evaluation of Business model

assessment forecasts development
operational

performance DST services
dissemination

Build case
studies

co-design & co-development
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Operational prototype: the DST
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A twist to the idea: event attribution

During the first quarter of 2015 the United States experienced a widespread and
extended episode of low surface wind speeds. This episode had a strong impact on
wind power generation. Some wind farms did not generate enough cash for their

steady payments, and the value of wind farm assets decreased.
Wind speed anomalies reflecting the wind drought
over the United States for the first trimester of
2015, where the USA wind-farm fleet is also shown

(Lledod et al., JGR 2018)
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Summary

 Forecast quality assessment:

* No prediction should be considered without its corresponding verification.
* Products, and not data, are verified. Always define a product.

* Bias adjustment:
* All bias adjustment methods effectively remove bias.

 Simpler methods tend to work best, and the chosen method should be
carefully assessed.

* Correlation of the direct model output is not a good measure of the actual
skill of a product.

 Multi-model combination

* Multi-model combination is beneficial, although weighting the best
systems is not a trivial exercise.




