

Barcelona Supercomputing Center Centro Nacional de Supercomputación

What level of decadal prediction skill would be achievable given perfect initialisation?

Yiling Liu, Markus Donat, Andrea Taschetto, Paco Doblas-Reyes, Lisa Alexander, Matt England

EUCP GA, Venice 4-7 Feb 2019

EUCP is funded by the European Union under Horizon 2020 Grant Agreement no. 776613

05/02/2019

Forecast quality in decadal predictions – added value from initialization?

e.g. near-surface temperature in CMIP5 (RMSSS)

→ Limited predictability from initialisation versus external forcing due to imperfect initialisation?

→ What level of skill may be achievable?

[Interesting scientific question, but also to important to manage expectations!]

Perfect-model prediction experiments

How far can the model predict itself, starting from identical (almost) initial conditions?

CESM1, consistent set-up to decadal hindcasts (just replacing real-world observations with a historical simulation, for both initialisation and evaluation):

- decadal simulations started from a historical reference run, 1st Jan each year 1961-2005
- 5 ensemble members (perturbing air temperature with Gaussian noise order of magnitude 10⁻⁵K)
- Historical runs (5 members CMIP5 hist) as un-initialised counterpart
- Compare skill for initialised/uninitialised runs, and perfect-model/real-world predictions (real-world hindcasts from CMIP5, *Yeager et al 2012*)
- (focus on near-surface temperature to illustrate the framework)

Comparing the different prediction experiments

	The initialized perfect model predictions	The initialized real- world decadal hindcasts	The uninitialized climate predictions
Near surface temperature observations		The skill of real- world decadal hindcasts (iii)	The skill of the uninitialized real- world climate predictions (iv)
Perfect model temperature reference	The prediction skill of initialized perfect model (i)		The prediction skill of the uninitialized perfect model (ii)

Skill measures

Forecast accuracy: Mean Squared (error) Skill Score (MSSS) MSSS(H, \overline{O} , 0) = $r_{HO}^2 - \left[r_{HO} - \frac{S_H}{S_O}\right]^2 - \left[\frac{\overline{H} - \overline{O}}{S_O}\right]^2$

 r_{HO} : sample correlation between the hindcasts and the observations S_{H}^{2} ; S_{O}^{2} : the sample variances of the ensemble mean hindcasts and observations, $\overline{O} = \sum_{j=1}^{n} O_{j}$: climatological forecast (where O_{j} represents the observations, or perfect-model reference respectively, over j = 1, ..., n start times), \overline{H} the mean hindcast

Ensemble dispersion: Logarithmic Ensemble Spread Score (LESS)

 $LESS = \ln\left(\frac{\overline{\sigma_{\hat{H}}^2}}{\sigma_R^2}\right)$ in which, $\overline{\sigma_{\hat{H}}^2} = \frac{1}{n} \sum_{j=1}^n \frac{1}{m-1} \sum_{i=1}^m (\widehat{H}_{ij} - \widehat{H}_j)^2 \qquad (\text{average ensemble variance})$ $\sigma_R^2 = \frac{1}{n-2} \sum_{j=1}^n (\widehat{H}_j - O_j)^2 \qquad (\text{reference mean square error})$

LESS <0: the ensemble is under-dispersive (i.e. overconfident) LESS >0: the ensemble is over-dispersive (i.e. under-confident)

MSSS in initialized and un-initialized perfectmodel predictions

Center Centro Nacional de Supercomputación

[added value from initialization?]

MSSS un-initialized real-world and perfectmodel predictions

[inconsistencies model vs. obs?]

MSSS initialized real-world hindcasts and perfect-model prediction

Center

Centro Nacional de Supercomputación

[total margin of possible improvement?]

Compare areas with increased/decreased skill

	Lead year	Significant improvement (p<0.1)	Significant negative difference
Initialized perfect model	1	35%	
vs 'uninitialized' perfect	2	15%	5%
model	2-5		12%
	2-9	13%	9%
Uninitialized perfect	1	29%	
model vs uninitialized	2	27%	
climate predictions	2-5	45%	
	2-9	44%	5%
Initialized perfect model	1	48%	
vs decadal hindcasts	2	29%	
	2-5	61%	
	2-9	54%	

Π

Compare areas with increased/decreased skill

	Lead year	Significant improvement (p<0.1)	Significant negative difference
Initialized perfect model	1	35%	
vs 'uninitialized' perfect	2	15%	5%
model	2-5		12%
	2-9	13%	9%
Uninitialized perfect	1	29%	
model vs uninitialized	2	27%	
climate predictions	2-5	45%	
	2-9	44%	5%
Initialized perfect model	1	48%	
vs decadal hindcasts	2	29%	
	2-5	61%	
	2-9	54%	

Compare areas with increased/decreased skill

	Lead year	Significant improvement (p<0.1)	Significant negative difference
Initialized perfect model	1	35%	
vs 'uninitialized' perfect	2	15%	5%
model	2-5		12%
	2-9	13%	9%
Uninitialized perfect	1	29%	
model vs uninitialized	2	27%	
climate predictions	2-5	45%	
	2-9	44%	5%
Initialized perfect model	1	48%	
vs decadal hindcasts	2	29%	
	2-5	61%	
	2-9	54%	

LESS in initialized and un-initialized perfectmodel predictions

Centro Nacional de Supercomputación

[no clear effect from initialization!]

LESS un-initialized real-world and perfectmodel predictions

Center

Centro Nacional de Supercomputación

[inconsistencies model vs. obs?]

LESS initialized real-world hindcasts and perfect-model prediction

Service Macional de Supercom [pattern/differences very similar between initialized/un-initialized]

Summary + Concluding thoughts

- perfect-model experiments can be useful to determine the limits of achievable prediction skill (illustrated for tas, but similarly applicable to other variables...)
- Helps to better understand predictability (initialisation versus external forcing), and to manage expectations
- Added value from initialisation until ~2-3 years forecast time
- (ideal) initialisation does not appear to affect ensemble dispersion
- Run similar experiments with different models to understand in how far predictability patterns are model-dependent

→ run such perfect-model predictions complementary to DCPP-A real-world hindcasts??!

[Caveat: predictability of real world may be different to predictability within model missing key processes? Improved models more/less predictable?
→ Perfect-model benchmark informs us what skill is achievable with our existing models (the same used to make predictions!) given ideal initialisation]
(Larger ensemble sizes to e.g. better estimate robustness of skill differences, reliability, etc.)

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you

Liu, Donat, Taschetto, Doblas-Reyes, Alexander, England: A framework to determine the limits of achievable skill for interannual to decadal climate predictions, JGR-Atmosphere (revised)

markus.donat@bsc.es

EUCP is funded by the European Union under Horizon 2020 Grant Agreement no. 776613 European Climate Prediction system