A benchmark for testing the accuracy and computational cost of shortwave top-of-atmosphere reflectance calculations in clear-sky aerosol-laden atmospheres

Jerónimo Escribano ¹, Alessio Bozzo ², Philippe Dubuisson ³, Johannes Flemming ⁴, Robin J. Hogan ⁴, Laurent Labonnote ³ and Olivier Boucher ⁵

¹Barcelona Supercomputing Center, Barcelona, Spain
²European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), Darmstadt, Germany
³European Centre for Medium Range Weather Forecasts, Reading, United Kingdom
⁴Laboratoire d'Optique Atmospherique, Université de Lille / CNRS, Villeneuve d'Ascq, France
⁵Institut Pierre-Simon Laplace, CNRS / Sorbonne Université, Paris, France

Eradiate workshop, 27/11/2019

Need of a SW benchmark

CAMS43 - WP3 aim : data assimilation of reflectance for aerosols

- Choose a model to perform 1D-Var reflectance assimilation in research mode
- Have to be accurate enough
- Have to be **fast** enough
- Performant under realistic aerosol-laden conditions

Requirements of RTM

- Short-wave
- Accuracy : close to model and observation accuracy
- Computing time : no larger than 10 times RTTOV infrared calculations (ie, about 1 ms per profile) in ECMWF/CAMS infrastructure
- Tangent linear and adjoint

Need of a SW benchmark

Benchmark design limitations

- Clear-sky
- Limited set of chosen surface and geometry
- Only direct mode (no adjoint, no tangent linear)
- No mixtures of aerosols
- One atmospheric vertical profile
- One aerosol vertical profile
- Plane-parallel
- Choice of reference model

Input data and definitions

Test with 4 models

Benchmark: 44080 cases

Wavelengths

470, 550, 660, 865, 1024 nm

Geometry

- Solar zenith angles : 0, 20, 40 and 60 degrees
- Viewing zenith angles : 0, 20, 40 and 60 degrees
- Azimuthal angles : 0, 45, 90, 135, 180 degrees

Midlatitude summer atmospheric profile (49 layers)

- Molecular absorption and scattering optical depth
- Pressure, temperature, ...

Aerosol types Industrial scattering, Industrial absorbing, Dust, Sea salt

- \bullet Phase function ($S_{11},\,S_{12},\,S_{33},\,S_{34}$)
- Generalized spherical decomposition (Legendre moments)
- Single scattering albedo
- Extinction efficiency, size distribution parameters, refractive indexes ...

Aerosol optical depth (AOD,550 nm)

0,0.01, 0.05, 0.1, 0.2, 0.5, 1, 2

Aerosol profile exponential with 2 km height scale

Surface reflectance

- Lambertian reflectance : 0, 0.05, 0.1
- Cox-Munk BRDF (Mishchenko and Travis, 1997)

Models

DISORT (version 4)

- * Discrete ordinary method
- * Scalar
- * Stamnes et al. (1988)
- * 32 streams, TMS correction

VLIDORT (version 2.7)

- * Discrete ordinary method
- * Scalar and Vector
- * Spurr (2008, 2014)
- * 32 streams, TMS correction
- * Output jacobians

6SV2 (version 2.1)

- * Successive orders of scattering
- * Vector
- * Vermote et al. (1997); Kotchenova and Vermote (2007)
- * Three elements approximation (I, Q, U)

FLOTSAM

- * Forward-Lobe Two-Stream Radiance Model
- * Two-stream + phase function decomposition
- * Scalar
- * Developed by Robin Hogan
- * Output tangent linear and adjoint

Reference : VLIDORT - vector

Outputs and metrics

Reflectance

$$\rho_{\rm I} = \frac{\pi \ I}{I_s \ \cos(\theta_s)}$$

CPU time (single-thread, exclude I/O)

- One call one output
- One call multiple output

Metrics

Root Mean Square Error (RMSE) =
$$\sqrt{\frac{1}{N}\sum_{i=1}^{N}(m_i - r_i)^2}$$

Mean Fractional Bias (MFB) =
$$\frac{2}{N} \sum_{i=1}^{N} \frac{m_i - r_i}{m_i + r_i}$$

Mean Fractional Error (MFE) =
$$\frac{2}{N} \sum_{i=1}^{N} \left| \frac{m_i - r}{m_i + r} \right|$$

 m_i : model; r_i : model reference

Results : VLIDORT reflectances

Results : Scalar VLIDORT and DISORT relative errors

Results : FLOTSAM and 6SV2 relative errors

Results : 6SV timing

Results : Time comparison [s]

		FLOTSAM	6SV2	DISORT
one-off set-up	Lambertian	$2.87 imes 10^{-5} \ (1.99 imes 10^{-6})$		
	BRDF	2.76 (5.28×10^{-3})		
ind	Lambertian	$3.05 imes 10^{-4}~(1.84 imes 10^{-6})$	1.06 (0.87)	0.22 (0.18)
	BRDF	$3.70 imes 10^{-4}~(1.49 imes 10^{-5})$	1.90 (0.95)	0.99(0.18)
mult	Lambertian	$9.90 imes 10^{-2} \ (6.23 imes 10^{-4})$		0.29 (0.16)
	BRDF	$9.96 imes 10^{-2}~(5.63 imes 10^{-4})$		1.21 (0.16)

FLOTSAM mult = 640 profiles ($0.1/640 \approx 0.15$ [ms]) 6SV2 mult = 1 profile DISORT mult = 20 profiles ($0.5/20 \approx 25$ [ms])

Summary

- Benchmark has been designed for atmosphere with aerosols
- Target accuracy and computing time
- Tested with 4 models : VLIDORT, DISORT, FLOTSAM and 6SV2
- Errors in accuracy (against VLIDORT(V)) :
 - Lambertian MFE : 0.8, 1.5, 1.9 %
 - \bullet BRDF Cox-Munk MFE : 1.5, 6.6, 4 %
 - Spectral dependant (polarisation)
 - Aerosol optical depth dependant
 - Aerosol type dependant
- Computing time :
 - From seconds to less than milliseconds
 - Setup, single profile or multiple profile computations
 - Surface type dependence

Benchmark input data and VLIDORT(V) outputs are available at https://doi.org/10.5194/gmd-12-805-2019

Thank you! Questions?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement H2020-MSCA-COFUND-2016-75443

Extra slides

Aerosol types

Metrics against VLIDORT(S)

6SV2 - VLIDORT (V) , AOD=1 , 550 nm , Lambertian 0.05 , ind. abs. and sea salt

rhol_diff_0.05_tau1.0_wl0.55_6SV_VLI_asref

6SV2 - VLIDORT (V) , AOD=1 , 550 nm , CM BRDF, ind. abs. and sea salt

rhol_diff_-1.0_tau1.0_wl0.55_6SV_VLI_asref

Figure: Accuracy (in black) and computing times (in red) for the DISORT model as a function of the number of streams used. The Lambertian and oceanic BRDF surface cases are shown with solid and dashed lines, respectively. The accuracy is shown in terms of Mean Fractional Error against VLIDORT (vector). The computing times are an average for 20 geometries and were estimated on a processor AMD Opteron 6378, 2.4 GHz.

	All		BRDF		Lambertian	
	DISORT	VLIDORT	DISORT	VLIDORT	DISORT	VLIDORT
		(scalar)		(scalar)		(scalar)
Reference (VLIDORT vector) Mean	0.114		0.108		0.116	
Model Mean	0.114	0.114	0.108	0.108	0.116	0.116
RMSE	0.002	0.002	0.003	0.002	0.002	0.002
Mean Fractional Bias (%)	-0.44	-0.42	-0.82	-0.89	-0.31	-0.26
Mean Fractional Error (%)	0.99	0.91	1.48	1.29	0.83	0.78
Ν	44,080	44,080	11,020	11,020	33,060	33,060
% of exps. with errors $> 0.5%$	55.09	51.34	68.43	61.79	50.64	47.86
% of exps. with errors $>1%$	35.27	34.47	48.97	47.71	30.70	30.05
% of exps. with errors $>2%$	14.63	14.71	25.95	27.04	10.85	10.60
% of exps. with errors $> 2.5%$	9.09	9.08	17.18	18.12	6.39	6.07
% of exps. with errors $>5%$	0.77	0.28	2.18	0.60	0.30	0.17
% of exps. with errors $> 7.5%$	0.29	0.00	0.97	0.00	0.07	0.00
% of exps. with errors $> 10\%$	0.18	0.00	0.68	0.00	0.02	0.00

	All		BRDF		Lambertian	
	6SV2	FLOTSAM	6SV2	FLOTSAM	6SV2	FLOTSAM
Reference (VLIDORT vector) Mean	0.114		0.108		0.116	
Model Mean	0.114	0.114	0.102	0.107	0.117	0.116
RMSE	0.007	0.008	0.014	0.012	0.003	0.006
Mean Fractional Bias (%)	-0.58	-0.49	-5.60	-2.01	1.09	0.02
Mean Fractional Error (%)	2.78	2.41	6.60	4.01	1.51	1.88
Ν	44,080	44,080	11,020	11,020	33,060	33,060
% of exps. with errors $> 0.5%$	71.30	80.21	82.56	89.86	67.54	77.00
% of exps. with errors $>1%$	45.84	63.70	71.08	79.76	37.42	58.35
% of exps. with errors $> 2%$	30.04	39.91	54.44	61.91	21.91	32.58
% of exps. with errors $> 2.5%$	25.04	32.02	48.57	53.80	17.20	24.76
% of exps. with errors $>5%$	14.01	11.89	34.50	26.05	7.18	7.17
% of exps. with errors $> 7.5%$	8.25	4.70	26.00	11.59	2.34	2.40
% of exps. with errors $> 10\%$	5.63	1.97	20.20	5.56	0.77	0.77

