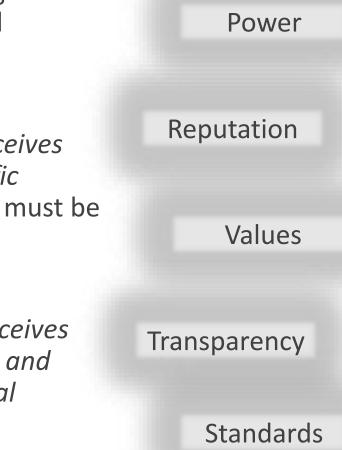
18 November 2020

Barcelona Supercomputing Center Centro Nacional de Supercomputación

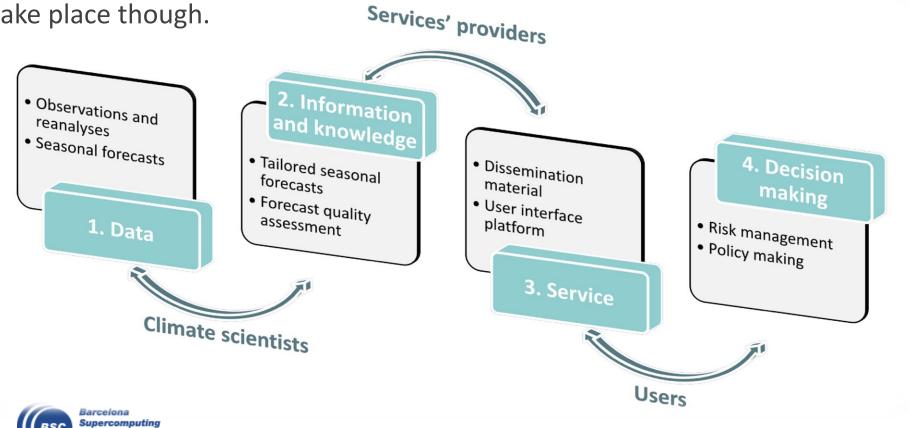
EXCELENCIA SEVERO OCHOA

Forecast quality assessment for operational climate prediction

Francisco J. Doblas-Reyes


with contributions from Joaquín Bedia, Nicola Cortesi, Nube González, Carlo Lacagnina, Llorenç Lledó, Raül Marcos, Núria Pérez, Jaume Ramón, Albert Soret, Marta Terrado, Verónica Torralba, Ilaria Vigo and many more

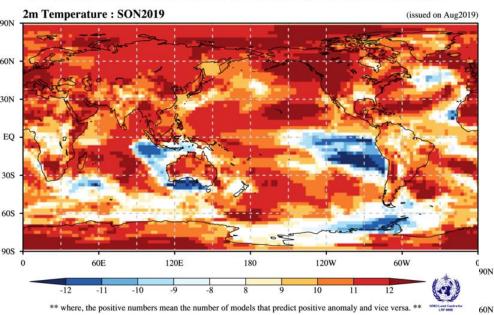
Climate information requirements


- Salience: It refers to the relevance of information for an actor's decision choices. Often interesting scientific questions are far from a real-world situation.
- Credibility: It refers to whether an actor perceives information as meeting standards of scientific plausibility and technical adequacy. Sources must be trustworthy and/or believable.
- Legitimacy: It refers to whether an actor perceives the climate information process as unbiased and meeting standards of political and procedural fairness.

The research-provider-service paradigm

A service-oriented research agenda requires the traditional chain "research development-operations-service provision" to move both ways so that not only information quality is demonstrated, but user requirements are adequately addressed and value illustrated. This leaves a space for transdisciplinary research. This chain should not preclude basic research to take place though.

- Need intervisions and activities
 Addea Add



(D11.6) and EUPORIAS (D12.3). Additional sectoral comments in user engagement by S2S4E, APPLICATE, MED-GOLD, HIATUS and VISCA.

Users look for climate forecasts online

Consistency Map

CPTEC, ECMWF, Exeter, Melbourne, Montreal, Moscow, Offenbach, Pretoria, Seoul, Tokyo, Toulouse, Washington

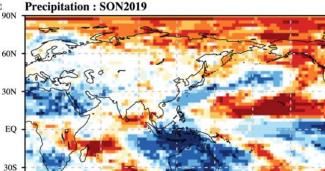
But some elements are missing:

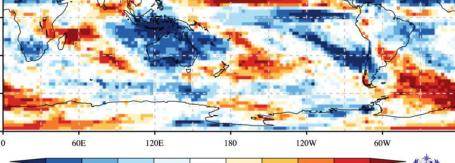
- Quality assurance
- Traceability
- Interpretation
- Authority

Consistency Map

-12

-11


-10

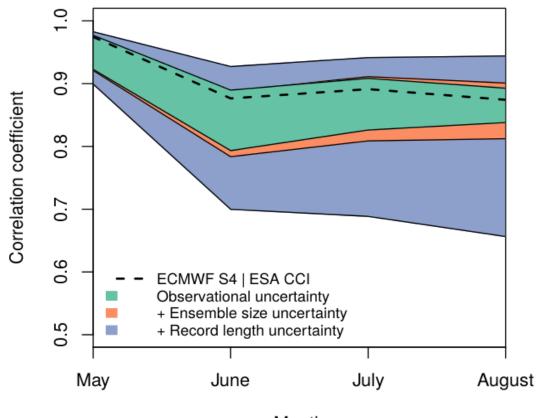

60S

90S

CPTEC,ECMWF,Exeter,Melbourne,Montreal,Moscow,Offenbach,Pretoria,Seoul,Tokyo,Toulouse,Washington

(issued on Aug2019)

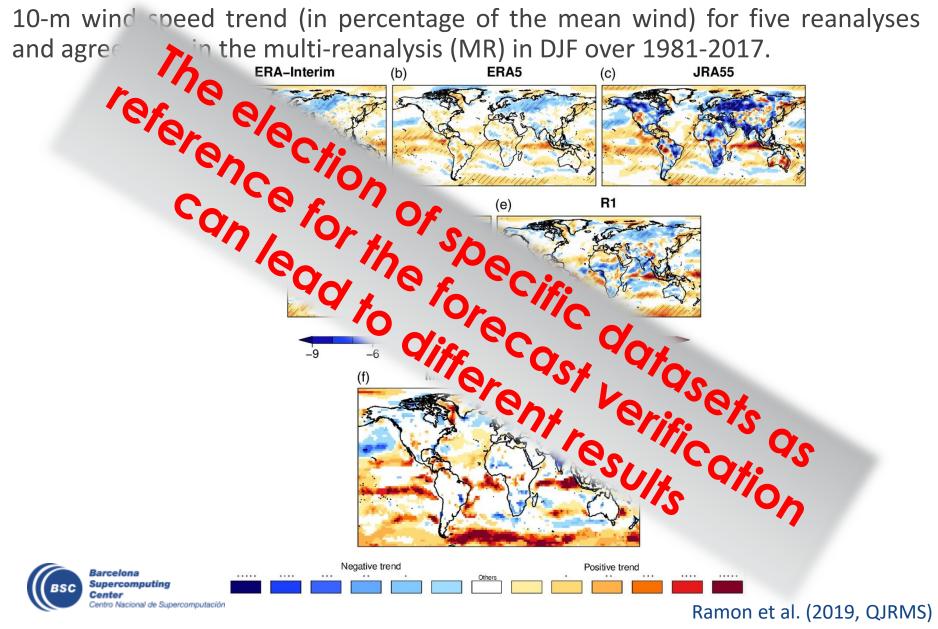
** where, the positive numbers mean the number of models that predict positive anomaly and vice versa. ** """ und carden und the number of models that predict positive anomaly and vice versa. **


Some key elements for users

- Observational uncertainty: comparison between reanalyses in a forecast verification context.
- Definition of standard procedures: standards are less common than one would expect.
- Traceability and quality control: quality control and reproducibility of data and products is increasingly important in the research community, but its operational aspects are not solved yet.
- User indicators: indicators often do not have the same level of skill as the meteorological variables.
- Interpretation and communication: users are often not experts, and even when they are it is easy to misunderstand the existing information.
 Communication is a challenge
- Synthesis and narratives: how to deal with multiple lines of evidence in the message constructions.

Sources of uncertainty of forecast quality

Niño3.4 SST correlation of the ensemble mean for EC-Earth3.1 (T511/ORCA025) predictions with ERAInt and GLORYS2v1 initial conditions, and BSC sea-ice reconstruction started every May over 1993-2009.


Prediction skill ENSO

Month

Bellprat et al. (2017, Rem. Sens. Env.)

Observational uncertainty is relevant to users

Observational uncertainty in verification

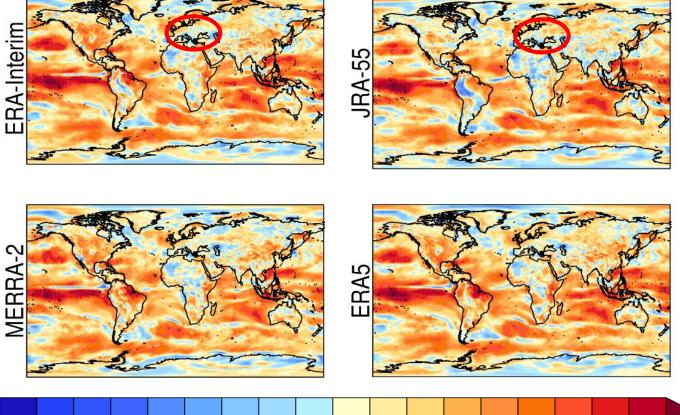
Correlation

-0.5

-0.6

-0.8

-0.9


-0.7

-0.4 -0.3

-0.2

-0.1

ECMWF System4 Period: 1981-2016 Season: DJF Start date: 1st Nov Variable: 10-m wind speed

0.1

0

0.3

0.4

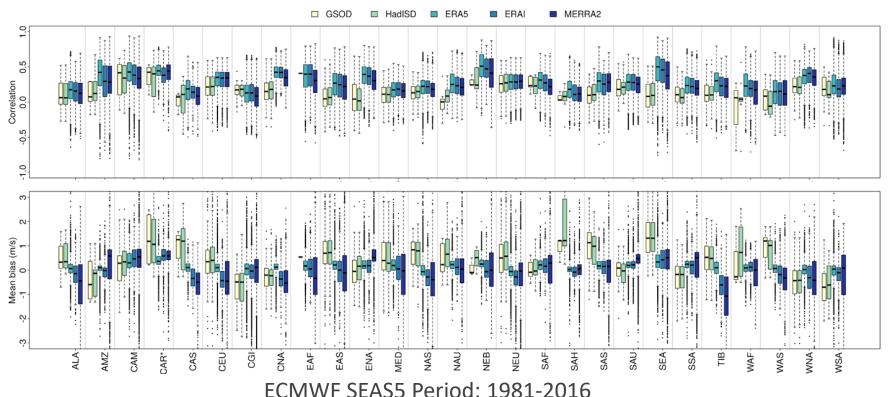
0.2

0.5

0.6

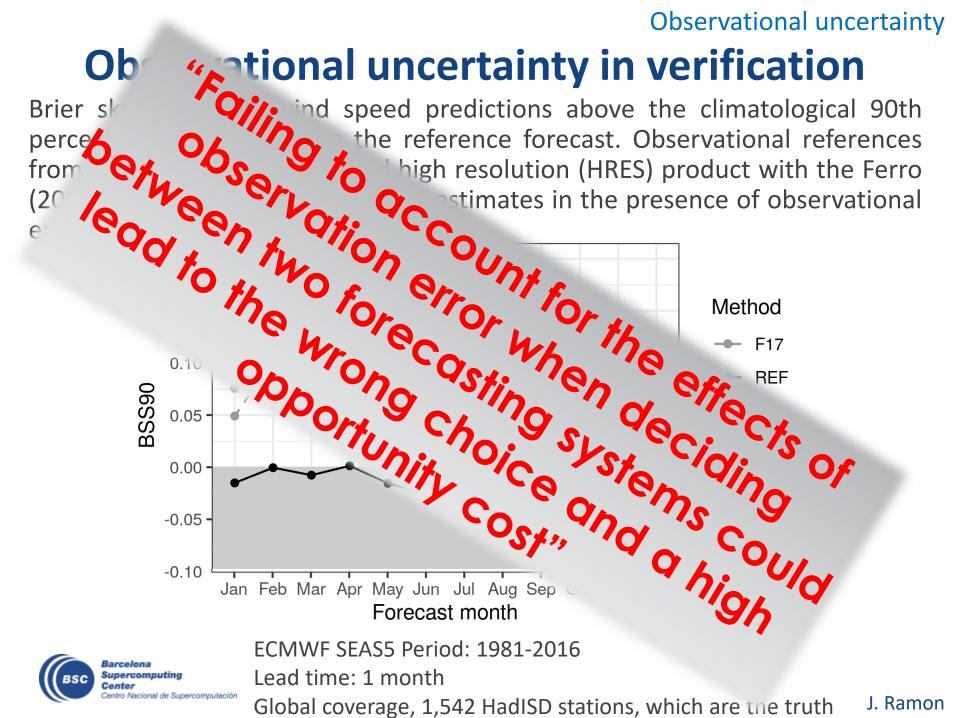
V. Torralba

0.8


0.9

0.7

Observational uncertainty in verification


Verification with two ground-based observational datasets and three reanalyses. The use of both types of datasets is very informative for wind energy users as they use them for the development of impact models and the long-term resource assessments.

Season: DJF Start date: 1st Nov

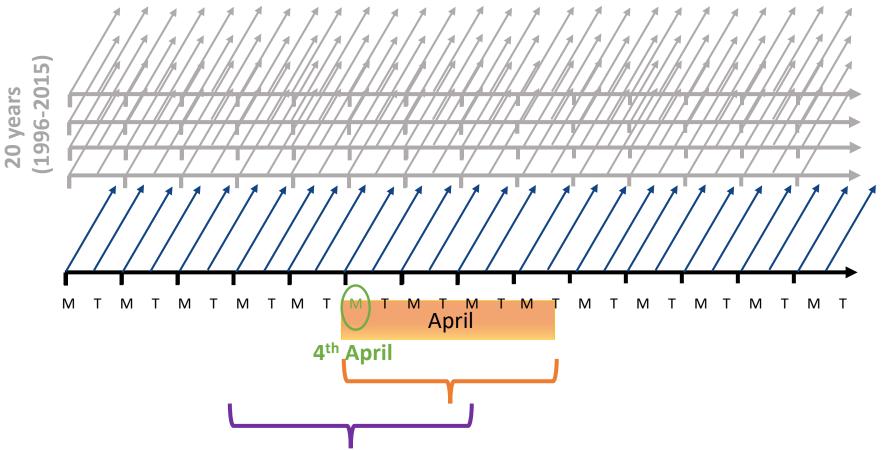
A non-trivial climatology definition

There is a large heterogeneity in the real-time subseasonal systems: different initialisations, hindcasts periods, etc.

Limited samples (even in the hindcasts) lead to : lack of robustness in forecast quality estimates, definition of the climatology, bias adjustment, etc.

			1		M				
Status on 2020-10-27	Time range	Resolution	Ens. Size	Frequency	Re- forecasts	Rfc length	Rfc frequency	Rfc size	
BoM (ammc)	d 0-62	T47L17	3*11	2/week	fixed	1981-2013	6/month	3*11	
CMA (babj)	d 0-60	T266L56	4	2/week	on the fly	past 15 years	2/week	4	
CNR-ISAC (isac)	d 0-32	0.75x0.56 L54	41	weekly	fixed	1981-2010	every 5 days	5	
CNRM (Ifpw)	d 0-47	T255L91	25	weekly	fixed	1993-2017	every 7 days	10	
ECCC (cwao)	d 0-32	39 km L45	21	weekly	on the fly	1998-2017	weekly	4	
ECMWF (ecmf)	d 0-46	Tco639/319 L91	51	2/week	on the fly	past 20 years	2/week	11	
HMCR (rums)	d 0-61	1.1x1.4 L28	20	weekly	on the fly	1985-2010	weekly	10	
JMA (rjtd)	d 0-33	TI479/TI319L100	50	weekly	fixed*	1981-2010	2/month	13	
KMA (rksl)	d 0-60	N216L85	4	daily	on the fly	1991-2016	4/month	3	
NCEP (kwbc)	d 0-44	T126L64	16	daily	fixed	1999-2010	daily	4	
UKMO (egrr)	d 0-60	N216L85	4	daily	on the fly	1993-2016	4/month	7	

Forecast



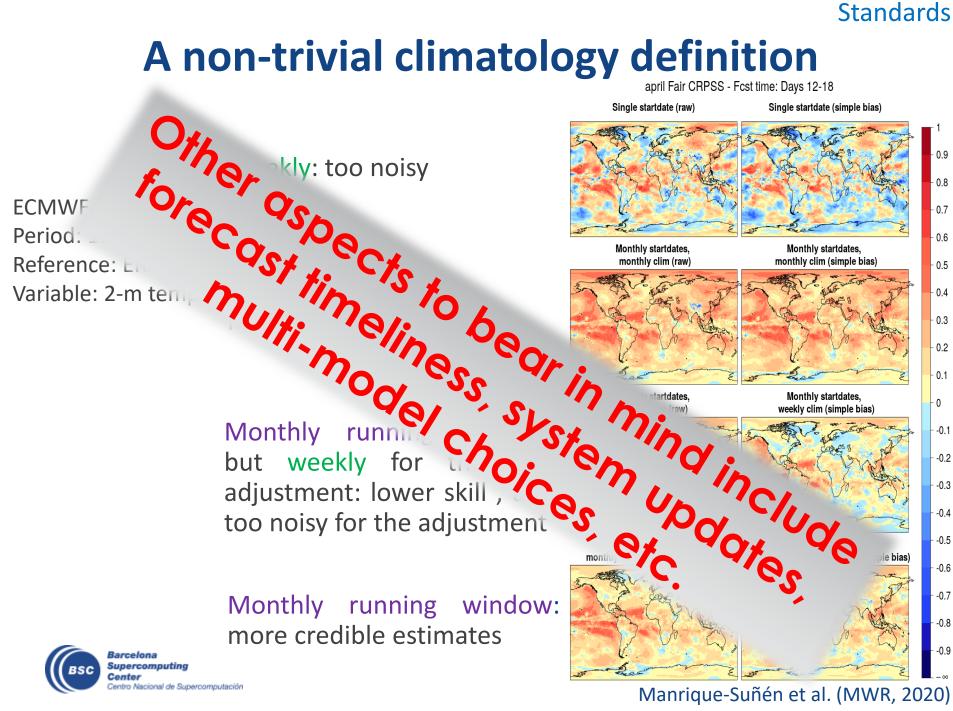
Manrique-Suñén et al. (MWR, 2020)

Hindcasts

Standards

A non-trivial climatology definition

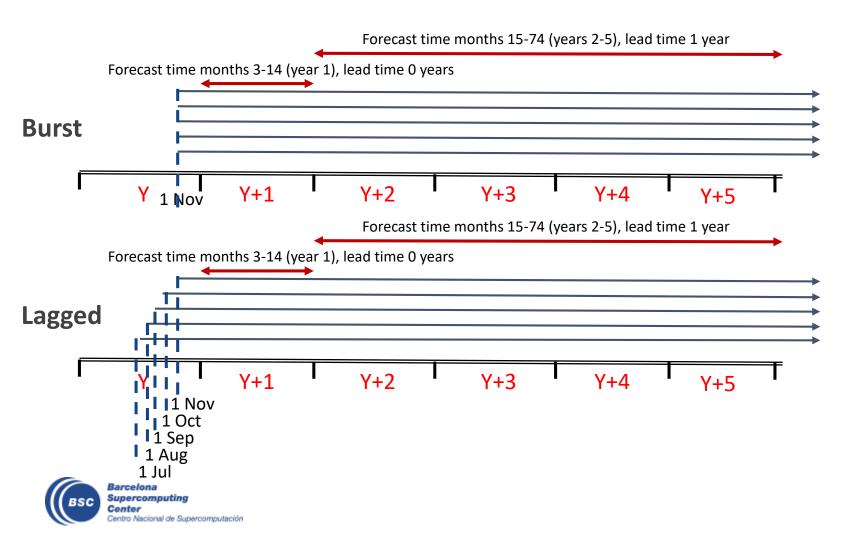
Weekly: 1 start date, 20 years


Monthly: All start dates in a calendar month, 8/9 start dates, 20 years Monthly running window: Running window with 4 start dates before and

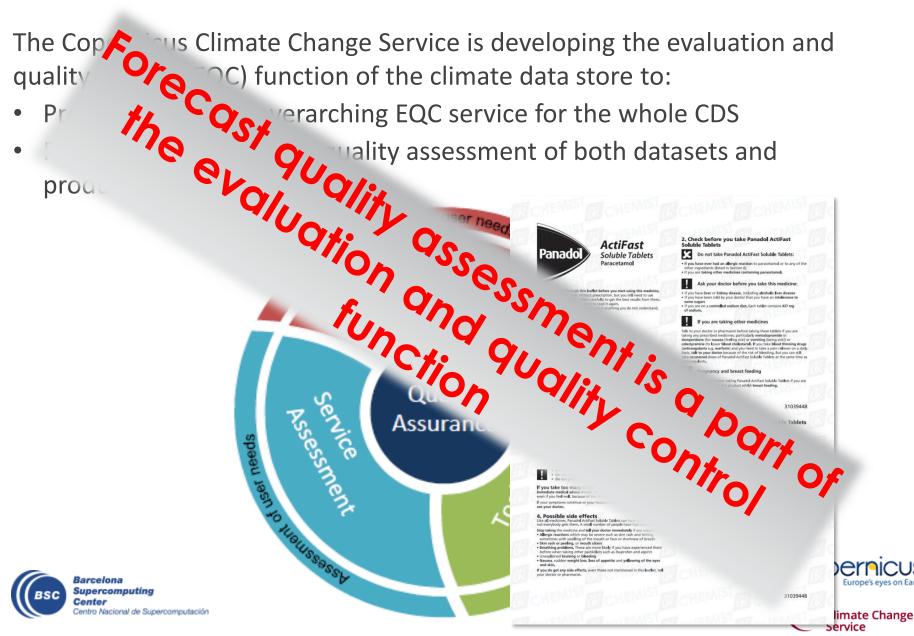
after the target week, 9 start dates, 20 years

A. Manrique

Standards

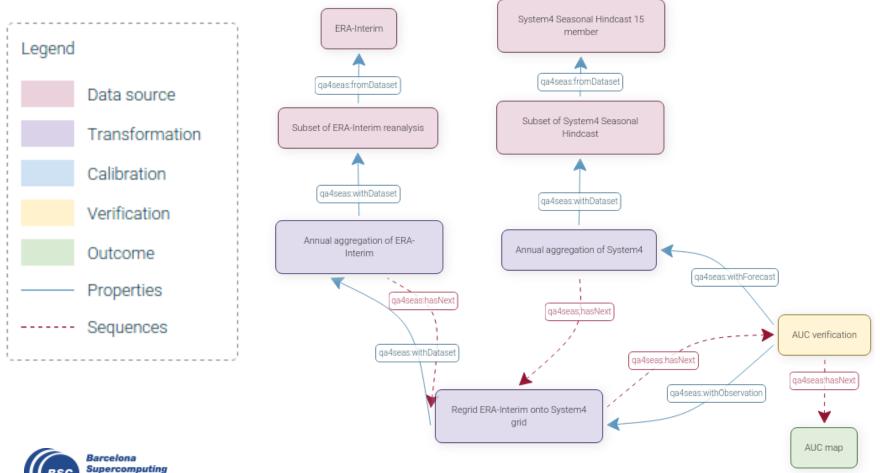


Manrique-Suñén et al. (MWR, 2020)


Standards

Vocabularies

Vocabularies are part of the development of the evaluation and quality control (EQC) and a pre-requisite for the inclusion of decadal predictions in the climate data store (CDS) of the Copernicus Climate Change Service.



Traceability and quality control **Evaluation and quality control**

Traceability and quality control How traceable are both products and skill?

Generalised metadata provision and workflow provenance is required to ensure a minimum quality of the forecast-based climate information.

Center Centro Nacional de Supercomputación

Traceability and quality control How traceable are both products and skill?

Well-documented packages safely developed are indispensable in an operational context.

The Comprehensive R Archive Network

- package shared in ftp and web servers
 around the world
- common standards for R users
 - easy installation
 - typical R documentation
 - typical warnings and error messages
- checks
 - to work on different OS
 - structure and documentation
 - package size
 - installation time
 - ...

Profiling tools

- ProfVis and Rprof
- scalability and parallelisation

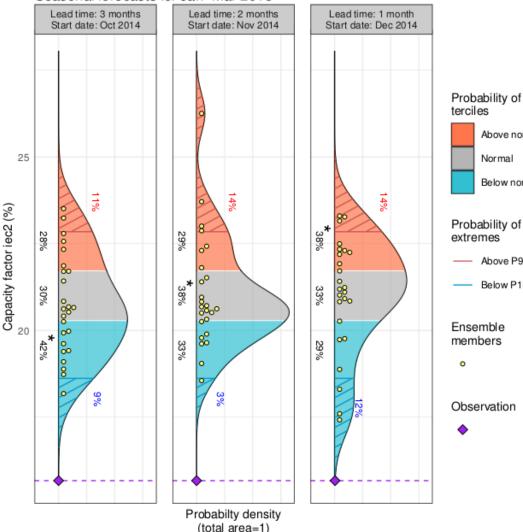
Barcelona Supercomputing Center Centro Nacional de Supercomputación

Version control system

- track changes
- issues discussion
- tag versions
- branching strategy
- unit testing
- continuous integration

Contributions and improvements

- open a new issue
- work in a new branch
- follow function standards
- review process
- merge into the master branch
- plan next release

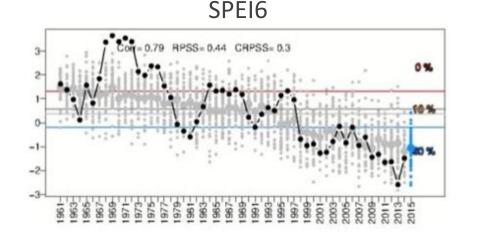

User indicators

Seasonal prediction of wind capacity factor

Normal

Above P90

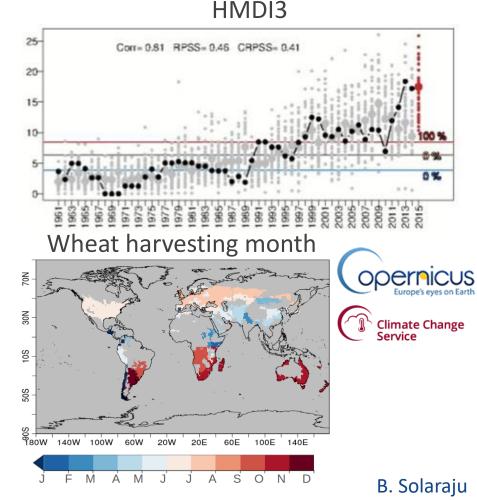
Seasonal forecasts for Jan-Mar 2015


Seasonal predictions of DJF capacity factor over North America (124-95°W, 26-44°N) starting on the first of October, November and Above normal December for the first trimester of 2015, ECMWF SEAS5, reanalysis: Below normal ERA-Interim, hindcasts over 1993-2015.

Below P10						
mble		Oct	Nov	Dec		
emble ibers	RPSS	0.23	0.25	0.24		
ervation	BS P10	-0.18	-0.23	-0.16		
	BS P90	0.06	0	0.03		
	CRPSS	0.11	0.08	0.08		
	EnsCorr	0.5	0.45	0.42		

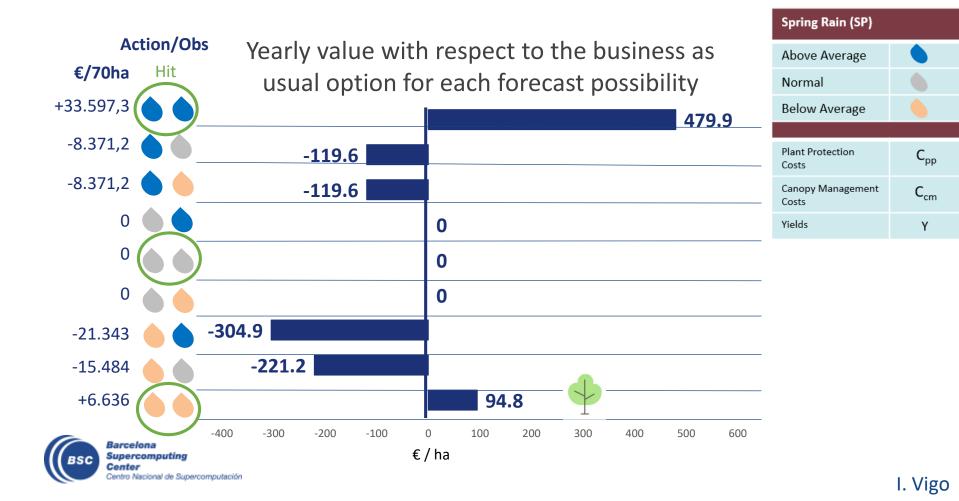
Barcelona Supercomputing Center Centro Nacional de Supercomputación

User indicators Decadal prediction of crop yield indices


WMO recognised global producing centres of decadal predictions contribute with the definition of standards for decadal predictions data and products, while C3S promotes the evaluation of the European multi-model and the illustration of the decadal prediction use in, among other sectors, the agricultural sector.

Indicators:

- Drought: Standardized Precipitation Evapotranspiration Index (SPEI6)
- Heat Stress: Heat Magnitude Day Index (HMDI3)

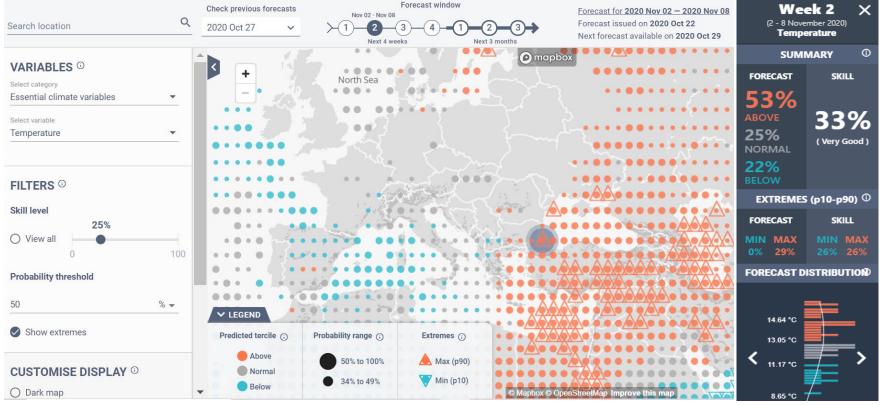


User indicators

User value: wine making

A wine producer is using seasonal forecasts of spring rain (provided in January) to make decisions about with the objective of maximising the payoff of the production of a 70 ha lot. Forecast value is user specific and is the basis for the user-oriented forecast application.

Do not underestimate the power of an image


Scorecards and comprehensive displays of forecast quality measures become essential in a user-oriented service.

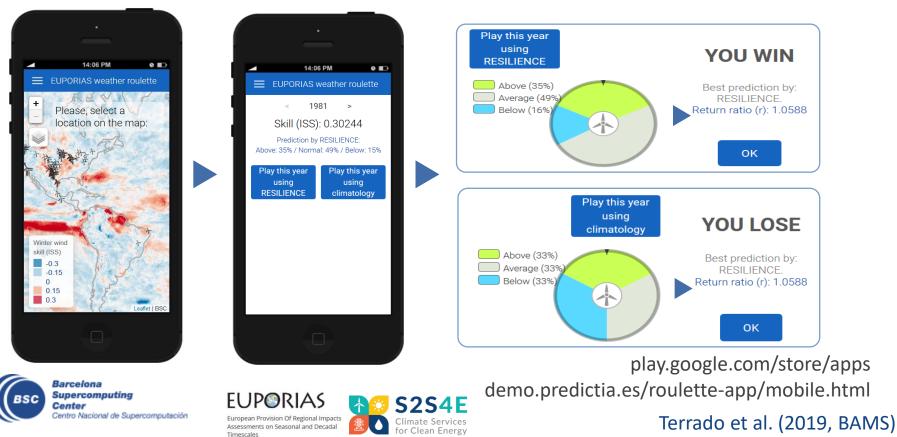
Mean sea level pressure	CMCC System 3 Mean Bias (Pa) Correlation								FCRPSS								FRPSS								
		Forecast month							Forecast month					Forecast month						Forecast month					
Start date	Region	1 B3.01	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6 10.04	1	2	3	4	5	6 H0.01
January	Tropics (30S-30N) Extra-tropical NH (30N-90N)	B3.01 B3.51	\$6.95 9.24	67.80	5 0.18	\$9.09	6 8.19	0.58	0.24	0.08	0.40	0.12	0.12	0.23	0.04	0.00	0.04 10.06	0.05 0.06	0.04	0.35	0.01	0.05	0.02	0.02	0.02
oundary.	Extra-tropical SH (30S-90S)	22.49	5.76	4.56	33			0.65	0.10	0.09	0.05	0.04	0.03	0.20	0.08	0.07	0.06	0.09	0.07	0.24)	0.07	0.03	0.02	0.07	0.05
	Tropics (30S-30N)	B0.75	\$7.35	\$5.48	\$5.40	\$2.89	1.10	0.79	0.46	0.45	0.29	0.30	0.40	0.35	0.05	007	0.02	0.00	0.05	0.39	0.10	0.10	0.01	0.03	009
February	Extra-tropical NH (30N-90N)	11.39	40.36	40.15	\$7.83	25 7	6 8.42	0.62	0.27	020	0.13	0.09	0.13	0.12	0.03	0.04	0 .06	0 .07	0 .05	0.20	0.00	+0.01	0.02	0.03	0.02
	Extra-tropical SH (30S-90S)	\$ 2.94	5.92	22	0.000	-532.07	410.02	0.52	019	0.09	0.01	0.09	0.09	0.05	0.03	0.06	0.07	(1.06	0.05	0.) 2	0.00	0.02	0.04	0.05	0.02
	Tropics (30S-30N)	22.85	\$5.14	8.88	8 0.47	4.40	6.42	0.68	0.47	0.34	0.33	0.38	0.40	0.20	008	0.00	D .02	0.04	0.03	0.26	0.02	0.03	0.05	007	07
March	Extra-tropical NH (30N-90N) Extra-tropical SH (30S-90S)	¥0.15	20.22	2.15	.65	2.38	7.29	0.63	0.26	0018 0.05	0.08 0.05														
	Tropics (30S-30N)	27.43	3.03	e 8.44	3.46	6.52	1.74	0.64	0.42	0.40	0.46				0	JF						MAM			
April	Extra-tropical NH (30N-90N)	\$7.72	\$0.31	6.27		5.71	67.11	0.58	019	0.13	024		· /	$\wedge \cdot \land$	$\overline{)}$		$\wedge \cdot /$	\wedge			1.	$\wedge \cdot /$	$\backslash \cdot \land$	$\overline{)}$	/
	Extra-tropical SH (30S-90S)	60.64	53	490.67	8		-527.18	0.44	0.09	023	0.22	lead 3	- •ו	$ \cdot \times $	·X·	$\times \mid \times$	· X·	X	•	$\times \mid \cdot \rangle$	$\cdot \mid \cdot \times \cdot$	• • × •	•ו	·×· ·	·×·
	Tropics (30S-30N)	B 1.23	9 .14	9 .02	8.68	1.25	\$ 5.28	0.64	0.48	0.44	0.48		$\overline{}$	\checkmark	/·\/	• / • •	$\sqrt{\cdot}$			$\cdot \sqrt{\cdot}$	<u>\</u> /·`	\checkmark	\checkmark	<u>/· //</u>	· \
May	Extra-tropical NH (30N-90N)	\$ 0.00	1.53	1 4.86	8 9.49	1 5.01	20.82	0.49	0.11	0.10	0.10		\·/	$\wedge \land$	\backslash / \backslash	$\cdot \land \cdot$	\wedge	$\wedge \land$		\cdot / \cdot	/\.	∕ ∕	$\backslash \cdot \land$	$\cdot / $	/
	Extra-tropical SH (30S-90S)	0.22 BB 87		8	3	C17.83		0.57	017	014	0.01	lead 2	-1 ·X·	·X·	·X· 📝	X·I·X	: ·X·	·X•	- •	$\times \cdot \cdot \times$	$\cdot \cdot \cdot \cdot$	· · · · ·	•X•	·X· ·	·×·
June	Tropics (30S-30N) Extra-tropical NH (30N-90N)	BB.87	₿9.94 ■ 2.96	4.91 2.72	1.U1	4.13 130.14	■ 1.91 ■1.90	0.71	0.47	0.48	0.44)		$\langle \cdot \rangle$	\star	$\sim \chi$	· ¥ ·	\times	\times	\leftarrow		\mathbf{X}	\times	$\langle \cdot \rangle$	$ \rightarrow $	
Julie	Extra-tropical SH (30S-90S)	75	48	8	0.03	30.14	1.30	0.52	0.25	016	0.08	1	·/		$\backslash \cdot / \setminus$:/\\/				$\sqrt{\mathbf{\cdot}}$	/\.		` •∕ `	$\langle \cdot / \rangle$	•
	Tropics (30S-30N)	#1.89	\$2.33	\$1.36	01.08	4.71	\$5.98	0.68	0.53	0.47	0.44)	lead 1			<u> </u>	\sim				\sim \sim	$\langle X \rangle$				\sim
July	Extra-tropical NH (30N-90N)	0.92	2 6.15	₿7.00	18.43	7.84	51.14	0.50	017	015	D .04			к X	$-\mathbf{X}$	$-\mathbf{X}$	X	\times	K	<u> </u>	X	\times		$-\mathbf{X}$	
	Extra-tropical SH (30S-90S)	66 56	6000 5	520.44		434.B 6	46	0.52	D .03	814	0.22	lead 0			$\sim \sim$	$\langle \cdot \rangle$				\checkmark \mid \setminus	$/ $ \vee			\sim \sim	
	Tropics (30S-30N)	\$ 7.68	\$5.85	6.48	13.56	0.59	2.39	0.72	0.49	0.47	0.42	ieau u			$\wedge /$	$\sim \sim$				\sim	$\backslash \land$			\wedge	\frown
August	Extra-tropical NH (30N-90N)	1 .29	4.53	0.54	¥ 9.49	69.71	11.02	0.49	0.06	0.07	0.22			$\Psi \rightarrow \Psi$											
	Extra-tropical SH (30S-90S) Tropics (30S-30N)	P4 29	CONTRO 00.21	9	1 84.66	.12 (8.11	0.61	0.53	0.20	0.24	0.37					JA						SON			
September	Extra-tropical NH (30N-90N)	£4.25 ■21.49	0.21 P3.01	69.99	€1.64	-5.07	-0.76	0.43	0.02	0.10	0.07				J	JA			_			301			
	Extra-tropical SH (30S-90S)	63063	1000 25	1	.98	.39	3.28	0.57	0.30	0.33	0.10									$\backslash \backslash$	/\.		$\backslash \land$	\setminus	
	Tropics (30S-30N)	B 1.84	03.49	8 7.38	6.09	1.12	6.22	0.66	0.49	0.50	0.52	lead 3				XIX			:	X: /X	$\langle X \rangle$			× 1	
October	Extra-tropical NH (30N-90N)	11.42	62.84	\$ 5.87	-0.87	-3.59	64.06	0.38	0.08	814	0.07		$\left\langle \cdot \right\rangle$	\mathbf{K}	<u>· X</u>	· X ·	X	\times	K	<u> </u>	X	\times	K · X	$- \times$	· >
	Extra-tropical SH (30S-90S)	69 8.69	1	688 .79	.75	2.77	5.65	0.57	024	0.08	0.12				\bigvee					\cdot					\cdot
	Tropics (30S-30N)	68.38	2.67	6.00	\$5.52	6.69	0.63	0.70	0.59	0.53	0.47	lead 2	1:		\wedge	\sim			1	\sim	$\langle \rangle \langle \rangle$			$\langle \cdot \rangle$	
November	Extra-tropical NH (30N-90N) Extra-tropical SH (30S-90S)	10.69	\$3.63	11.99	21.32	53.78	49.93	0.53	U17	0.07	017 0.13			к ж	<u> </u>	- X-	X	\times	K	<u> </u>	X	$\times \rightarrow$	ĸЖ	$-\mathbf{X}$	\rightarrow
	Tropics (30S-30N)	40.86	\$5.61	9.57	3.90	0.7 T	■1.17	0.76	0.57	0.48	0.36	lead 1				\sim				$\langle \cdot \cdot \rangle$	$\langle \rangle \langle \rangle$			\sim	
December	Extra-tropical NH (30N-90N)	4.70	14.38	1.69	52.43	25.19	\$5.56	0.60	015	0.15	D.04	icad i	1			\sim				\sim	$\langle / \cdot \rangle$				
	Extra-tropical SH (30S-90S)	5.82	6 5.33	2.46	9.17	230 02	2	0.64	022	016	0.03			* *			\mathbf{X}				*.	*	K./*		
		_				_						lead 0	-	$ \times $	\times	$\times \mid \times$				\times \mid \cdot	$\cdot \mid \cdot \times \cdot$	• • • • •	$\cdot \times \cdot \cdot \times \cdot \times \cdot$		ו
For	ecast qu	Itler	tv m	סבסו	IIro	c fo	r tha	/אר) מ	1CC	_CN/	12				/•\\/		\checkmark					\checkmark	\lor		
101	ecasi yi	Jan	LY II	icas	ure	510			ICC		IJ			0	0	0 0								-	
					~				~				SPS3	DWD2	ö	SEAS5 MF6	MSPool	MSEW		SPS3	ö	SEAS5	MF6	MSPool	MSEW
one	erationa		ລເດ	nali	fore	nas.	t cvc	tem	fro	m			SF	S	50	⊴ ≥	Ъ	AS		R S	56	ЦР	2	Ъ	٩S
operational seasonal forecast syst							CIII	110						GS5GC2	S	Σ	~		_	GS5GC2	S		Σ	~	
(3)	C3S																								
	•					\sim	rnia					SCA Ensemble mean correlation													
								NAO EAWR																	
N. Cortesi																									
												Correlation for C3S seasonal forecasts													
Climate Change																									
Comico									of North Atlantic modes of variability.																
Barcelona Service																									
Center																									
Centro Nacional de Supercomputación Lledó et al. (2020, ERL																									
																		LIEC	io et	al. (202	U, El	KL)		
																								- /	_,

Interpretation and communication

Prototypical climate services for energy

S2S4E is developing a <u>decision support tool</u> for the renewable energy sector based on <u>Copernicus climate forecasts</u>, S2S, and NCEP operational predictions co-designed with the industry for periodic updates on the state of relevant climate variables.

Supercomputing Center Centro Nacional de Supercomputación

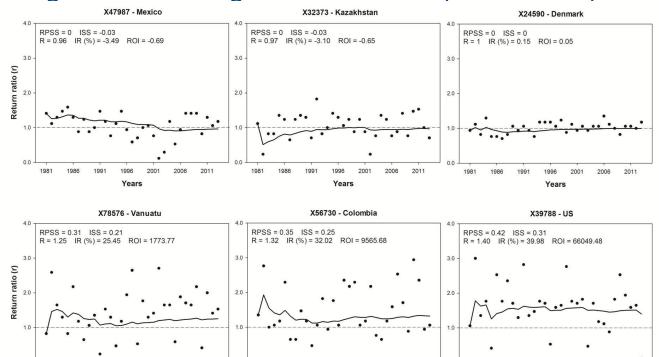


Interpretation and communication

The communication challenge

Gamification is useful to illustrate the challenges of using and the value of seasonal climate predictions addressed to the wind energy sector:

- Play against a reference taken from climatological frequencies.
- The bets are proportional to the predicted probabilities.
- The amount invested in the observed category is multiplied by 3.



Interpretation and communication

Illustrating the value of predictions

Examples of return ratio for 33 betting runs for different points where wind power plants are installed:

- Top row cases with RPSS=0, but ignorance skill score negative or zero.
- Bottom row cases with RPSS>0.
- Line for the geometric average of return ratios (interest rate).

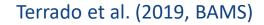
for Clean Energ

1981

2001 2006 2011

1996

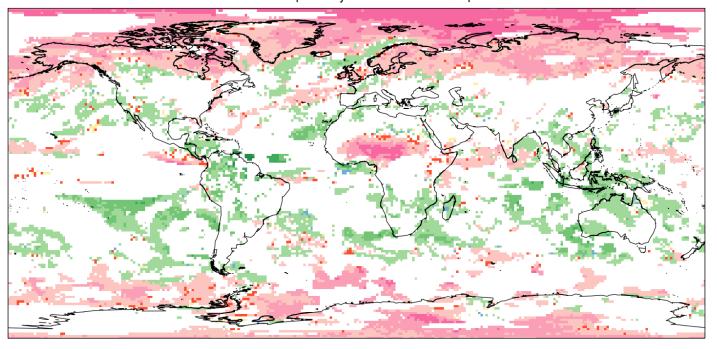
Center Centro Nacional de Supercomputación

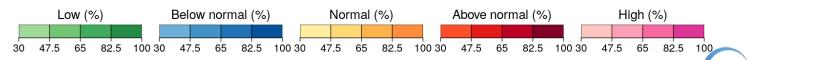

1981

1981

2011

2006

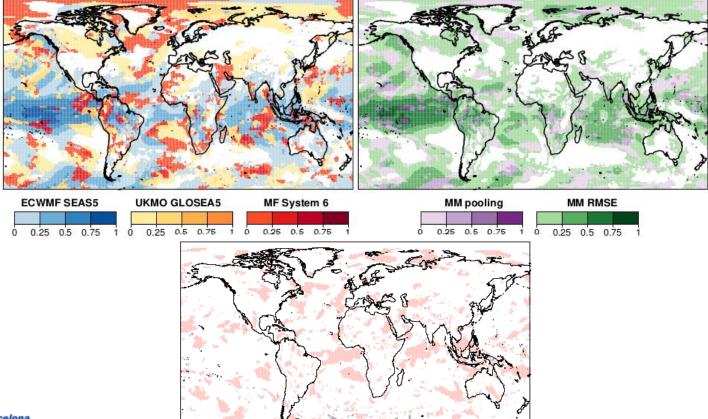



Climate Change Service

Multi-model climate predictions

Multi-model forecasts have been considered as an acceptable way to synthesise forecast information.

Decadal predictions of precipitation for forecast years 1-5 started near the end of 2018. Probability of the most likely quintile category (masked where FairRPSS < 0) - pr - Multi-model-2 - Annual mean Start date: 2018 - Forecast period: years 1-5 - Reference period: 1981-2010



Synthesis

Multi-model climate prediction

However, users do not always understand why multi-model is the preferable option.

CRPSS of DJF two-metre temperature for C3S forecasts initialized in November, all systems bias adjusted (MVA) compared to a simple and weighted multi-model (as inverse function of RMSE). Bottom gain of the best multi-model with respect to the best single system. Verified against ERA Interim for 1993-2015.

Best MM - Best indiv

V. Torralba

The non-exhaustive list of relevant elements

- Observational uncertainty: comparison between reanalyses in a forecast verification context.
- Definition of standard procedures: standards are less common than one would expect.
- Traceability and quality control: quality control and reproducibility of data and products is increasingly important in the research community, but its operational aspects are not solved yet.
- User indicators: indicators do not have the same level of skill as the meteorological variables.
- Interpretation and communication: users are often not experts, and even when they are it is easy to misunderstand the existing information.
 Communication is a challenge
- Synthesis and narratives: how to deal with multiple lines of evidence in the message constructions.

