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Forecast quality in decadal predictions
— added value from initialization?

e.g. near-surface temperature in CMIP5 (RMSSS)

Ini-Nolni

—-» Limited predictability from initialisation versus external forcing due to
imperfect initialisation?

- What level of skill may be achievable?

[Interesting scientific question, but also to important to manage expectations!]

@

Barcelana

Supercomputing
Center
Cendre Masitnal e Suparcamsulaciin

[Doblas-Reyes et al 2013]



Perfect-model prediction experiments

How far can the model predict itself, starting from identical (almost) initial
conditions?

CESM1, consistent set-up to decadal hindcasts (just replacing real-world
observations with a historical simulation, for both initialisation and evaluation):

- decadal simulations started from a historical reference run, 15t Jan each year
1961-2005

- 5 ensemble members (perturbing air temperature with Gaussian noise order of
magnitude 10K)

- Historical runs (5 members CMIP5 hist) as un-initialised counterpart

- Compare skill for initialised/uninitialised runs, and perfect-model/real-world
predictions (real-world hindcasts from CMIP5, Yeager et al 2012)

- (focus on near-surface temperature to illustrate the framework)




Comparing the different prediction experiments
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Skill measures

Forecast accuracy: Mean Squared (error) SkiII Score (MSSS)

MSSS(H, O, 0) = rfjo — [I‘Ho "~ sol [

Tyo: Sample correlation between the hindcasts and the observations
SHZ, So?: the sample variances of the ensemble mean hindcasts and observations,
0 = Z 0; : climatological forecast (where Oj represents the observations, or perfect-model

reference respectively, over j = 1,...,n start times), H the mean hindcast

Ensemble dispersion: Logarithmic Ensemble Spread Score (LESS)

o2
LESS =In <—’;’>
OR

in which,

— 1 1 ~ ~ .

ok = ;Z?ﬂE i (Hij — H))? (average ensemble variance)

02 = — 3 (f—f — 0-)2 (reference mean square error)
R = 5 4j=1\1T j q

LESS <0: the ensemble is under-dispersive (i.e. overconfident)
LESS >0: the ensemble is over-dispersive (i.e. under-confident)
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MSSS in initialized and un-initialized perfect-
model predictions
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MSSS un-initialized real-world and perfect-
model predictions
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MSSS initialized real-world hindcasts and
perfect-model prediction

Hindcast Perfectlnit. Perfectlnit.-Hindcast.
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Compare areas with increased/decreased skill

Initialized perfect model
vs ‘uninitialized’ perfect
model

Uninitialized perfect
model vs uninitialized
climate predictions

Initialized perfect model
vs decadal hindcasts
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Lead year

Significant
improvement
(p<0.1)

Significant
negative
difference

Effect of initialisation



Compare areas with increased/decreased skill

Initialized perfect model
vs ‘uninitialized’ perfect
model

Uninitialized perfect
model vs uninitialized
climate predictions

Initialized perfect model
vs decadal hindcasts
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Lead year

Significant
improvement
(p<0.1)

Significant

negative
difference

Inconsistencies
Model - observations



Compare areas with increased/decreased skill

Lead year Significant Significant
improvement negative
(p<0.1) difference

Initialized perfect model
vs ‘uninitialized’ perfect
model

Uninitialized perfect
model vs uninitialized
climate predictions

Initialized perfect model
vs decadal hindcasts
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Overall possible improvement
If perfect-model skill was achievable



LESS in initialized and un-initialized perfect-
model predictions
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LESS un-initialized real-world and perfect-
model predictions

ClimatePredUnin. PerfectUnin. PerfectUnin.-ClimatePred.
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LESS initialized real-world hindcasts and
perfect-model prediction

Hindcast Perfectlnit. Perfectlnit.-Hindcast.
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Summary + Concluding thoughts

- perfect-model experiments can be useful to determine the limits of achievable
prediction skill (illustrated for tas, but similarly applicable to other variables...)

- Helps to better understand predictability (initialisation versus external forcing),
and to manage expectations

- Added value from initialisation until ~2-3 years forecast time

- (ideal) initialisation does not appear to affect ensemble dispersion

- Run similar experiments with different models to understand in how far
predictability patterns are model-dependent

-» run such perfect-model predictions complementary to DCPP-A real-world

hindcasts??!

[Caveat: predictability of real world may be different to predictability within model
missing key processes? Improved models more/less predictable?
- Perfect-model benchmark informs us what skill is achievable with our
existing models (the same used to make predictions!) given ideal initialisation ]
(Larger ensemble sizes to e.g. better estimate robustness of skill differences,
reliability, etc.)
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