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Abstract: The climate system is changing with unprecedented consequences for the environment
and many socioeconomic sectors. Hence the importance of predicting these changes. This study
aims to produce an evaluation of the predictive skill in a decadal prediction system performed with
EC-Earth. It specifically targets three variables of high relevance for human activities, such as sea
surface temperature, the sea surface height anomaly (which quantifies sea level rise) and the total
cloud cover (which is critical for storm development). The evaluation has mostly focused on two
major ocean basins (Pacific and Atlantic), where important modes of variability like the El Niño-
Southern Oscillation and the Atlantic Multidecadal Variability take place, and also on the Equatorial
stratosphere, where the Quasi-Biennial Oscillation, a highly predictable mode, occurs. Concerning
the results, we have shown high prediction skill for all variables in the first forecast year. In the
following years, we note a general reduction of the predictive skill, particularly in the southeastern
Tropical Pacific, which might point to deficiencies in the model to simulate ENSO periodicity and/or
regionality. Furthermore, a general lack of skill in the North Atlantic, may imply that the Atlantic
Multidecadal Variability, at least in EC-Earth, is not a source of sea level predictability. Regarding
the QBO, results have shown a high prediction skill, especially in the first 29 months. However, the
QBO cycle periodicity is not well represented by EC-Earth, which degrades the credibility of the
predictions in the subsequent forecast years.

I. INTRODUCTION

The Fifth Assessment Report of the Intergovernmen-
tal Panel on Climate Change (IPCC) clearly states that
“The warming of the climate system is undeniable, each
of the last three decades has been successively warmer
than any previous one since 1850” (IPCC 2014). This
global warming is one of the most clear expressions of cli-
mate change, but not the only one. Important changes
have been observed in several climate subsystems: the
atmosphere, the hydrosphere, the cryosphere, and the
biosphere.

While both the atmosphere and the ocean have been
warming, following the continuous increase in CO2 con-
centrations in the atmosphere, other important impacts
have also been documented (Stocker et al. 2013). For ex-
ample, the rate of ocean sea-level rise since 1850 has been
greater than for the past two millennia, putting coastal
regions at risk. Regarding the cryosphere, during the
last two decades Greenland, Antarctica and the conti-
nental glaciers have shown a significant reduction of ice
mass, which could partly explain the observed sea level
rise (IPCC 2014).

Therefore, in this context in which the climate sys-
tem is changing, it is crucial to anticipate these vari-
ations that can potentially have unprecedented conse-
quences in the environmental system and also in many
socio-economic sectors (Yeager et al. 2018). Hence the
importance of performing and evaluating decadal predic-
tions, which can provide critical climatic information up
to 10 years ahead. These are performed with numerical
global climate models, very similar to those used to per-

form the weather forecasts, but cover radically different
timescales (Meehl et al. 2021).

In the weather forecasts, it is particularly important
to constrain well the present state of the Earth system
from observations, because an imprecise definition (or
error) of the observed initial state can lead to hugely dif-
ferent results due to the Lorentz butterfly effect. This
“initial value problem” is central to weather prediction,
as the growth of these initial errors is what limits the
accuracy of the forecasts to only a few days. Interest-
ingly, components of the climate system, like the ocean
and cryosphere, present slowly-varying processes that can
provide predictive capacity at the climate timescales (sea-
sons, years and decades). Initializing accurately the ob-
served state of those components is thus very important
for climate prediction, in particular for the first fore-
casts months and years. Another source of predictive
skill, which is more important at longer timescales (sev-
eral years to decades), derives from the radiative changes
caused by variations in external forcings, such as solar ir-
radiance or the concentrations of greenhouse gases and
aerosols, which control the amount of energy that enters
and remain in the climate system. This is thus a “forced
boundary condition problem”, and is very important to
make well-informed climate change projections for the
next future.

Having accurate decadal predictions thus relies on re-
solving well both the initial value and the forced bound-
ary condition problems. The latter is addressed by in-
cluding educated estimates of future changes in radi-
ating forcing and the former by ensuring that the low-
frequency internal variability modes of the climate are
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well initialised with observations, and realistically simu-
lated by the climate models (Meehl et al. 2014, 2021,
Yeager et al. 2018).

This work will assess the skill in a decadal prediction
system performed with the global climate model EC-
Earth, paying particular attention to the contributions
of internal climate variability to forecast skill.

II. BACKGROUND

This section provides (I) an overview of the main
modes of internal climate variability that operate at in-
terannual to decadal timescales and can thus provide pre-
dictive skill, and (II) the list of variables whose skill will
be assessed, and an explanation of their relevance.

A. Internal climate variability modes

We focus on the two major ocean basins (Pacific and
Atlantic) and a purely stratospheric mode with impor-
tant worldwide impacts.

Pacific Ocean: In this region, El Niño-Southern Os-
cillation (ENSO) is a climate pattern that repeats ev-
ery few years, with teleconnections and repercussions all
across the globe. The chain of events behind the ENSO
phenomenon is explained in the following. In the Tropi-
cal Pacific, trade winds (i.e. easterlies) prevail, pushing
the generally warm ocean surface masses to the west. At
the eastern side, the wind causes ocean upwelling of rel-
atively cold water masses from the deeper ocean, which
increases the supply of nutrients into the surface, with
positive effects for the fishing sector in the area. The
relatively warmer waters in the western Tropical Pacific
lead to increased evaporation and atmospheric convec-
tion, creating a zone of low pressure, which contrasts
with the conditions in the cold eastern Tropical Pacific,
where a semi-permanent subtropical anticyclone is estab-
lished (i.e. the South Pacific High). In a given year, this
dipole of high and low pressures between the eastern and
western Tropical Pacific can be strengthened or weakened
with respect to the climatological state, giving rise to the
two opposite phases of ENSO: El Niño and La Niña (En-
field et al. 2001, Luo et al. 2008, Zhang and Zhao 2015).

El Niño, the warm phase, is characterised by warmer
than average surface waters in the equatorial eastern Pa-
cific, caused by a weakening of the trade winds along
the equator. This phase has negative effects on fisheries,
agriculture, and the local climate (Enfield et al. 2001).

La Niña, the cold phase, consists of the opposite phe-
nomenon, i.e. the presence of colder than average SST in
the equatorial eastern Pacific, caused by an intensifica-
tion of the trade winds. In this phase, the upwelling on
the eastern side is intensified, bringing more nutrients to
the surface and creating good conditions for fishing.

ENSO oscillates irregularly between its two phases
with a periodicity between 2-7 years (Zhang and Zhao
2015). These changes can be predicted from months to

even years in advance (Luo et al. 2008). ENSO can also
present decadal modulations, typically referred to as the
Pacific Decadal Oscillation (PDO), which has a very ac-
tive center of action in the subpolar North Pacific.

Atlantic Ocean: The major mode of internal vari-
ability in this ocean is the Atlantic Multidecadal Vari-
ability (AMV), which is characterised by a persistent
and coherent pattern of SST anomalies (either positive or
negative) occupying the whole North Atlantic basin (En-
field et al. 2001). As a consequence of this phenomenon,
the North Atlantic SST experiences prolonged periods of
warm and cool conditions, referred to as ’positive’ and
’negative’ AMV phases.

During a positive AMV phase, the warmer waters have
more available energy for developing storm systems, re-
sulting in an increase in the frequency of hurricane activ-
ity. Other reported impacts for this phase are increased
summer rainfall in Northern Europe, heavier rainfall in
the African Sahel region, droughts in northeastern Brazil,
drier conditions in North America, reduced sea ice in the
Arctic and stronger summer monsoon in India (McCarthy
et al. 2015, Sutton et al. 2018). Negative AMV phases
are associated with the opposite impacts.

The processes controling the AMV are still under
debate, although it is generally assumed that its low-
frequency variations arise from changes in the strength of
the Atlantic Meridional Overturning Circulation (Knight
et al. 2005), ultimately driven by deep water formation
processes in the Labrador and Greenland Seas. Thanks
to the decadal nature of the AMV fluctuations, the North
Atlantic is a region of a high predictive skill at decadal
timescales (Collins et al. 2006).

The Quasi-Biennial Oscillation (QBO): The
QBO is a periodical fluctuation of the zonal wind direc-
tion in the equatorial stratosphere. Strong winds over the
equator change regularly their direction every 14 months,
leading to an alternation of easterly and westerly winds.
Therefore, every 28 months there is a complete cycle.
The driving forces of the QBO are the atmospheric waves
that rise from the troposphere, produced by the intense
convection of tropical systems. These waves propagate
and disturb the stratosphere, providing a force to move
the wind that will be descending over time (Baldwin et al.
2001, Palmeiro et al. 2020).

Studying and understanding the QBO is essential, as
it has effects on both the subtropical jet and the polar
jet. The speed of the jet winds is intensified or attenu-
ated depending on the direction of the QBO. It should
be emphasised that the polar jet, the subtropical jet and
the Intertropical Convergence Zone (ITCZ) are the plane-
tary weather drivers, with repercussions across the globe.
In general, when the QBO is easterly, the jet streams
weaken, and there’s more chance of a sudden strato-
spheric warming event and colder winters in Northern
Europe. On the other hand, when the QBO is westerly,
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the jets intensifies, with moderated winter conditions, al-
though with more winter storms and heavy rainfall (Bald-
win et al. 2001). Due to its strong regularity and its in-
fluence on the Norther Hemisphere mid-latitude jet and
the Arctic polar vortex, the QBO is a phenomenom of
particular interest for climate prediction.

B. Choice of variables for the skill assessment

The typical protocol to assess the predictive skill of a
given decadal prediction system is to perform a set of
retrospective predictions, so that it can be contrasted
against the observed variability to determine where and
for which variables the predictions are useful. The choice
of variables assessed is important, and priority is usually
given to those that have been observed for a long period
and with a good spatial distribution. Satellite data is par-
ticularly useful to this end, given the continuous global
coverage they provide. We will focus on three variables
for which at least three decades of satellite observations
are available, and that are known to be sensitive to in-
ternal climate variability. Since the QBO is not directly
observed, we will evaluate the ability of our system to
predict its against a selection of atmospheric reanalyses.

Sea Surface Temperature (SST): SST is defined
at the interface between the ocean and the overlying at-
mosphere, and it is thus able to capture the interactions
between both realms. It has always been a variable of
interest for the scientific community, as “it controls the
heat, momentum, salt and gas fluxes between the ocean
and the atmosphere” (Emery 2015).

The SST is the easiest oceanographic variable to ob-
serve and measure. Over the last 150 years, it has been
measured by ships and by both moored and drifting
buoys. In recent decades there has been an important
change in the methods for measuring the SST, as satel-
lites are now also being used to that end. This has rev-
olutionized its spatial resolution as well as coverage, al-
lowing to systematically measure over regions of difficult
access, like the poles (Emery 2015, Matthews 2013).

Sea Surface Height Anomaly (SSHA): Sea level
rise, typically measured as a sea surface height anomaly
with respect to a given temporal period, is one of the
most direct and serious impacts of climate change. Con-
temporary sea level rise results principally from (I) the
thermal expansion of the ocean as it stores the excess of
energy entering the Earth system and (II) the transfer
of freshwater from land into the ocean, particularly from
glacier and ice-sheet melting (Stocker et al. 2013).

Regional changes in sea level follow local changes in
ocean density which can obey to changes in temperature
and salinity (referred to as thermosteric and halosteric
sea level change, respectively) and are controlled by
changes in the heat, freshwater and wind-stress surface
fluxes, resulting in changes in density and ocean circula-
tion (Gregory et al. 2019). Water and ice redistribution
between the land and ocean may also affect the regional

sea level by changing the Earth’s gravitational field and
rotation (Stocker et al. 2013). Changes in atmospheric
pressure also affect regional sea level through the inverse
barometer effect.

Sea-level rise is expected to have massive worldwide
impacts. Associated impacts include contamination of
drinking water due to saline intrusion, an increase in the
power of storms and coastal recession due to marine ero-
sion, enhancing the risk of flooding (Bosello et al. 2007)

Total Cloud Cover (TCC): Cloud cover is an es-
sential component of the Earth system due to its role
in climate regulation. Its ability to affect radiative forc-
ing (short and long waves) makes it a key contributor to
climate feedback mechanisms (Costa-Surós et al. 2013,
Ramanathan et al. 1989). However, determining how
clouds contribute to climate change is difficult, due to
the complexity of the processes involved, the big quantity
of information needed, the spatial distribution and the
uncertainty associated with the available data (Costa-
Surós et al. 2013, Solomon et al. 2007). Furthermore,
not all clouds have the same effect on radiation. Clouds
come in a variety of dimensions, opacities, and proper-
ties, which have a very different effect on solar short-
wave and longwave radiation (Tapakis and Charalam-
bides 2013). Clouds reflect part of the sun’s radiation
back into space, a process that tends to cool the cli-
mate, but they also absorb and emit infrared radiation
towards the earth’s surface (greenhouse effect), a process
that tends to warm it. Satellite data suggest that in gen-
eral cloud cover represents a cooling effect on our planet.
This means that without cloud cover, our atmosphere
would be warmer(Ahrens 2009).

Currently, we are facing a global warming mainly
caused by anthropogenic greenhouse gases. As the atmo-
sphere is warming, it is expected that more water vapour
will be added to the air and total cloudiness could in-
crease as well (Costa-Surós et al. 2013, Enriquez-Alonso
et al. 2017). Given the important role of TCC both on
the global and local climate, and its close link to SSTs
(i.e. warm waters promote evaporation and cloud forma-
tion), we will evaluate the ability of our model to predict
its changes.

III. DATA & METHODOLOGY

A. Observational Data

In this study, several reanalyses and observational data
from different sources have been used, to evaluate the
consistency across the products before the prediction skill
of the model is evaluated.

Gridded observational data has been used for analysing
SST, SSHA and TCC (see Table 1 for further details).
Specifically, for SST, the L4 product of ESA (Merchant
and Embury 2020), HadISSTv1.1 (Rayner et al. 2003)
and ERSST (Huang et al. 2017) were used. C3S vDT2018
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(Taburet et al. 2019), and CMEMS L4 were used for
SSHA. Finally, EUMETSAT CLARA-A2.1 (Karlsson
et al. 2017) and ESA AVHRR-PM v3.0 (Stengel et al.
2020) were used for the evaluation of TCC. The QBO was
analysed using zonal wind data between 10-200hPa from
the ERA5 (Hersbach et al. 2020), ERAinterim (Dee et al.
2011) and JRA-55 (Kobayashi et al. 2015) atmospheric
reanalyses. For all variables and reanalyses a merged
product, computed as the average across datasets on each
time step over their overlap period, has been produced
to isolate the common variability. Prior to this, all prod-
ucts were interpolated into a regular 1°x1° grid. Forecasts
were evaluated against the merged products.

B. Model Data & experiments

In this study we have analysed the retrospective
decadal predictions performed within the Coupled Model
Intercomparison Project Phase 6 (CMIP6) with the
global Atmosphere-Ocean General Circulation Model
(AOGCM) EC-Earth3, which has a nominal resolution
both in the ocean and the atmosphere of 1°. Further
information about the climate model used and its com-
ponents can be found in Bilbao et al. (2021).

CMIP6 is coordinated by WCRP’s Working Group on
Coupled Modelling (WGCM). The CMIP6 supports 23
Model Intercomparison Projects (MIPs), that have com-
mon protocols and standards, including the use of fair
data and free access. The retrospective decadal predic-
tions herein analysed follow the experimental protocol
recommended in the Decadal Climate Prediction Project
(DCPP; Boer et al. 2016), that is one of the MIPs afore-
mentioned. DCPP focuses its research on the ability to
predict climate variations with forecast times of up to
one decade ahead. In order to achieve skilful forecasts at
these timescales, DCPP includes idealised predictability
studies and retrospective forecasts using climate models
and statistical methods.

The decadal predictions with EC-Earth include yearly
start dates for the period 1960-2020, each producing 10-
member predictions for the next 10 years after initializa-
tion.

C. Methodology

An important issue in climate prediction is the fore-
cast drift, which stems from the fact that models are
initialised from an observed state that is not necessar-
ily compatible with the model preferred state, which is
generally biased. As the predictions progress, they thus
drift towards the preferred model state. In order to avoid
forecast errors associated to this drift, it is very impor-
tant to correct its effects. This can be partly accom-
plished by evaluating the predictions against observations
in anomaly space (e.g. Bilbao et al. 2021, Meehl et al.
2014). For this so-called ”mean drift correction” method
to be effected, the model anomalies need to be computed
with respect to a forecast time dependent climatology.

The skill of the predictions has been evaluated with
Anomaly Correlation Coefficients (ACCs), that is just
a linear correlation between the observed and predicted
anomalies after the mean drift correction (see Appendix
for its actual definition).

Table I. Observation-based products used in the study

Variable Products Time Coverage Resolution

ESA L4 01-1982/12-2020 0.05°x0.05°
SST (°C) HadISSTv1.1 01-1870/12-2020 1°x1°

ERSSTv5 01-1854/12-2020 2°x2°
Merged product 01-1982/12-2020 1°x 1°
C3S vDT2018 01-1993/10-2019 0.25°x0.25°

SSHA (m) CMEMS L4 01-1993/02-2020 0.25°x0.25°
Merged product 01-1993/12-2018 1°x1°
EUMETSAT CLARA-A2.1 01-1982/05-2019 0.25°x0.25°

TCC (%) ESA AVHRR-PM v3.0 01-1982/12-2016 0.5°x0.5°
Merged product 01-1982/12-2016 1°x1°
ERA5 01-1979/12-2020 0.25°x0.25°

Ua (m/s) ERA-Interim 01-1979/08-2019 0.25°x0.25°
JRA 01-1958/12-2020 1.25°x1.25°
Merged product 01-1979/08-2019 1°x1°

IV. RESULTS & DISCUSSION

A. Consistency across observations

For increasing the confidence in the skill assessment,
it is important to make a first assessment of the con-
sistency (or degree of agreement) between the different
observational products. The temporal consistency across
the products has been measured with temporal corre-
lations between each pair of datasets. Also, to have a
more reliable observational reference, we have computed
for each time step the average between the different prod-
ucts available, so that observational errors in each dataset
can, at least partly, cancel with each other. The long-
term mean of each merged observational dataset and its
inter-annual standard deviation are shown in Figures 1
and 2 for illustrative purposes.

Sea Surface Temperature: The climatology of
SSTs (see Fig. 1) shows the typical pattern of maximum
temperatures (∼ 30°C) at the equator and in tropical
areas (where the absortion of solar radiation is also max-
imum), and minimum temperatures (∼0°C) close to the
poles. The regions showing largest interannual variability
in SST, as indicated by their high standard deviation, are
the Equatorial Pacific Ocean, where ENSO takes place,
as well as the Labrador Sea and Gulf Stream region in
the North Atlantic. Large standard deviations are also
seen in the Northern Pacific ocean, both in the region of
the Kuroshio current and the West Coast of the United
States. These regions of high variability are the ones
in which having high predictive skill is potentially more
important.
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Figure 1. Temporal climatology (shaded contours) and Stan-
dard Deviation (black contours) of the merged observational
datasets (see Table 1) of a) SST (period 1982-2020), b) SSHA
(period 1993-2019) and c) TCC (period 1982-2016).

In general, the correlations between the different prod-
ucts (ESA, ERSST, HadISST) are very high (above 0.7).
The minimum correlation value between any given pair of
products is shown in Fig. 2. Interestingly, all the regions
that exhibited high standard deviation values also show
high correlation values across products (above 0.9), ex-
cept for the Gulf Stream region. The Southern Ocean is
the region of poorest agreement across datasets, which is
a consequence of the reduced availability of observations

in the region, which increases the uncertainty.

In order to provide a temporal illustration of the level
of agreement between the different products, we have
analysed the temporal evolution (see Figure 3) of two
main regions: the North Atlantic Ocean (10-60°N and
80-15°W) and the Tropical Pacific (10°S-20°N and 180-
100°W). These two regions were chosen for their im-
portance in climate variability and prediction and their
global teleconnections, mainly mediated via ENSO and
the AMV.

We can see that while a clear warming trend is seen
in the North Atlantic (Fig. 4a), supported by the three
products, the Tropical Pacific remains rather flat and
exhibit pronounced interannual variability (Fig. 4b), re-
lated to the phenomenon of El Niño and La Niña. For
this later region it can also be seen that there is a strong
agreement among the products for the whole time period.
In the North Atlantic, there is also a strong agreement
across products in terms of the variability, but seem to
exhibit systematic differences in the mean state. This is
perhaps caused by the fact that the products originally
have different resolutions and have been interpolated into
a common grid.

Sea Surface Height Anomaly: The SSHA clima-
tology of the merged product (see Fig. 1), shows a global
sea-level rise of about 0.03 -0.04 m between 1993-2019 (we
note that the anomaly is computed with respect to the
reference period 1993-2012). The areas with the high-
est positive SSHA are the Caribbean Sea, the Arctic
and Antarctic Seas, the Kuroshio region, and the Sub-
polar Southern Hemisphere (i.e. between 30°-60°S). We
highlight also some areas showing a negative SSHA (in-
dicative of a mean sea level reduction during 2013-2019)
which include northeast Siberia, and a small part of the
Weddell Sea, both of which might be due to local sea
ice growth. The highest standard deviation values are
achieved in the regions of the western boundary currents,
both in the Northern and Southern Hemisphere. This in-
cludes the Gulf Stream and Kuroshio, Agulhas and East
Australia Currents.

We highlight that the two products considered also
show very strong correlations of more than 99(%) ev-
erywhere excepts in the regions of sea ice (Fig. 2). This
might be due to the fact that both products derive from
the same raw satellite information, and only differ in the
calibration algorithm (Cazenave et al. 2019), which im-
plies that they might be subject to similar observational
uncertainties.

The SSHA from 1993 to 2018 shows an increase in
both the North Atlantic Ocean and the Tropical Pacific
regions (Figure 3). On the one hand, the North Atlantic
Ocean shows a steady increase, with small year to year
variations. This trend seems to have intensified in the
last 8 years (2010-2018). On the other hand, the Tropical
Pacific also shows a long-term SSHA rise, but in this case
modulated by important year-to-year variations related
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to ENSO (e.g. associated with the strong 1998 el Niño
and 1999 la Niña events. The two products show very
similar trends and variability in both regions.

Total Cloud Cover: cloudiness is a variable with
large regional and temporal variability, as it is can in-
fluenced by several factors, as SSTs, the general atmo-
spheric circulation, orography, frontal masses, and con-
vention. The climatology of the merged product of TCC
(Fig. 1) shows maximum values in the Intertropical Con-
vergence Zone (ITCZ), and in the subpolar latitudes of
both hemispheres, in particular over the ocean. In con-
trast, the minimum values take place in the subtropical
latitudes over continental areas, especially where large
deserts such as the Sahara, the Kalahari Desert and the
Australian deserts are located. There is also a cloud cover
minimum over Antarctica and North of Greenland.

TCC is very heterogeneous, as the standard deviation
across the world map ranges from 0-14, with minimum
standard deviations in Antarctica and maximum values
in the central ENSO zone. Large correlations (typical
of 0.7 or higher) and therefore strong agreement in the
variability of the two observational products are found
everywhere, in particular over the ocean regions (Fig.
2).

As far as cloudiness is concerned, no clear trend is seen
in the period studied in any of the regions, the North At-
lantic Ocean or Tropical Pacific, due to its high variabil-
ity (Figure 3). Both regions, and the Tropical Pacific in
particular, show important year-to-year oscillations, with
some notable differences between the two observational
products, higher than for the two previous variables.

Quasi-Biennial Oscillation: An altitude-time
cross-section of the zonally-averaged zonal wind at the
Equator shows 17 westerly and easterly phases of the
QBO between 1979-2019 (Fig. 4).

It should be noted that the standard deviation between
the products (which measures their degree of disagree-
ment) is greater in the 10-20 hPa levels, and especially
in the early years. This is expected as the accuracy of
observational data, including from satellites, assimilated
by the reanalyses have been improving over time.

The QBO index is typically computed as the zonally-
averaged zonal wind at the Equator and 50 hPa. Fig-
ure 4b shows its evolution for the individual and the
merged reanalyses. They all show a large degree of agree-
ment, both in terms of the intensity and duration of the
easterly/westerly phases, although JRA-55 generally pro-
duces slightly higher values, while ERAinterim slightly
lower ones. No clear trend can be seen for the QBO.

B. Predictive skill assessment

This subsection evaluates the skill of the decadal pre-
dictions for the three chosen variables against the respec-
tive merged products. Different forecast times have been
considered: the first forecast year, the average of the

Figure 2. Temporal correlation across the observational prod-
ucts of (a) SST, (b) SSHA and (c) TCC. For every grid-point
the minimum correlation value between products is shown.

first 5 forecast years, and the average of the last 5 fore-
cast years (Fig. 6). We have also computed the skill for
the QBO index, in this case as a function of the forecast
month (Fig. 6).

Sea Surface Temperature: Overall, from all of
the three variables that have been evaluated, SST has
the highest forecast skill. This is somewhat expected, as
SST is a variable that is directly assimilated when pro-
ducing the initial conditions from which the predictions
are started. None of the other 2 variables is directly as-
similated. During the first year of the prediction, there
are large and significant ACC values in almost all oceans
basins. We remind that this skill comes from internal
variability, through initialization, but also from the repre-
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Figure 3. Regional averages of SST, SSHA and TCC in the
North Atlantic and Tropical Pacific for the individual and
merged observational datasets.

sentation of the externally forced trends. When taking an
average of the first 5 forecast years, ACC values remain
significant in most ocean regions, except in the Central
region of the North Atlantic Subpolar Gyre, the Southern
Ocean all along the Antarctic Circumpolar Current, and
the southeastern Tropical Pacific. ACC values are higher
than for forecast year 1, but this simply reflects the fact
that in this case skill is computed for 5-year averaged
timeseries, which screens out the interannual variability.
Regarding the forecast skill for the average of the 6th
to 10th forecast years, ACC values are practically the
same as for the first 5, although some significant skill is
lost in the central and eastern Tropical Pacific. The fact
that this region only exhibits significant skill in the first
forecast year suggest that the benefits of initializing the
correct ENSO phase are lost quickly, pointing to deficien-
cies in the model when simulating ENSO periodicity.

Sea Surface Height Anomaly: As previously men-
tioned, changes in sea level are driven by different pro-
cesses, like the thermosteric and halosteric changes in sea
water density, and changes in the ocean circulation and
atmospheric pressure. However, AOGCMs like EC-Earth
can simulate some but not all of these contributions. The
governing physical equations included in EC-Earth ex-
plicitly resolve the changes in surface wind stress and
the heat and freshwater surface fluxes, as well as their
influence on the density fields and the ocean circulation.
These are the main causes of regional sea level. EC-
Earth, however, does not include glacier and ice-sheet
models and cannot therefore simulate the role of glacier

Figure 4. a) Monthly evolution of the zonally averaged zonal
wind at the Equator as a function of altitude in the merged
reanalysis dataset combining ERA5, ERAinterim and JRA-
55 during the period 1979-2019 (shading). Black contours
represent the standard deviation across the reanalyses. (b)
Monthly evolution of the zonally averaged zonal wind at the
Equator and at 50 hPa in the merged and individual reanal-
yses.

and ice-sheet melting on sea level change, which is espe-
cially relevant to predict SSHA in the polar regions. The
predictive skill over these regions is therefore expected
to be poor. Because, in a global sense, sea level changes
are primarily controlled by variations in the external ra-
diative forcing and by the meltwater fluxes (which are
misrepresented in the model) we have decided to remove
the global average of SSHA both from the model and the
observations, to thus focus on the regional variations with
respect to the ocean geoid, variations that are expected
to be mostly controled by internal variability processes.

ACC values for SSHA in the first year of prediction
are large and significant, especially in the Pacific Ocean
and the Indian Ocean, where ENSO-driven changes in
the winds, precipitation and the atmospheric circulation
provide high levels of predictability. Large significant
ACC values are also seen in the Eurasian and Alaskan
sectors of the Arctic and in some areas of the Southern
Ocean. The Atlantic has comparatively lower levels of
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Figure 5. Forecast skill maps (as characterised by the anomaly correlation coefficient) for the first year of prediction, the
average between the first and fifth years of prediction and the average between the sixth and the tenth years of prediction, for
the variables: (a-c) SST; (d-f) SSHA, and (g-h) TCC. Statistically significant values at the 95% confidence level are indicated
with dots.

skill, with larger values confined to the Labrador region
and the western side of the basin. During the first 5 fore-
cast years, there is a significant reduction in forecast skill,
especially in the Pacific Ocean and in the Indian Ocean,
which could be related with the previously noticed prob-
lems in predicting ENSO. High levels of skill are still seen
in the Arctic and the Southern Ocean. From the 6th to
the 10th forecast year, most of the skill in SSHA is lost.
Only some isolated areas maintain significant ACC val-
ues in the Labrador Sea, the South Atlantic Ocean, and
the southeast Pacific Ocean. The general lack of skill in
the North Atlantic suggests that the AMV, at least in
EC-Earth, is not a source of sea level predictability.

Total Cloud Cover: TCC is a key variable for cli-
mate modeling and prediction due to its effect on the
radiative forcing. However, models tend to differ in the
representation of its related feedbacks and climate im-
pacts, which has promoted the implementation of a ded-
icated MIP, the Cloud Feedback Model Intercomparison

Project (CFMIP;Webb et al. (2017)) to bring light on
their final contribution to climate change and variabil-
ity (and thus by extension to climate predictability). In
the following we evaluate the skill to predict it for the
decadal predictions with EC-Earth.

The first forecast year presents significant ACC values
in the ENSO region and some of its areas of influence, like
the South American continent and Indonesia, and also in
the North Atlantic, from which skill expands into the
mediterranean region. From the 1st to the 5th forecast
year, high levels of predictability are maintained over the
previous regions, and in particular in the Tropical Pacific,
the Amazon basin, the Subpolar North Atlantic and the
Tasman Sea. The fact that both the Eastern Tropical
Pacific and its areas of influences have high significant
skill suggests that not all aspects of ENSO are misrep-
resented (and therefore badly predicted) by the model.
This could imply that some ENSO flavours (either the
central or eastern Niños and Niñas) might indeed be re-
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alistically simulated. From the 6th to the 10th forecast
year, there are still some areas with large significant cor-
relations, namely the Amazon basin and the Subpolar
North Atlantic, although other regions that previously
exhibit positive skill now show very poor correlation val-
ues, the most prominent case being Indonesia.

Quasi-Biennial Oscillation: During the first fore-
cast months, the predictive skill of the QBO is very high
(close to 1 ACC), and shows a progressive linear skill de-
crease during the first 6 years, remaining significant at
the 95% confidence level during the first 3. After the
sixth forecast year all information from initialization is
lost, the QBO predictive skill shows marked oscillations
from high to low correlation values. This is a result of
an underestimation of the periodicity of the QBO in EC-
Earth model with respect to observations. In the reanal-
ysis, we have seen that a complete cycle of QBO takes 28
months (about 14 months per phase), whereas in the cli-
mate model a full cycle lasts 24 months (not shown). As
in both cases, the QBO oscillations are very sharp, the
difference in periodicity introduces lags between them
that generates constructive or destructive interferences
when correlating them at different forecast times.

Figure 6. Anomaly Correlation Coefficient for the QBO in-
dex as a function of the forecast month. Statistically signifi-
cant values at the 95% confidence level are colored in green,
whereas non-significant in red.

The significant correlation values after the 6th year you
should be interpreted with caution, as they result from an
spurious constructive interference with no physical basis.

V. CONCLUSIONS

This study has aimed to produce a robust evaluation
of the model predictive skill (of the decadal hindcasts),
focused on climate variables with high societal relevance
for which several long observational products with good
spatial and temporal coverage are available to be used as
reference for validation. Those are sea surface tempera-
ture, sea level and the total cloud cover. The representa-
tion (and predictability) of the Quasi-biennial Oscillation
has also been assessed.

In a first step we have shown a generally high degree of
agreement between the different observational products
available for each variable. All the products have shown
an overall correlation of 0.7 (or higher) and very similar

temporal evolution across two regions of interest selected
for their contribution to interannual climate variability:
the North Atlantic Ocean and the Tropical Pacific.

From the three chosen variables we have identified the
regions that have better (and significant) predictive skills
as a function of forecast time. As it was expected, from
all the variables analysed, SST has the highest forecast
skill because it is directly assimilated when producing the
initial conditions from which the predictions are started.
During the first forecast year, there are large and signifi-
cant ACC values for SST in almost all oceans. However,
when taking an average of the first 5 forecast years, there
is a reduction of the predictive skill on the southeastern
Tropical Pacific. This reduction of the predictive skill
during the first forecast years has also been seen for the
SSHA, which suggests that the predictability related to
ENSO phase is lost very quickly after initialization, po-
tentially linked to deficiencies in the representation of
ENSO, e.g. its periodicity. Interestingly, for TCC the
Eastern Tropical Pacific and its neighboring areas of in-
fluence show high significant skill for all forecast years,
which could indicate that not all aspects of ENSO are
misrepresented by the model. The North Atlantic has
shown high level of skill for SST and TCC, but a general
lack of skill for SSH, may imply that the AMV, at least
in EC-Earth, is not a source of sea level predictability. It
might also be related to an initialization shock affecting
the Labrador Sea that has been reported in Bilbao et al.
(2021).Due to its strong periodicity, the QBO is highly
and significantly predictable in the EC-Earth forecasts in
the first three years after initialization, a very encourag-
ing result given the important driving role of the QBO on
the weather at planetary scales. However, we have also
seen that small differences in the simulated periodicity
with respect to observations eventually lead to a loss of
skill, and create an artificial pattern of alternating peri-
ods of high and low predictability.

Throughout this work, we have shown that despite the
fact that all the variables studied are influenced and in-
terconnected with each other, not all of them agree in
terms of predictive skill. Each of them provides vital
information to comprehend the characteristics of the at-
mosphere and the oceans, which is essential for climate
research. It is therefore very important to extend the
analysis to other variables, and also to prediction sys-
tems based on other climate models with different errors.
Identifying and understanding is indeed a very necessary
step to eventually correct them (Marvel et al. 2015).
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VI. APPENDIX

Anomaly Correlation (ACC) The Anomaly Correlation Coefficient (ACC) is used to measure the degree of agreement
for the same variables between the model’s forecast and the observations. It compares the anomalies (differences) of
forecasts and observations, with the corresponding climatological values (ci) at each gridpoint:

f ′
i = fi − ci (1)

o′i = oi − ci (2)

A standard definition of ACC is:

ACC =

∑M
i=1(f ′

i − f̄ ′)(o′i − ō′)√∑M

i=1(f ′
i − f̄ ′)2(o′i − ō′)2

(3)
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