

On the (technical) path to a high-resolution decadal prediction system with EC-Earth3

Aude Carreric, P. Ortega, F. Doblas-Reyes, V. Lapin, M. Castrillo, E. Ferrer, S. Palomas, P.A. Bretonnière, C. Delgado, ... (BSC)

BSC- Earth Sciences Department

Environmental modelling and forecasting, with a particular focus on weather, climate and air quality

Context

- Decadal prediction:

Growing interest for decision-making purposes (agriculture, energy, water management)

Signal to Noise Paradox (Scaife and Smith, 2018; Hardiman et al. 2022)

High resolution: eddies permitting
 Representation of previously unresolved processes (education)

Representation of previously unresolved processes (e.g. ocean eddies) that are important for **ocean-atmosphere interactions**

→ Expectation to better reproduce both climate mean state and variability

Seasonal forecasts: Prodhomme et al., 2016; Scaife et al., 2019; Kumar et al., 2022

EC-Earth - European community Earth-System model

EC-Earth3 configuration	atmosphere	ocean	vegetation	atmospheric chemistry	marine biogeo- chemistry	land ice	CMIP6 MIP list in which the configuration participated
	IFS	NEMO	LPJ-GUESS	TM5	PISCES	PISM	
EC-Earth3	1	1					${\sf CMIP,DCPP,LS3MIP,PAMIP,RFMIP,ScenarioMIP,VolMIP,CORDEX,DynVarMIP,SIMIP,VIACSAB}$
EC-Earth3-LR	✓	1					CMIP,PMIP
EC-Earth3-Veg	✓	1	1				CDRMIP,CMIP,LUMIP,LS3MIP,ScenarioMIP
EC-Earth3- Veg-LR	~	1	1				CMIP,PMIP,ScenarioMIP
EC-Earth3- AerChem	1	1		,			AerChemMIP,CMIP,RFMIP
EC-Earth3-CC	✓	1	1	1	1		C4MIP,DCPP,CDRMIP,CMIP,LUMIP,OMIP,ScenarioMIP
EC-Earth3- GrisIS	·	1				1	CMIP,ISMIP6,PMIP
EC-Earth3-HR	1	1					CMIP,DCPP,HighResMIP

https://ec-earth.org/

Döscher et al. Geosci. Model Dev. (2022)

EC-Earth - European community Earth-System model

EC-Earth3.3 - AOGCM

EC-Earth3.3 - Resolutions

Model Components

Standard Resolution (SR)

IFS (Atmospheric Model):

T255 ~80km

L91 (top 0.01hPa) ~mesosphere IFS-HTESSEL (Land Model)

NEMO (Ocean Model):

Nominal 1°resolution

L75 levels (thousands km deep)

LIM (Sea-ice Model):
Multiple (5) ice category

High Resolution (HR)

T511 ~40km

Nominal 0.25° resolution

Courtesy of O. Tinto

ORCA grid 1°

ORCA grid 0.25°

Tuning of the HR configuration

Surface air temperature

Mixed layer depth

SST bias maps - tuned versions

OBS: Hadisst (1980-1999)

EXP: last 70 years

HR slightly colder than SR overall but with regional differences.

Initial conditions of the forecast systems

Atmospheric Reanalysis ERA5

Ocean Reconstruction

- ERA5 surface fluxes
- ORAS5 restoring at the surface
- EN4 nudging in the subsurface

Default surface restoring coefficients

 $\gamma_{\tau} = -200 \text{ W/m}^2/\text{K}$

 γ_s = -750 kg/m2/s/psu

3D restoring timescales

Some issues encountered

Impact of the snow conductivity value

1998

Low spread between members in SR

Seasonal forecast systems

Model	Forecast start-dates and length	Number of members	Atmospheric initialisation	Oceanic initialisation
EC-Earth3.3-SR EC-Earth3.3-HR	1990-2015 8 months	20	ERA5	in-house reconstructions ORCA1 ORCA25
CNRM-CM6.1 ~Sys7	1993-2014 6 months	30	ERA-interim	Glorys 2v4 Glorys 12v1

2 initialisations: May and November

Maps of bias: TAS - Init. in May, JJA mean

EC-Earth3.3

CNRM-CM6

Seasonal forecast system 20 members 23 startdates (1993-2014)

Reference: ERA5 - TAS

Maps of ACC: TAS - Init. in May, JJA mean

EC-Earth3.3

CNRM-CM6

Seasonal forecast system 20 members 23 startdates (1993-2014)

Reference: ERA5 - TAS

Anomaly Correlation Coefficients in Nino regions

Reference: TAS ERA5 JRA55

Maps of ACC: TAS - (Init. in May) August

EC-Earth3.3

CNRM-CM6

Seasonal forecast system 20 members 23 startdates (1993-2014)

Reference: ERA5 - TAS

Next steps

- retrieving CNRM data
- analysis in the tropics:
 - mixed layer depth, heat content, winds, etc
 - composites analysis
- Initialization in November
- Paper

 Monitoring the multi-year forecast system currently running

Reduced DCPP system

Normal

1960-2020 (every yr)

10 members

10 forecast yrs

TOTAL: 6100 yrs

Reduced

1960-2021 (every yr)

7 members

2 forecast yrs

TOTAL: 868 yrs

Hindcasts running

CPU hours

	CHSY for SR exp.	CHSY for HR exp.	Used (HR)
Tuning (TTS)	830	16 700	16,7 Mh
Reconstructions*		-11 000	7,2 Mh
Seasonal forecast (ETS)*	600	15 300	15,9 Mh
Multi-year forecast	600	15 300	13,3 Mh

Tuning parameters

nn etau: penetration

of tke below the mixed

layer due to internal &

rn lc: coef. associated

conductivity of snow

rn alb smlt: melting

rn alb sdry: dry snow

diffusion parameter

Centro Nacional de Supercomputación

to Langmuir cells

rn cdsn: thermal

snow albedo

rn aht 0: horiz.

Barcelona Supercomputing

albedo

inertial waves

Parameters:

todt

todz

t0e0

a2s9

a2y6

a2yd

a2ye

a3dv

a3fy

a334

SMHI's namelist

default

parameters

SMHI's namelist

default values

Atm Parameters

nn etau = 0, rn lc = rn cdsn=0.15, rn alb smlt=0.72, nn etau = 1, rn lc =

Ocean Parameters

nn_etau = 0, rn_lc =

nn_etau = 0, rn lc =

nn_etau = 0, rn_lc =

nn etau = 0, rn lc =

nn_etau = 2, rn lc =

nn_etau = 0, rn lc =

nn etau = 0, rn lc =

nn etau = 0, rn lc =

nn etau = 0, rn lc =

0.2

0.15

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.20

rn alb sdry=0.85 rn cdsn=0.15, rn alb smlt=0.72, rn alb sdry=0.85 rn_cdsn=0.25, rn_alb_smlt=0.72,

rn cdsn=0.15, rn alb smlt=0.76,

rn_cdsn=0.15, rn_alb_smlt=0.72,

rn cdsn=0.15, rn alb smlt=0.72,

rn_cdsn=0.27, rn alb smlt=0.72,

rn cdsn=0.15, rn alb smlt=0.72,

rn cdsn=0.20, rn alb smlt=0.72,

rn cdsn=0.20, rn alb smlt=0.72,

rn cdsn=0.27, rn alb smlt=0.75,

Sea Ice Parameters

rn alb sdry=0.85

rn alb sdry=0.85

rn alb sdry=0.88

rn alb sdry=0.85

rn alb sdrv=0.85

rn alb sdry=0.85

rn alb sdry=0.85

rn alb sdry=0.85

rn alb sdry=0.85

TDV scheme

Advection

TDV scheme

UBS scheme

TDV scheme

TDV scheme

TDV scheme

TDV scheme

TDV ZTS

scheme

scheme

TDV scheme rn aht 0 = 300 rn aht 0 = 300 TDV scheme TDV scheme

rn aht 0 = 300

Diffusion

Parameters

rn aht 0 = 300

rn aht 0 = 300

rn_aht_0 = 300

rn aht 0 = 300 rn_aht_0 = 1000

rn_aht_0 = 1000

rn aht 0 = 1000

rn aht 0 = 1000

Summary

We retained the parameters of the `a2ye` experiment as tuned parameters for the coupled HR model:

Atmospheric parameters

RPRCON	1.34E-3
RVICE	0.137
RLCRITSNOW	4.0E-5
RSNOWLIN2	0.035
ENTRORG	1.70E-4
DETRPEN	0.75E-4
ENTRDD	3.0E-4
RMFDEPS	0.3
RCLDIFF	3.E-6
RCLDIFFC	5.0
RLCRIT_UPHYS	0.875E-5

Oceanic and sea ice parameters

nn_etau	0
rn_lc	0.2
rn_cdsn	0.15
rn_alb_smlt	0.72
rn_alb_sdry	0.85
rn_aht_0	1000
advection scheme	TDV scheme

Forecast systems

Seasonal Hincasts

Hindcast period: 1990-2015

Ensemble: 20 members

Forecast range:

8 forecasted months

from May to December

from November to June

TOTAL: 694 yrs

Reduced DCPP system

Normal

1960-2020 (every yr)

10 members

10 forecast yrs

TOTAL: 6100 yrs

Reduced

1960-2021 (every yr)

7 members

2 forecast yrs

TOTAL: 868 yrs

Hindcasts running

