

Barcelona **Supercomputing** Center

Centro Nacional de Supercomputación

martina.klose@bsc.es

How large is the contribution of cropland and grazing lands to the global dust cycle?

Martina Klose, Carlos Pérez García-Pando, Paul Ginoux, Ron Miller, Adrien Deroubaix

Mineral dust – natural and anthropogenic

- Anthropogenic dust source: dust source associated with agricultural land use
- Considered: Mineral dust only (no urban pollution) Ο
- Not considered: Emissions from vehicles (dirt roads, tillage, recreational use); Ο military operations
- Not considered: Indirect anthropogenic sources, e.g. hydrological
- Dust emissions from anthropogenic sources can impact daily life, not only in (semi-)arid areas
 - 1930s Dust Bowl, USA (*Fig. 1a*)
 - Traffic accidents, e.g. 2011 in northern Germany (*Fig. 1b*)

Fig. 1: (a) "Dust Bowl" in the US (image credit: Arthur Rothstein/Wikipedia); (b) Pileup on highway in Germany cause by a dust storm in 2011 (image credit: spiegel.de)

Global impacts?

• The contribution of (anthropogenic) land use to present-day dust emission remains under debate, with values ranging from 10% to 50% (e.g. Tegen and Fung, 1995; Sokolik and Toon, 1996; Tegen et al., 2004; Mahowald et al., 2004)

Anthropogenic land use

- **HYDE 3.2.1** (*Klein Goldewijk et al.*, 2017)
- Data on annual basis; spatial resolution ~0.1 degree resolution
- Land use categories considered here:
- > Cropland: Arable land and permanent crops
- \geq <u>Pasture</u>: grazing land with an aridity index > 0.5, intensively used/managed
- Converted Rangeland: grazing land placed on potential forest area, less intensively used
- <u>Rangeland</u>: natural, unconverted grazing land with an aridity index < 0.5, less or unmanaged
- Land-use scenarios tested (*Fig. 4*): (LU1) Cropland, pasture

(LU2) Cropland, pasture, converted rangeland (LU3) Cropland, pasture, converted rangeland, rangeland

- Ginoux et al. (2012) estimated that anthropogenic sources contribute 25% to total dust emissions
- Areas with > 30% land use (HYDE 2, *Klein Goldewijk*, 2001) were considered as anthropogenic sources
- FoO of MODIS DeepBlue dust optical depth (DOD) exceeding a threshold of 0.2
- \circ Resolution 0.1° × 0.1°
- Offline dust emissions: *Ginoux et al.* (2001): parameterization with uniform threshold wind speeds, combined with FoO

Objectives and Methods

We aim to better estimate the contribution of anthropogenic (agricultural) and natural sources to global dust emission by combining improved land-surface representations with advanced dust models and observational constraints

- \rightarrow Updated land-use data set (HYDE 3.2.1, Klein Goldewijk et al., 2017)
- \rightarrow Fully coupled dust emission parameterizations
- Dynamic threshold friction velocity for sediment entrainment
- -> Satellite-based representation of photosynthetic and non-photosynthetic vegetation cover
- \rightarrow 4D dust concentration field allowing in-depth evaluation

Numerical Experiments

NMMB-MONARCH – atmosphere and land surface

Results

Dust optical depth – MODIS and MONARCH

Fig. 5: Total dust optical depth for northern hemispheric spring (March, April, May) obtained using EXP3 (top-left) together with the corresponding anthropogenic fractions based on EXP3 (bottom-left) and EXP5 (bottom-right). MODIS Deep Blue dust optical depths is shown as a reference (top-right).

Model and Setup

- Multiscale Online Non-hydrostatic AtmospheRe CHemistry model -NMMB-MONARCH (*Pérez et al.*, 2011; *Badia et al.*, 2017)
- Global setup (1° x 1.4° horizontal resolution, 24 layers)

Initially one-year simulations

Fig. 2: Overview of the numerical experiments designed to constrain the contribution of anthropogenic sources to the global dust cycle.

We use four different dust emission parameterizations (cf. *Fig. 2*) to quantify uncertainty arising from the emission scheme.

Drag Partitioning

 \bullet

- "Drag partition" = separation of the total (surface) drag supplied by aerodynamic forces into a fraction on roughness element surfaces and on the ground surface. The latter is pivotal for dust emission.
- Drag partition is used to account for the effect of roughness elements, such as vegetation, on the emission.
- We use the drag partition parameterization \bullet of *Raupach et al.* (1993) in combination with estimates of photosynthetic (PV) and non-

Roughness correction (*Raupach et al.,* 1993)

- Spatio-temporal co-location between MODIS and model data
- Good agreement between model and observations
- Slight underestimation of DOD in the Arabian Peninsula and the Taklamakan Desert; slight overestimation around the Bodele Depression
- The contribution of anthropogenic sources is minor when considering cropland and pasture only; the addition of rangeland yields a substantial increase in anthropogenic dust

Dust optical depth – Modis and MONARCH

- Global anthropogenic fraction on average 8% when using emission scheme from *Ginoux et al.* (2001) and HYDE 3.2.1 cropland and pasture (EXP3).
- Considering rangeland as anthropogenic source leads to estimate of about 35%, similar to that using HYDE 2 (cropland and pasture) \rightarrow large uncertainty due to anthropogenic area.
- largest anthropogenic emission The fractions are found in North America, Southwest Asia, and Europe, although the contributions of these areas to the dust cycle are small (Tab. 1).
- The large uncertainty associated with the anthropogenic emission fractions listed in Tab. 1 is due to the different

Fig. 5: Anthropogenic emission fractions modeled with NMMB-MONARCH based on EXPs 2-5.

Region	Anthro. emission fraction (avg ± std)	Regional contribution to total emission (avg ± std)
N Africa	10.8 ± 9.3	50.6 ± 0.2
S Africa	0.2± 0.3	0.2 ± 0.0
Middle East	21.1 ± 21.7	28.2 ± 0.1
NW Asia	27.6 ± 32.9	8.6 ± 0.0
SW Asia	47.0 ± 3.2	5.3 ± 0.0
NE Asia	33.8 ± 20.2	8.9 ± 0.0
Australia	17.1 ± 19.6	0.2 ± 0.1
S America	27.9 ± 22.9	1.2 ± 0.3
N America	47.1 ± 19.9	1.5 ± 0.1
Europe	43.4 ± 17.0	2.4 ± 0.0

photosynthetic (NPV) vegetation cover *al.*, 2015) and (Guerschman et the conversion between cover fraction and frontal area index (input to the drag partition scheme) proposed by *Shao et al.* (1996).

land-use scenarios.

 Inclusion of additional dust emission parameterizations will lead to larger **variability** of both the regional contribution to total emission and the anthropogenic emission fraction and will help to **better constrain the uncertainty**.

Tab. 1: Regional fractions of anthropogenic emissions together with the regional contributions to global dust emissions. Averages and standard deviations are based on EXPs 3-5.

Fig. 3: (top) Correction factor representing roughness elements; the factor is applied to the entrainment threshold friction velocity; (bottom) Frequency of occurrence (FoO) of dust optical thickness (DOD) > 0.2.

The roughness correction factor and the frequency of occurrence (FoO) of dust optical depth > \bullet 0.2 (Ginoux et al., 2012) are remarkably similar (Fig. 3), demonstrating that roughness element cover and a dynamical representation of u_{*t} is key to reproduce observed atmospheric dust loadings.

Acknowledgements This project has received funding

from the European Union's Horizon research and innovation 2020 programme under the Marie Skłodowska-Curie grant agreement No. 789630. We furthermore acknowledge support from the the AXA Research Fund.

References

Badia et al. (2017), Geosci. Model Dev., 10, doi:10.5194/gmd-10-609-2017 Ginoux et al. (2001), J. Geophys. Res. Atmos., 106(D17), doi:10.1029/2000JD000053 Ginoux et al. (2012), Rev. Geophys., 50, doi:10.1029/2012RG000388 Guerschman et al. (2015), *Remote Sens. Environ.*, 161, doi:10.1016/j.rse.2015.01.021 Klein Goldewijk (2001), Global Biogeochem. Cyc., 15(2), doi:10.1029/1999GB001232 Klein Goldewijk et al. (2017), Earth Syst. Sci. Data, 9, doi:10.5194/essd-9-927-2017

Mahowald et al. (2004), Geophys. Res. Lett., 31, doi:10.1029/2004GL021272 Pérez et al. (2011), Atmos. Chem. Phys., 11, doi: 10.5194/acp-11-13001-2011 Raupach et al. (1993), J. Geophys. Res., 98, doi:10.1029/92JD01922 Shao et al. (1996), Aust. J. Soil. Res., 34, doi:10.1071/SR9960309 Sokolik and Toon (1996), Nature, 381, 681-683 Tegen, I., and I. Fung (1995), J. Geophys. Res. Atmos., 100(D9), doi:10.1029/95JD02051 Tegen et al. (2004), Geophys. Res. Lett., 31, doi:10.1029/2003GL019216

Conclusions and Outlook

- Anthropogenic dust sources contribute to the global dust load.
- The main uncertainties are due to the land-surface condition, dust emission, and meteorological dust drivers.
- Diverse numerical experiments and thorough comparison with observations help to constrain the anthropogenic emission fraction.