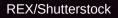


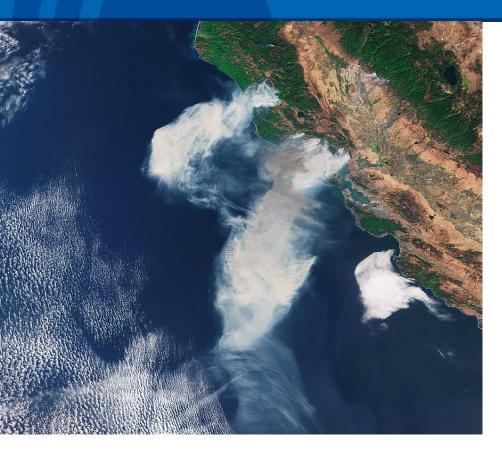
Barcelona Supercomputing Center Centro Nacional de Supercomputación

EC-Earth land surface model : development of the offline configuration and application to decadal prediction of wildfires

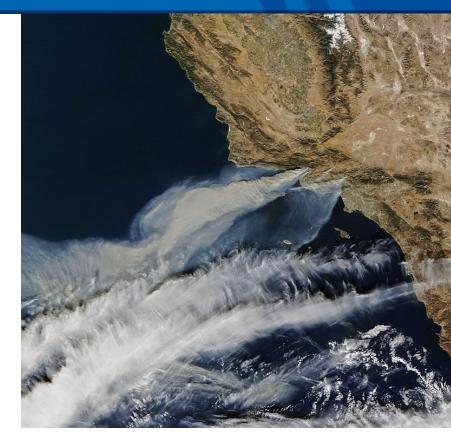
Etienne Tourigny, Raffaele Bernardello Valentina Sicardi, Mario Acosta, Emanuel Dutra Lund University partners



Introduction


The 2017 fire season in California WAS the costliest on record, with 18 Billion US\$ in damages, and deadliest with 43 casualties on record.

2018 wildfire season was even worse...

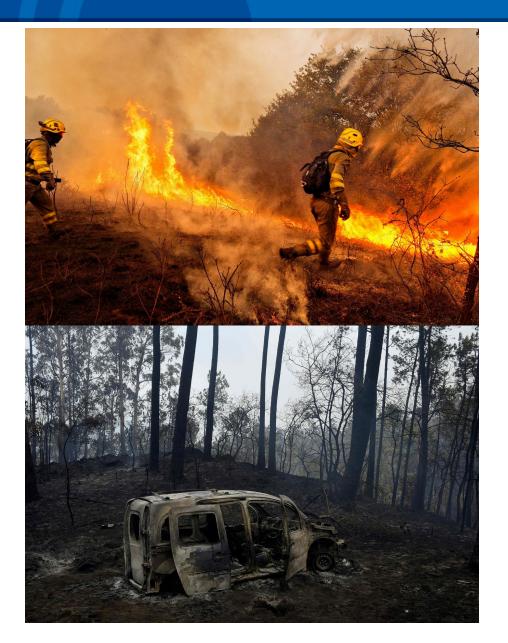


California 2017 wildfires

In October, around the Napa valley in Northern California, the Tubbs fire was the most destructive in US history. Warm temperatures and strong winds are thought to be responsible for the severity of these wildfires.

In December, Southern California was plagued by severe wildfires and the Thomas fire near Los Angeles became the largest in California history. It was thought to be fueled by sever Santa Ana winds and warmer than average temperatures. 3

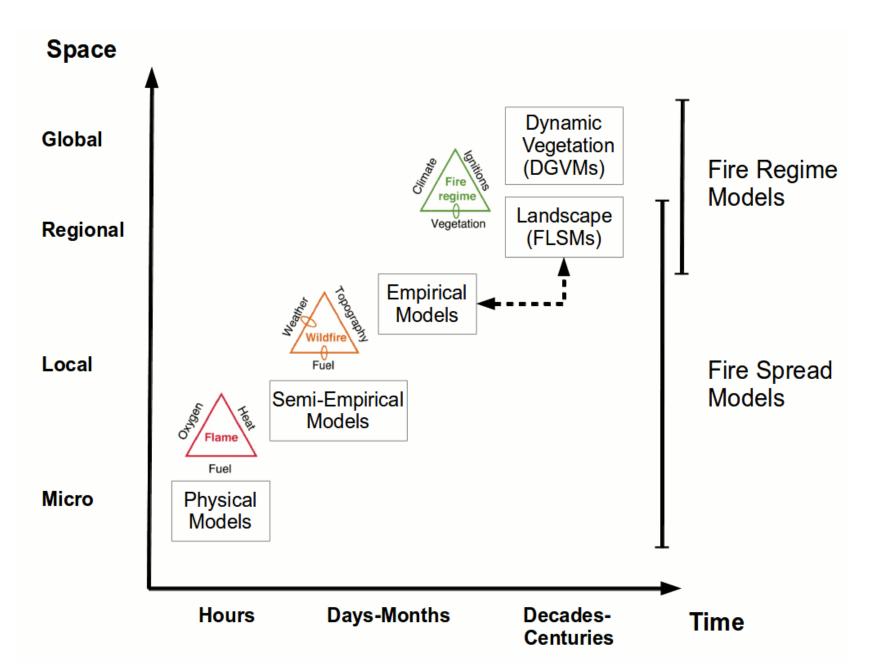
Iberia 2017 wildfires



In June 2017, the infamous "Pedrogão Grande" wildfires (in central Portugal) killed 62 people trapped in their cars are they fled the intense wildfires.

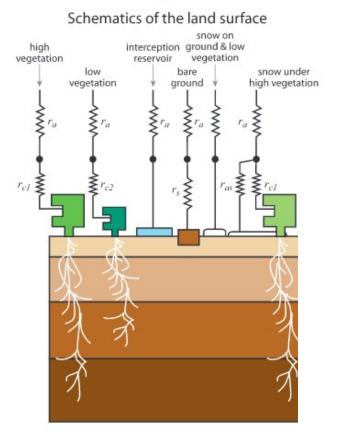
https://www.cnn.com/2017/06/18/europe/portugal-fire/index.html

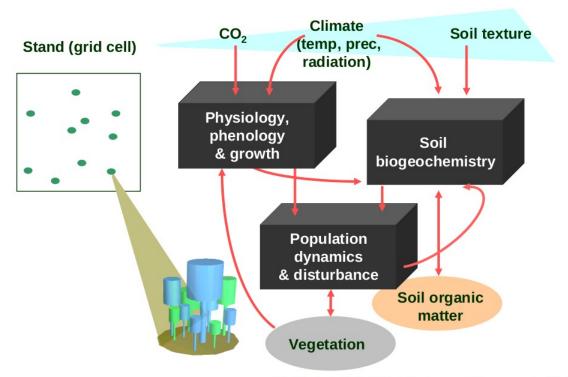
Iberia 2017 wildfires


In October 2017, wildfires raged across northern Portugal and Galicia (Spain). The wildfires were made possible due to an intense drought and fueled by intense winds from Hurricane Ophelia. Arson is believed to be responsible for igniting many fires.

https://www.nytimes.com/2017/10/16/world/europe/portugal-spain-fires.html

- Seasonal Prediction of Fire danger using Statistical and Dynamical models (SPFireSD) is a MARIE SkŁodowska-CURIE ACTIONS Individual Fellowship (MSCA-IF)
- SPFireSD proposes to develop and assess seasonal fire prediction capability through a variety of complementary and innovative methods using statistical and dynamical models, with a focus on Europe, the Amazonian basin and Indonesia.
- This project will develop and assess seasonal prediction capability of wildfire danger using three complementary approaches:
 - 1) Fire danger indices approach: simple fire danger indices computed from seasonal dynamical climate prediction systems
 - 2) Statistical approach: statistical fire danger models using a combination of past observational data and seasonal dynamical climate forecasts
 - 3) Dynamical approach: ensemble dynamical predictions using state-of-the-art fire models within Earth System Models (LPJ-Guess part of the EC-Earth Earth System Model)

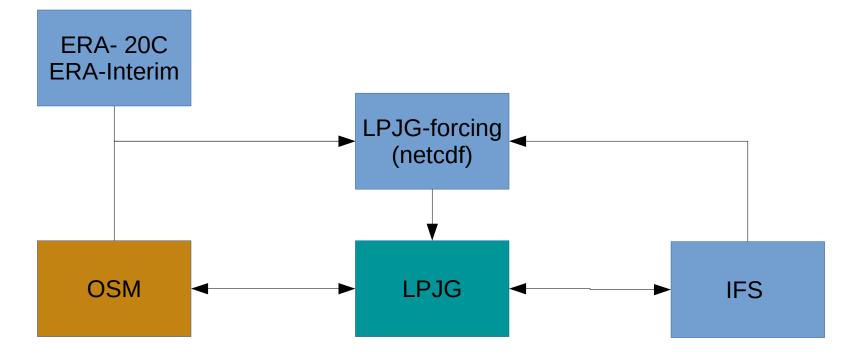

Fire modeling across scales


H-TESSEL + LPJ-GUESS

Barcelona Supercomputing Center Center Centor Nacional de Supercomputación

a)

LPJ-GUESS: A modular, individual-based process-oriented ecosystem model*



LSM (Land Surface Model) contains 3 components:

- LPJG, as used in the ESM configuration
- LPJG-forcing (aka Sparring), used to send atmospheric forcings to LPJG

OSM (Offline Surface Model), offline version of the IFS land surface model (H-TESSEL)

_____ # -# *** General configuration # ------# Component configuration (for syntax of the \$config variable, see librunscript.sh) # # Currently maintained: # config="osm" # OSM (Offline Surface Model, H-TESSEL forced by IFS output) config="lpjg lpjg forcing:IFS" # LPJG-Offline forced by IFS/OSM output # # LPJG & OSM Coupled via OASIS # config="lpjg osm" # In this config lpjg can take the option: # lpjg:fdbck to feedback on the OSM

config="lpjg:fdbck osm"

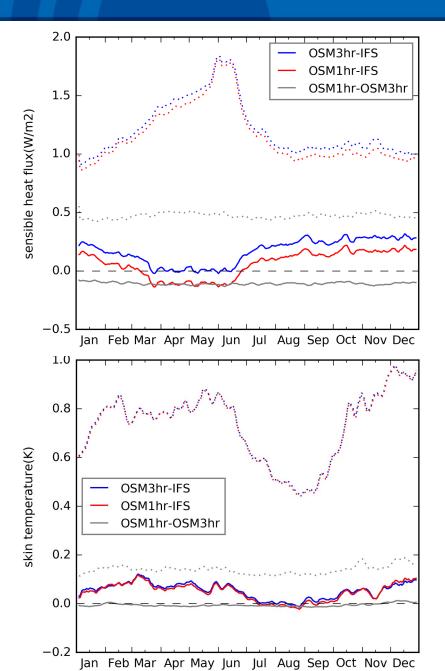
minimum sanity has_config ifs && error "Cannot have ifs in config" has_config nemo && error "Cannot have nemo in config" has_config lpjg_forcing osm && error "Cannot have both lpjg_forcing and osm in config"

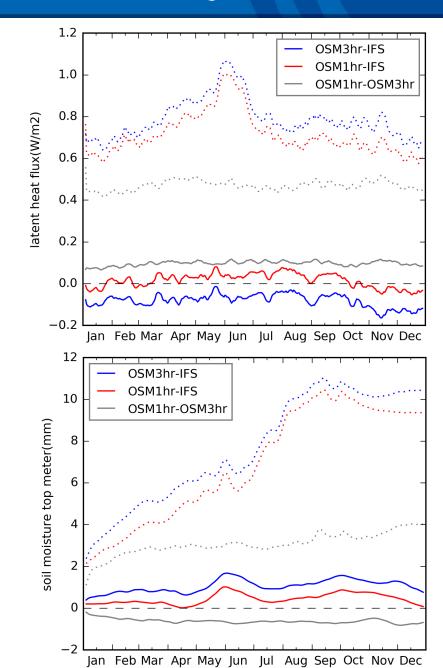
libosm defines some OSM and LPJG pre/post-processing functions has_config any osm lpjg_forcing && source ./libosm.sh

Offline LSM status

• WHY?

- Easy tool for quick testing & validation
- Requirements for CMIP6 (LUMIP, LS3MIP, etc.) & other projects
- Development of new codes quick & easy
- History:
 - ??? Uwe, Paul Miller develop the Sparring, which simulates the IFS by sending and receiving data to LPJG via OASIS calls, Klaus develops script to convert IFS output to daily netcdf files
 - July 2017 Dec 2017 : development of the initial ece-lsm.sh script by Etienne, with help from Paul, Lars & Peter Anthoni, merged into the initial ESM branch (issue #412)
 - Nov. 2017 Jan 2018 : Development of the OSM by Emanuel Dutra "off-line HTESSEL model downgraded from openIFS (cy43r1)" (issues #380 #458)
 - July 2018 Nov. 2018 : coupling htessel and lpjg by Emanuel Dutra (issue #572)
 - Nov. 2018 today : bugfixes and optimizations, synced with 3.3.1 by Etienne, multiple resolution support (issues #555, #596)
 - Very soon in trunk

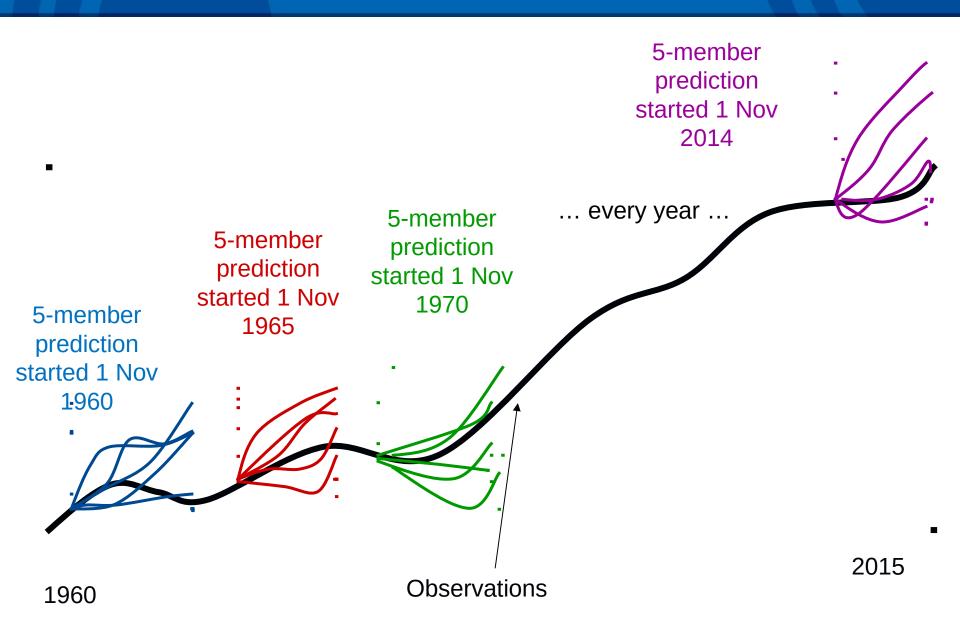

EXCELENCIA


Barcelona

Supercomputing

OSM validation – using IFS output

Barcelona Supercomputing Center Centro Nacional de Supercomputación



Offline LSM status

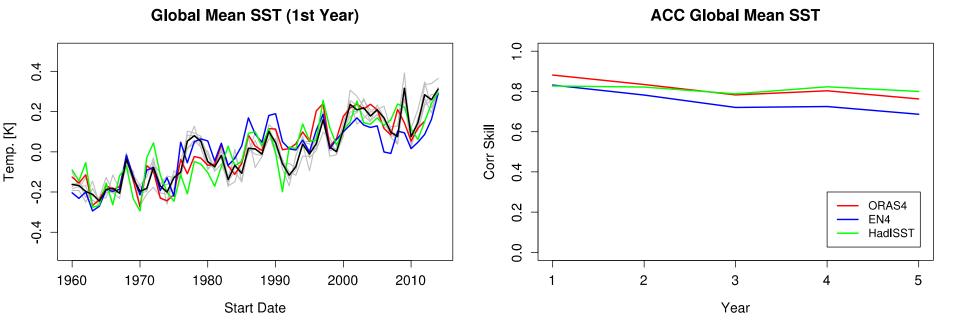
- Performance (on Marenostrum4):
 - LPJG only:
 - 30 minutes/year initially
 - 7 minutes/year after I/O opt + compressed output
 - OSM only: 10 minutes/year
 - LPJG + OSM : 15 minutes/year
- The Future of LSM development
 - Pending merge into trunk: LPJG vendor drop for compressed output, correct bug found in OSM \rightarrow LPJG
 - scientific validation & testing by others
 - Integration of LS3MIP changes into surf/offline
 - Use in CMIP6 : LS3MIP, LUMIP & DCPP/CCiCC

Climate prediction experiments

EXCELENCIA SEVERO OCHOA

Barcelona

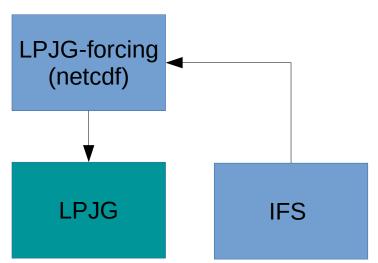
Center


BSC

Supercomputing

Centro Nacional de Supercomputación

Climate prediction experiments

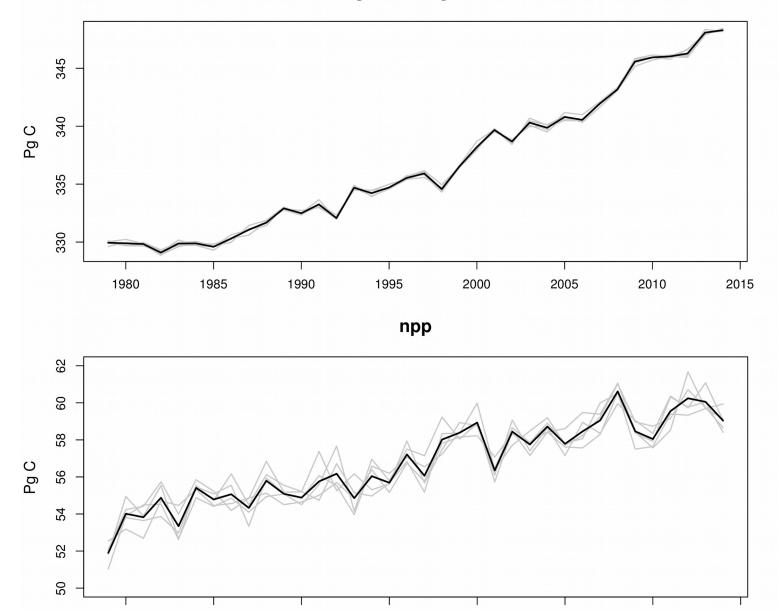

- Barcelona Supercomputing Center Centro Nacional de Supercomputación
- DCPP LPJG-offline experiment :
 - LPJG initial states from Klaus' t613 run (EC_Earth-Veg)
 - Daily output from BSC's DCPP hindcasts (1960-2015), 5 years, 5 members
 - Allows to test the fire model before doing fully-coupled decadal hindcasts of the carbon cycle (CCiCC)

Climate prediction experiments

- DCPP LPJG-offline experiment (a1wj):
 - LPJG states from Klaus' t613 run (EC_Earth-Veg)
 - Daily output from BSC's DCPP hindcasts (1960-2015), 5 years, 5 members
 - 1 hour to run 5 years on 2 nodes
 - 1 hour to CMORize on 1 node!!!

Barcelona

Supercomputing

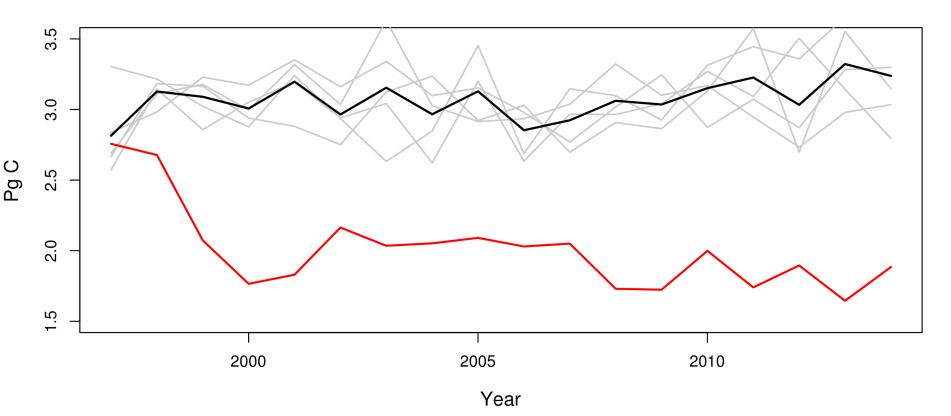

EXCELENCIA SEVERO OCHOA Barcelona **Climate prediction experiments** Supercomputing BSC Center Centro Nacional de Supercomputación UNKNOWN WAITING READY **SUBMITTED OUEUING** RUNNING **COMPLETED SUSPENDED** FAILED ---a1wj_19990101_fc00_INI < a1wj_19990101_fc00_1_SIM a1wj_19990101_fc01_INI a1wj_20000101_fc00_1_SI a1wj_19990101_fc00_1_CMORVEG a1wj_19990101_fc01_1_SIM a1wj_19990101_fc02_INI a1wj_20000101_fc00_1_CMORVEG a1wj_19990101_fc00_1_POST a1wj_19990101_fc01_1_CMORVEG a1wj 19990101 fc02 1 SIM a1wj_19990101_fc03_INI a1wj 20000101 fc00 1 POST alwj_19990101_fc00_1_CLEAN a1wj_19990101_fc01_1_POST a1wj_19990101_fc02_1_CMORVEG a1wj_19990101_fc04_INI a1wj_20000101_fc00_1_CLEAN 0_1_TRANSFER alwj 19990101 fc00 CLEAN MEMBER alwj 19990101 fc01 1 CLEAN alwj 19990101 fc02 1 POST alwj 19990101 fc03 1 CMORVEG a1wj 19990101 fc04 1 SIM alwj 20000101 fc00 1 TRANSFER alwj 20000101 fc00 CLEAN MEMBER a1v TRANSFER_MEMBER alwj_19990101_fc01_1_TRANSFER a1wj_19990101_fc01_CLEAN_MEMBER a1wj_19990101_fc02_1_CLEAN a1wj_19990101_fc03_1_POST a1wj_19990101_fc04_1_CMORVEG a1wj_20000101_fc00_TRANSFER_MEMBER a1wj_20000101_fc01_1_TRANSFER a1wj_20 a1wj_19990101_fc01_TRANSFER_MEMBER a1wj_19990101_fc02_1_TRANSFER alwj_19990101_fc02_CLEAN_MEMBER a1wj_19990101_fc03_1_CLEAN alwj_19990101_fc04_1_POST alwj_20000101_fc01_TRANSFER_MEMBER a1wj_20 a1wj_19990101_fc03_1_TRANSFER 14_1_CLEAN a1wj_19990101_fc02_TRANSFER_MEMBER a1wj_19990101_fc03_CLEAN_MEMBER a1wj_19990101_fc04_1_CLEAN alwi 19980101 fc04 CLEAN MEMBER alwi 19990101 fc03 TRANSFER MEMBER a1wj_19990101_fc04_1_TRANSFER alwi 19990101 fc04 CLEAN MEMBER 1 TRANSFER

a1wj_19980101_fc04_TRANSFER_MEMBER

a1wj_19990101_fc04_TRANSFER_MEMBER

LPJG-offline runs - 1st year DCPP

cVeg - C in vegetation


EXCELENCIA SEVERO OCHOA

Barcelona Supercomputing Center

Centro Nacional de Supercomputación

BSC

fFire - C flux due to wildfire

EXCELENCIA SEVERO OCHOA

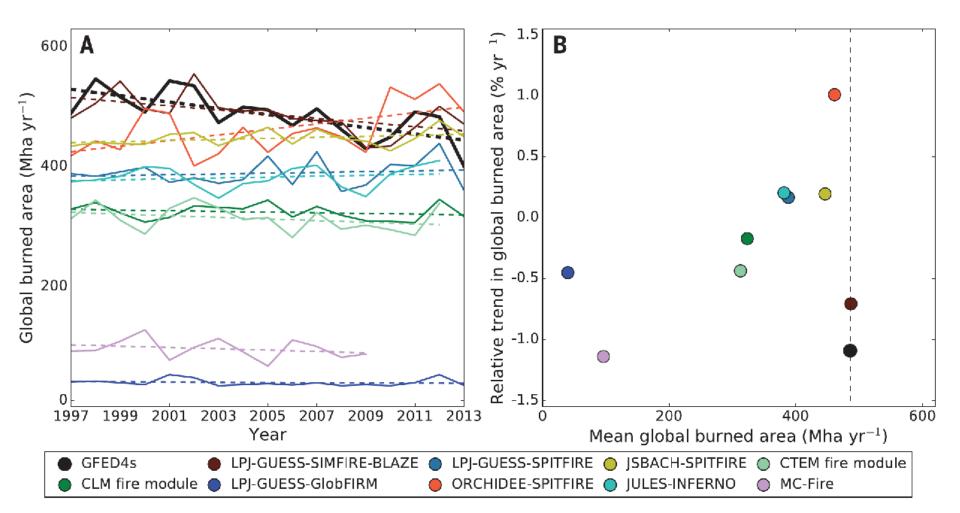
Barcelona Supercomputing

Centro Nacional de Supercomputación

Center

BSC

State of the art Wildfire models


Comparison of burned area simulated by several offline fire models (FIREMIP)

XCELENCIA

Barcelona

Supercomputing Center

Current model in LPJG is the worst – GlobFIRM The best is SIMFIRE-BLAZE – soon in our LPJG version!

Barcelona Supercomputing Center Centro Nacional de Supercomputación

- The Future of LSM development
 - Pending merge into trunk: LPJG vendor drop for compressed output, correct bug found in OSM \rightarrow LPJG
 - scientific validation & testing by others
 - Integration of LS3MIP changes into surf/offline
 - Use in CMIP6 & beyond : LS3MIP, LUMIP & DCPP/CCiCC
- Future work in wildfire modeling
 - In-depth analysis of results, compared to (few) observations
 - Compare to offline runs driven by reanalyses
 - Integrate better fire models with help from partners in Lund University - SIMFIRE/BLAZE
 - Use these new models in offline decadal hindcast runs very cheap!

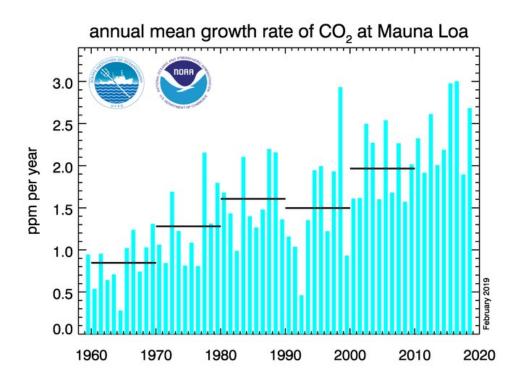
www.bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you!

etienne.tourigny@bsc.es

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 748750


Future Carbon – Climate interactions

Towards a near-term prediction of the climate and carbon cycle interactions in response to Paris Agreement emission trajectories

Variability in atm CO2 growth rate is mostly due to natural variability

Testing different ocean biogeochemical reconstructions as initial conditions

Retrospective decadal predictions of ocean and land carbon uptake

Idealized perfect-model experiments to investigate mechanisms of C uptake predictability in the ocean.