Flux i transformació de petites partícules orgàniques a l'oceà mesopelàgic: un trencaclosques biogeoquímic i climàtic

Martí Galí Tàpias \& Raffaele Bernardello (BSC)
Col-laboradors: Hervé Claustre (LOV, CNRS-UPMC), Olivier Aumont (IPSL-IRD)

Biogeochemistry team @ BSC - Climate Prediction Group

Raffaele Bernardello

Marcus Falls

Ongoing biogeochemistry projects

CCiCC: Climate-Carbon Interactions in the Coming Century
DeCUSO: Decadal predictions of Carbon Uptake in the Southern Ocean
NeTNPPAO: Near-term predictability of net primary production in the Atlantic Ocean
ORCAS: Organic Carbon Sequestration in the Oceans

1/6. Climate and ocean carbon pumps

Global carbon budget

Fate of anthropogenic CO_{2} emissions

Ocean carbon pumps

$D I C_{\text {pre }}$
 $\sim=$

Solubility pump

DIC
rem
$\sim=$
Biological pump
atmosphere

$\underset{\text { Exchange }}{\text { Atm-Ocean Gas }} \downarrow \downarrow \uparrow$

Particles sinking
(soft tissue and carbonate shells)

Working against thermodynamic equilibrium

Global carbon budget

- Oceanic CO_{2} exchange is much larger than absorption of anthropogenic CO_{2}, and depends on joint operation of solubility and biological C pumps.
- Uncertainty in biological pump magnitude, interannual variability, and future response, is large enough to confound climate predictions and projections.

Biological carbon pump(s)

EP/NPP =
e-ratio ~ 0.20

$$
\xrightarrow{\text { Transfer efficiency }}
$$

Flux units: $\operatorname{Pg} C y^{-1}$
Passow \& Carlson 2012 MEPS. See also
Buesseler \& Boyd 2009, Legendre et al. 2015 PiO

Particle size and density control sinking speed*...

...So large/dense particles should dominate the flux

Fast sinking aggregates

Clegg \& Whitfield 1990 DSR (in Sarmiento \& Gruber 2006). See also Stemmann \& Boss 2012 ARMS

Export Production = NPP x e-ratio

Productivity
 Net primary production (NPP)

Export production (EP)

"Large" phytoplankton (~diatoms) fraction

4

e-ratio $=$ EP/NPP

Ecosystem structure

Global projections: more stratification, less export?

Fu et al. 2016 BG
See also Laufkötter et al. 2016 BG

2/6. Particle fluxes through the mesopelagic

Sediment traps

Martin et al. 1983, Buesseler et al. 2007 JMR

Martin's b (a.k.a. the magic exponent)

Fig. 5. Open ocean composite (OOC) fluxes for C using the means of replicates at various depths from Stas 2, 4, 5, II, III and NPEC: $F=1.53(z / 100)^{-0.858} ; r^{2}=0.81 ; n=48$.

Current EP estimates are no better

(a) BEC

(c) TOPAZ

(e) Henson

(b) PISCES

(d) REcoM2

(CMIP5)
Prognostic

4.6-7.2 Pg C y-1

4.0-12.9 Pg C y ${ }^{-1}$

Laufkötter et al. 2016 BG See also Palevsky \& Doney 2018 GRL

Sediment traps

Martin et al. 1983,

Particle flux measurement: current methods

Neutrally buoyant sediment traps

PELAGRA

Valdes \& Price 2000, Lampitt et al. 2004

Particle-scavenged radioisotopes

Optical devices, imaging

Th ${ }_{\text {total }} / \mathbf{2 3 8} \mathbf{U}$	
${ }^{234}$ Th flux	1000
sinking particles	60
POC/ ${ }^{234}$ Th	1:4
POC flux	$000 \cdot 1 / 4$

POC flux attenuation

- MLD to 2000 m (${ }^{234}$ Th or particle size spectra combined with 2000 m trap data).
(Henson et al. 2012 GBC, Guidi et al. 2015 GBC)

POC flux attenuation: mesopelagic \neq bathypelagic

- MLD to 2000 m (${ }^{234}$ Th or particle size spectra combined with 2000 m trap data).
(Henson et al. 2012 GBC, Guidi et al. 2015 GBC)
- MLD to 600 m (neutrally buoyant sediment traps -PELAGRA).

3/6. Budgets: making sense of observations

Change in vertical flux = net carbon demand

$F_{\text {Poc }}=w[$ [POC $]$
At steady state, over large enough areas and long periods:
$\mathrm{d}\left(\mathrm{F}_{\text {Poc }}\right) / \mathrm{dz}=$
$\mathrm{d}(\mathrm{w}[\mathrm{POC}]) / \mathrm{dz} \approx \mathrm{k}_{\text {net }}[$ [POC]

Martin et al. 1987 DSR,
Sarmiento \& Gruber 2006

Mesopelagic budgets cannot be closed

Heterotrophic carbon demand is not met

North Pacific

Mesopelagic budgets cannot be closed

Global estimates of EP < prokaryotic carbon demand

Global estimates
Units: Pg C $y^{-1}\left(\mathrm{~mol} \mathrm{C} \mathrm{m}^{-2} \mathrm{y}^{-1}\right)$

Mesopelagic budgets cannot be closed

Mesopelagic fish biomass revised upwards

- ~13 Pg wet weight (10x) based on acoustics. Higher trophic efficiency invoked (Irigoien et al. 2014 NComms)
- 2.4 Pg wet weight, ($\mathbf{2 x}$) based on modelling (NEMO-MEDUSA) (Anderson et al. 2018 ICES JMS)

Deep scattering layers detected

Large budget imbalance: Why?

- Inappropriate sampling: low temporal-spatial resolution (sparseness, bias) and mismatch between epipelagic and mesopelagic process measurements (Henson et al. 2015 GBC)
- Measurement uncertainties in both particle flux and metabolic rates. (Buesseler et al. 2007 JMR, Arístegui et al. 2009 L\&O, Buesseler \& Boyd 2009 L\&O, Burd et al. 2010 DSR...)
- Mathematical assumptions: steady state, constant sinking speed, constant decay rates (Villa-Alfageme et al. 2014 GBC, Giering et al. 2016 GBC...)
- Unaccounted or poorly understood processes:
- Flux of, and metabolism on, suspended and slow-sinking POC
- Diel and seasonal vertical migration (Aumont et al. 2018 GBC)
- Poorly understood ecology, e.g. radiolarians (Guidi et al. 2016 Nature)
- Chemoautotrophy (Arístegui et al. 2009 L\&O)

Budgets can (sometimes, nearly) be closed

a $\quad \operatorname{POC}\left(\mathrm{mg} \mathrm{C} \mathrm{m}^{-2} \mathrm{~d}^{-1}\right)$

b $\quad \mathrm{ZR}\left(\mathrm{mg} \mathrm{C} \mathrm{m}^{-3} \mathrm{~d}^{-1}\right)$

d

4/6. Suspended and slow-sinking particles: supply and cycling

Small particles (<20 $\mu \mathrm{m}$) can dominate vertical flux

Bimodal POC flux dominated by small slow-sinking particles in Canary Current region (during at least half of the year)

High contribution by small POC: not an exception

- Subtropical N Atlantic, Canary Current: >60\%, w < $10 \mathrm{~m} \mathrm{~d}^{-1}(\mathrm{~d} \ll 30 \mu \mathrm{~m})$ during at least half of the year (Alonso-Gonzàlez et al. 2010 GRL).
- Temperate NW Atlantic (PAP): $\mathbf{> 6 0 \%}, \mathrm{w} \approx 10 \mathrm{~m} \mathrm{~d}^{-1}$ in August (Riley et al. 2012 $G B C$). Mean sinking speeds (radioisotope approach) increase with depth, incompatible with large aggregate-dominated flux (Villa-Alfageme et al. 2014).
- Subpolar N Atlantic: >85\% in April, early bloom (Giering et al. 2016 JGR).
- Subpolar N Pacific (K2): 15-50\% in August (Trull et al. 2008, Buesseler et al. 2007).

Physical supply: mixed layer pump

$0.1-0.5 \mathrm{Pg} \mathrm{C} \mathrm{y}^{-1}$ globally, $\mathbf{+ 5 \%}$ of gravitational POC export (+23\% at high latitudes). Intraseasonal MLD variability not accounted for.

Dall'Olmo et al. 2016 Nat. Geo. See also
Gardner et al. 1995 DSR.

Physical supply: (sub)mesoscale subduction pump

- Subducting filaments along the perimeter of eddies. Up to +100\% of gravitational POC export during restratification, especially in Southern Ocean (Omand et al. 2015 Science)

- Subduction pump observed in 1% of 4000 profiles (biogeochemical ARGO floats) in the Southern Ocean. Up to $\mathbf{+ 1 \%}$ (spring) to $\mathbf{+ 2 0 \%}$ (summer) of gravitational POC export (Llort et al. 2018 JGR)

VERTEX: carbon cycling in the northeast Pacific

John H. Martin, * George A. Knauer, ${ }^{*} \ddagger$ David M. Karl \dagger and William W. Broenkow*

(Received 23 June 1986; in revised form 6 October 1986; accepted 15 October 1986)

Abstract

Particulate organic carbon fluxes were measured with free-floating particle traps at nine locations during VERTEX and related studies. Examination of these data indicated that there was relatively little spatial variability in open ocean fluxes. To obtain mean rates representative of the oligotrophic environment, flux data from six stations were combined and fitted to a normalized power function, $F=F_{100}(z / 100)^{\text {b }}$; e.g. the open ocean composite C flux in $\mathrm{mol} \mathrm{m} \mathrm{m}^{-2} \mathrm{y}^{-1}=1.53(z / 100)^{-0.858}$ with depth z in meters. It is shown that the vertical derivative of particulate fluxes may indicate solute regeneration rates, and accordingly regeneration rates for C, H and N were estimated. Oxygen utilization rates were also estimated under the assumption that $1.5,1.0$ and 0.25 moles of O_{2} were used for each mole of N, C and H regenerated. Regeneration ratios of these elements were depth-dependent: i.e.

$\mathrm{N}: \mathrm{C}: \mathrm{H}:-\mathrm{O}_{2}=$
$1.0 \mathrm{~N}: 6.2(z / 100)^{0.130} \mathrm{C}: 10.0(z / 100)^{0.146} \mathrm{H}:\left[1.5+6.2(z / 100)^{0.130}+2.5(z / 100)^{0.146}\right]-\mathrm{O}_{2}$.
Comparisons of our rates with those in the literature indicate that trap-derived new productivities in the open Pacific ($\sim 1.5 \mathrm{~mol} \mathrm{C} \mathrm{m}{ }^{-2} \mathrm{y}^{-1}$) are substantially less than those estimated from oxygen utilization rates in the Sargasso Sea $\left(\sim 4 \mathrm{~mol} \mathrm{C} \mathrm{m}^{-2} \mathrm{y}^{-1}\right)$. A hypothesis is presented which attempts to explain this discrepancy on the basis of the lateral transport and decomposition of slow or non-sinking POC in the Sargasso Sea.

Data gathered during the VERTEX studies are also used for various global estimates. Open ocean primary productivities are estimated at $130 \mathrm{~g} \mathrm{C} \mathrm{m}^{-2} \mathrm{y}^{-1}$ which results in a global open ocean productivity of $42 \mathrm{Gt} \mathrm{y}^{-1}$. Organic C removal fom the surface of the ocean via particulate sinking (new production) is on the order of $6 \mathrm{Gt}^{-1}$. Fifty percent of this C is regenerated in the upper 300 m of the water column. The ratio of new production (measured with traps) to total primary production (measured via ${ }^{14} \mathrm{C}$) is 0.14 . It is concluded that the ${ }^{14} \mathrm{C}$ technique yields reasonable estimates of primary productivity provided that care is taken to prevent heavy metal contamination.

Bio-transformation: fragmentation, sloppy feeding...

5/6. Tackling undersampling

Walter Munk (2002):

66 My chief message is associated with the word SAMPLING. [...] This is not an argument for more and more data, but for adequate sampling (a well-defined finite strategy). [...] Most of the previous century could be called a century of undersampling. 99

Core Argo floats: CTD

Argo
National contributions - 3895 Operational Floats
December 2018
Latest location of operational floats (data distributed within the last 30 days)

	-	ARGENTINA (1)		EUROPE (123)		INDIA (126)		KENYA (1)		PERU (3)	USA (2190)
	-	AUSTRALIA (353)		FINLAND (4)		INDONESIA (2)		MEXICO (1)	-	POLAND (9)	
	-	BRAZIL (3)		FRANCE (275)		IRELAND (11)		NETHERLANDS (24)	-	KOREA, REPUBLIC OF (44)	
(-12)	-	CANADA (93)		GERMANY (154)		ITALY (60)		NEW ZEALAND (11)		SPAIN (16)	
19	-	CHINA (99)		GREECE (4)		JAPAN (147)		NORWAY (9)		UK (146)	

Biogeochemical Argo floats

Common sensor packages:

- CTD: salinity, temperature, depth
- Dissolved oxygen (optodes)
- Bio-optics (optodes)
- Chlorophyll fluorescence
- Particle backscatter \approx POC
- Beam atenuation \approx POC
- CDOM fluorescence
- PAR
- Spectral irradiance
- Nitrate (SUVA, etc...)
- More coming soon! Including particle imaging

Biogeochemical Argo floats: CTD + oxygen

http://www.oao.obs-vlfr.fr/mapsg/en/

Biogeochemical Argo floats: CTD + bio-optics +

http://www.oao.obs-vlfr.fr/maps/en/

Small POC dynamics: a bgc-Argo time series

$b_{b p 700} \sim$ POC
(log10 scale)

Chl a

(calibrated fluorescence, $\log 10$ scale)

Galí et al. in prep.

Small POC dynamics: a bgc-Argo time series

Galí et al. in prep.

6/6. Can bgc-ARGO data help constrain POC cycling in biogeochemical models?

Introducing PISCES

Aumont et al. 2017 BG

PISCES: reasonably complex?

Representation of mesolepagic POC dynamics different biogeochemical models

Process	REcoM2	BEC	TOPAZ	PISCES
Phyto. agg	Yes	Yes	No	Yes
Agg. of DOC to POC	No	No	No	Yes
Grazing of particles	No	No	No	Yes
Ballasting	None	$\mathrm{SiO}_{3}, \mathrm{CaCO}_{3}$, dust	SiO_{3}, calcite, aragonite, dust	None
Different particle sizes	No	No	No	large and small
Remin. rate $\left(\mathrm{d}^{-1}\right)$	$\begin{aligned} & 0.06-0.32 \\ & \left(\text { at } 0-30^{\circ} \mathrm{C}\right. \text {) } \end{aligned}$	implicit	0.53	$\begin{aligned} & 0.025-0.24 \\ & \left(\text { at } 0-30^{\circ} \mathrm{C}\right) \end{aligned}$
Sinking Speed (md^{-1})	20-120	implicit	100	$\begin{aligned} & 2 \text { (small POC), } \\ & 30-200 \text { (large POC) } \end{aligned}$
Remin. length scale (m)	$\begin{aligned} & 175-590 \\ & \left(\text { at } 0-30^{\circ} \mathrm{C}\right) \end{aligned}$	200	188	$\begin{aligned} & 8.3-80 \text { (small POC at } 30-0^{\circ} \mathrm{C} \text {) } \\ & 205-2600\left(\text { large POC at } 30-0^{\circ} \mathrm{C}\right. \text {) } \end{aligned}$

Impact of variable POC reactivity in PISCES

Total POC profiles

Large/Total POC

— Fixed reactivity (=lability)

- Reactivity continuum
* Observations

Conclusions

- Uncertainty in mesopelagic POC transformations has broad climatic impacts.
- Mesopelagic carbon budgets cannot be closed due to measurement sparseness, uncertainties and oversimplifying assumptions.
- Supply of small and slow-sinking particles, and related ecosystem metabolism, have been historically overlooked.
- High-resolution observations of epi- and mesopelagic ecosystems, combined with models, can help understand small POC transformations.

Backup slides

Rethinking small POC cycling

The upper mesopelagic as a key "POC filter"

Boyd \& Buesseler 2009 L\&O Siegel et al. 2016 FMS

Flux transmission below Ez ($T_{100}=$ POC flux 100 m below Ez/POC flux at Ez)

- remineralisation length scale +
+ bacterial respiration -
- vertical migration +

Global patterns of primary and export production

Net primary production (NPP)

Fraction of slow sinking export

NEMO-MEDUSA model estimates

Carbon pumps

What controls mesopelagic POC processing?

- Temperature ~ degradation kinetics, respiration
- Size ~ speed ~ transit times
- Lability: freshness, algal:fecal, etc.

Climate sensitivity to mesopelagic POC processing

