

Assimilating vertical profiles of dust observations with ensemble meteorological initial and boundary conditions

<u>Jeronimo Escribano</u>⁽¹⁾, Enza Di Tomaso⁽¹⁾, Carlos Perez Garcia-Pando⁽¹⁾, Oriol Jorba⁽¹⁾, Francesca Macchia⁽¹⁾, Claudia Urbanneck⁽²⁾, Holger Baars⁽²⁾, Albert Ansmann⁽²⁾, and Ulla Wandinger⁽²⁾

(1) Barcelona Supercomputing Center, Barcelona, Spain

(2) Leibniz Institute for Tropospheric Research, Leipzig, Germany

EGU 2019

Case of study

MODIS-Aqua 21/04/2017, NASA

20170419_182

Case of study

Event observed by 3 lidar sensors located in Finokalia (Crete), Limassol (Cyprus) and Haifa (Israel) part of the PollyNet (http://polly.tropos.de/) system. Data (with uncertainty estimation) processed by TROPOS.

Model and Data Assimilation setup

Model:

NMMB - MONARCH multi-scale chemical weather prediction system model (Janjic et al., 2011, Perez et al., 2011)

- Aerosols: only dust configuration
- 0.66 degrees resolution, 40 vertical levels
- Dust emission schemes available

Data assimilation:

Local Ensemble Transform Kalman Filter (LETKF, Hunt et al., 2007; Miyoshi and Yamane, 2007, Schutgens et al., 2010)

- 24 hours assimilation window
- Horizontal localization : 400 km
- Vertical localization : 1 model level
- Time localization : 4 hours
- Dust extinction coefficient observation operator

Ensemble generation:

- Perturbation in emission parameters
- Perturbation in emission strength
- Different dust emission schemes
- Different meteorological forcing for the regional model

Can we benefit from an ensemble with different meteorological inputs and emission schemes for aerosol vertical profiles data assimilation?

Experiments description

Experiment Meteorology **Dust emission** boundary and initial conditions + random perturbations in : ERA Interim (Dee et 1 meteo, 1 dust scheme Ginoux et al., 2001 al., 2011) **2 meteo**, 1 dust scheme ERA Interim Ginoux et al., 2001 • FNL 1 meteo, 2 dust schemes ERA Interim Ginoux et al., 2001 Perez et al., 2011 2 meteo, 2 dust schemes **ERA Interim** Ginoux et al., 2001 FNL Perez et al., 2011

4 experiments with different ensembles (20 members):

- source strength and dust size distribution
- dust scheme threshold friction velocity

(Di Tomaso et al., 2017)

Finokalia and Limassol assimilated Haifa for verification

fr: "free" run (simulations without assimilation) **fc**: "forecast" run (start from analysis of previous day) **an**: analysis

FNL: NCEP Final Operational Global Analysis

Dust Aerosol Optical Depth 532 nm Analyses

Mean Fractional Bias 1M-1D 2M-1D 1M-2D 2M-2D experiment

No assimilation Forecast run (1 day run from previous analysis) Analysis

Profiles over Haifa (not assimilated)

Profiles over Haifa (not assimilated)

Forecast run (1 day run from previous analysis)

RMSE

Summary

- Multi-model and multi-emission schemes increase variability in the ensemble profile shape
 - Better description of profile prior uncertainties
- Multi-model and multi-emission schemes increase variability in spatio-temporal dust emissions
 - Better description of dust plume location and transport uncertainties
- Evaluation against a 3rd LIDAR not convincing
 - More work needed
 - Quality of ensemble
 - Observational errors and ensemble inflation (avoid overfitting)
 - More observations to assimilate and evaluate
- Forecast runs performs worse than non-assimilation case: to be investigated

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement H2020-MSCA-COFUND-2016-754433

jeronimo.escribano@bsc.es

Ensemble-Based Data Assimilation at BSC

Barcelona Supercomputing Center Centro Nacional de Supercomputación

The ensemble forecast has been designed considering model uncertainties with respect to:

- surface winds,
- soil humidity,
- vertical flux distribution at sources,

by perturbing:

(1) the threshold friction velocity which

is soil moisture-dependent, and determines the velocity above which the soil particles begin to move in horizontal saltation flux;

(2) the vertical flux of dust in each of the eight dust transport bins imposing some physical constraint (correlated multiplicative noise across the bins; unimodal distribution).

Uncalibrated attenuated backscatter (Limassol)

Time (UTC)