

High-Resolution Decadal Prediction

Aude Carréric, Pablo Ortega

8th BSC Doctoral Symposium

Earth Science Department

Environmental modelling and forecasting, with a particular focus on weather, climate and air quality

Leading: H2020 projects, COPERNICUS contracts, ERC Consolidator Grant and hosts an AXA Chair

Context and motivation

Climate is changing...

...we need to prepare for climate conditions to come

Climate Prediction

Initial value problem:
Predictability arising
from the memory of
slow processes and
components in the
climate system

Forced boundary condition problem: Predictability relying on good guess of future changes in radiative forcing

GHGs

Introduction to Climate Prediction Systems

Producing Decadal Climate Prediction Systems

Earth System Model (ESM)

Atmosphere-Ocean Global Climate Model (AOGCM)

Ocean – Land – Atmosphere – Sea Ice

High-resolution version of EC-Earth3

IFS (Atmospheric Model):

T511 ~39km

Components

Model

L91 (top 0.01hPa) ~mesosphere IFS-HTESSEL (Land Model)

NEMO (Ocean Model):

Nominal 0.25° resolution L75 levels (thousands km deep)

LIM (Sea-ice Model):

Multiple (5) ice category

Representation of previously unresolved processes (e.g. ocean eddies) that are important for **ocean-atmosphere interactions**

→ expectation to better reproduce both climate mean state and variability

Courtesy of O. Tinto

ORCA grid 1°

ORCA grid 0.25°

1. Tuning of the model

- 1. Tuning of the model
- 2. Production of the initial conditions for the prediction system

ATM:

Interpolated to model grid with OpenIFS

Atmosphere reanalysis (ERA5)

Land reanalysis (ERA-Land)

Ocean + Sea Ice reconstruction (Assimilating ORAS5 / EN4)

In-house reconstruction produced at BSC

OCE + SI:

Historical reconstruction with NEMO stand-alone, forced with ERA5 fluxes, and nudged globally towards 3D T and S from ORAS5 (EN4)

- 1. Tuning of the model
- 2. Production of the initial conditions for the prediction system
- 3. Production of a seasonal forecast system

Start Date

1st November

1st May

Ensemble Size 10 members

Period Covered 1980-2020 Forecast range 4 months

ACC for tosmean in Nino3.4 - Forecast init. in Nov

- 1. Tuning of the model
- 2. Production of the initial conditions for the prediction system
- 3. Production of a seasonal forecast system
- 4. Production of the decadal prediction system

Start Date Ensemble Size Period Covered

1st November 10 members 1980-2020

Every year Forecast range
10 years

Total of 4100 simulated years

- 74,42 million CPU hours
- 2.5 Simulated Year Per Day (SYPD):
 25 days for a member of 10 years

Computationally challenging

→ MareNostrum4

Perspectives

Planned work

Perspectives

- Estimate the impact of the increased horizontal resolution on the prediction quality of the EC-Earth model
- Focus on ENSO predictive skill and its associated teleconnections

The grand challenge of current decadal prediction systems is to improve the predictive skill over the continents, which we can expect to be improved by a better simulation of air-sea teleconnections at high-resolution.

Thanks!

aude.carreric@bsc.es

Initial Conditions

ATM:

Interpolated to model grid with OpenIFS (performed locally at BSC)

Atmosphere reanalysis (ERA5)

Land reanalysis (ERA-Land)

Ocean + Sea Ice reconstruction (Assimilating ORAS5 / EN4)

In-house reconstruction produced at BSC

LAND:

Offline land-surface simulation forced by bias-corrected ERA-Interim outputs

Kindly provided by Emanuel Dutra

OCE + SI:

Historical reconstruction with NEMO stand-alone, forced with ERA5 fluxes, and nudged globally towards 3D T and S from ORAS5 (EN4)

Default surface restoring coefficients

 $\gamma_T = -40W/m^2/K$

 $\gamma_s = -150 \text{ kg/m2/s/psu}$

Default 3D restoring timescales

HPC resources

	SYPD (Simulated Years per Day)	ASYPD	RSYPD	CHSY (Core hours per simulated year)	SIM run time avg (h)	Chunksize (nb of months per jobs)	Total nb of proc
a2s5	3.4577	2.6879	2.4036	16658.38	6:52	12	2400
a2s9	3.4559	1.0724	2.0819	16667.13	6:56	12	2400
a2yd (176 considered perf)	3.4797	1.2223	1.1368	16553.12	7:15	12	2400
a2ye (177 considered perf)	3.4611	1.2139	1.2857	16642.33	6:38	12	2400
a2y6*	3.6385	2.1503	1.2934	15830.6	6:24	12	2400
a3dv (143 considered)	3.4523	0.8155	2.4173	16684.74	7:02	12	2400
a3fy	3.4415	2.2221	0.869	16737.03	6:22	12	2400
t0dt (88 considered)	3.4573	3.3246	2.7906	16660.51	6:56	12	2400
t0dz (90 considered)	3.4641	2.9986	2.8921	16627.64	6:55	12	2400
t0e0 (89 considered)	3.4261	2.9012	2.7034	16812.19	7:01	12	2400
a334 LR CMIP6 (248 considered)	18.4739	15.7337	3.5756	997.73	1:17	12	768
	Reconstruction						
a30v (418 considered)	1.5946	1.3464	0.4464	11558.73	1:15	1	768
a3h7 (38 considered)	3.4572	1.529	0.6714	8663.62	8:04	12	1248
a3mu	3.4951	3.3736	3.3887	8569.83	6:52	12	1248
		Seasonal forecast					
a35b (80 chunks considered)	3.1211	0.348	1.656	18455.3	0:38	1	2400
a3m9 (304 chunks considered)	3.0307	0.3486	1.9266	19005.92	1:09	1	2400
a3mj (45 chunks)	3.514	0.833	3.2084	16391.35	3:59	7	2400

Centro Nacional de Supercomputación

Tuning results

Future climate simulations

Global temperature changes (CMIP5)

Knutti and Sedlácek (2013)

Sources of uncertainty include internal variability, model differences and scenario spread

Internal variability
dominates during first
decades

Hawkins & Sutton (2009)

Climate Prediction Group

Seasonal-to-decadal Climate Prediction

Real time predictions

Initialization/Assimilation

Retrospective predictions

Perfect model analyses

ESM components

Sea Ice

Predictability
Feedbacks
Remote Impacts

Climate Modelling

Role of resolution

Biogeochemistry

Marine ecosystems

Carbon cycle

Wildfires

Predictability

Climate Change Mitigation

Climate Extremes

Tropical/extratropical storms
Heatwaves

Heavy precipitation

Attribution to climate drivers

Feedbacks

Climate Mechanisms

Interbasin teleconnections
Bias-development

. ... I .

Initial shocks

Sensitivity studies

