

BSC Barcelona Supercomputing Center Centro Nacional de Supercomputación

HPC adaptation and developments for EC-Earth4 at BSC

<u>Xavier Yepes-Arbós</u>, Mario Acosta, Marta Alerany, Marcel Cases, Maitane Fariñas, Kai Keller, Sergi Palomas, Roc Salvador, Oriol Tintó

25 March 2025

EC-Earth GA 2025, Stockholm, Sweden

HPC for Earth Sciences Team at BSC

- Knowledge about:
 - Mathematical and computational aspects of Earth system models (ESMs)
 - HPC adaptation and development
- Support on computational performance analysis and optimization
- Research on different HPC topics, including GPUs, reproducibility, RISC-V co-design, etc.

• New **CMIP Task team**: Collection CPMIPs and Carbon Footprint for CMIP7

Tier	Level	Description	Metrics	
01	Institution	Overall consumption and platform information	 Number of simulated years Core-hours consumed Data output Energy cost (Carbon footprint) HPC platform 	
02	Experiment	Metrics by experiment that require close to no effort to obtain	 Simulated years per day (SYPD) Actual SYPD Core-hours per simulated year (CHSY) Joules per simulated year Parallelisation Data Intensity Resolution 	
03	Experiment	Detailed metrics, not required but collected from institutions willing to collaborate (e.g. ENES)	 Data output cost Coupling Cost Memory Bloat Complexity 	

CPMIP

- Outcome \rightarrow Multi-model multi-platform performance study
 - Supervise & standardise the collection for CMIP7
 - Analyse & publish results (ESGF?)
 - **Improve performance** by identifying machine/model bottlenecks)
- EC-Earth4
 - Be ready for the collection
 - Automatisation is key (e.g. auto-ece4)
 - Collect during spin-up runs -> increased throughput production

PERFORMANCE METRICS

rallelizat	ion: 264 RSYPD: 1.56				
Metric	Value	Min	Мах	SD	MAD
PSY	140,176,222.22	44,887,700.00	270,110,950.00	89,349,513.24	80,734,485.19
YPD	0.99	0.49	3.53	1.18	1.06
SYPD	0.75	0.43	2.82	0.77	0.59
HSY	6,403.18	1,793.37	13,035.37	4,716.60	4,320.34

MAD: Mean Absolute Deviation Around the Mean.

a8o8_20191228_002_3_SIM

3

CONSIDERED JOBS # considered: 9 # not considered: 0 Chunk Job Name CHSY ASYPD JPSY Queue Run SYPD 1 a8o8_20191228_000_1_SIM 00:00:24 00:08:06 13,008.60 0.49 0.46 257,135,200 1 a8o8_20191228_001_1_SIM 00:00:24 00:08:07 13,035.37 0.49 0.46 256,587,700 00:00:43 117,402,250 1 a8o8_20191228_002_1_SIM 00:03:14 5,192.73 1.22 1.00 2 00:01:39 00:01:59 3,185.23 1.99 1.09 81,975,350 a8o8_20191228_000_2_SIM 2 00:01:39 00:02:57 4,737.70 1.34 0.86 123,026,900 a8o8_20191228_001_2_SIM 2 a8o8_20191228_002_2_SIM 00:01:17 00:07:51 12,607.10 0.50 0.43 270,110,950 3 a8o8_20191228_000_3_SIM 00:00:49 00:01:07 1,793.37 3.53 2.04 44,887,700 3 a8o8_20191228_001_3_SIM 00:04:26 00:01:24 2,248.40 2.82 0.68 58,710,250

00:00:16

Automatic report by Autosubmit

00:01:08

1,820,13

3.48

2.82

51,749,700

Energy

704,480

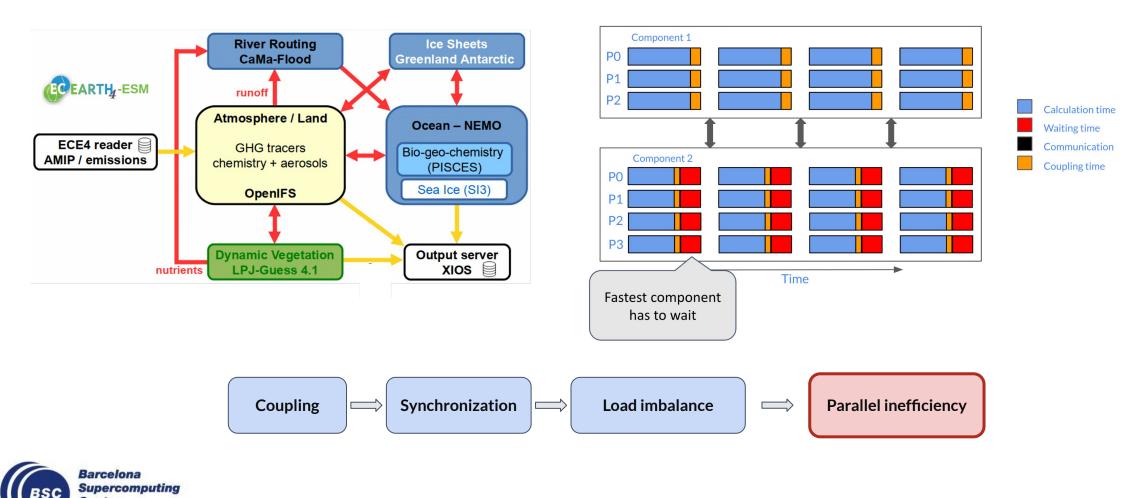
702,980

321,650

224,590

337,060

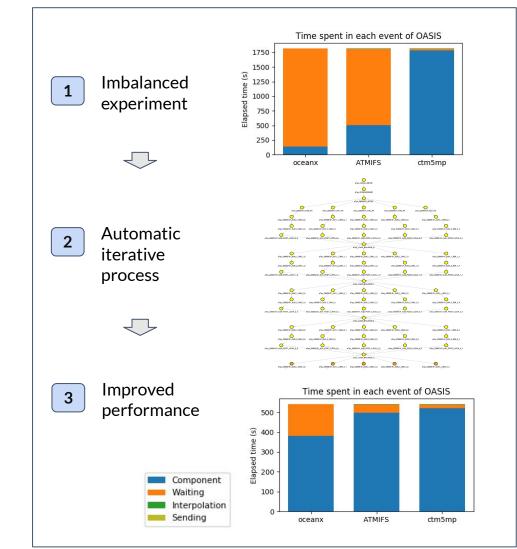
740,030


122,980

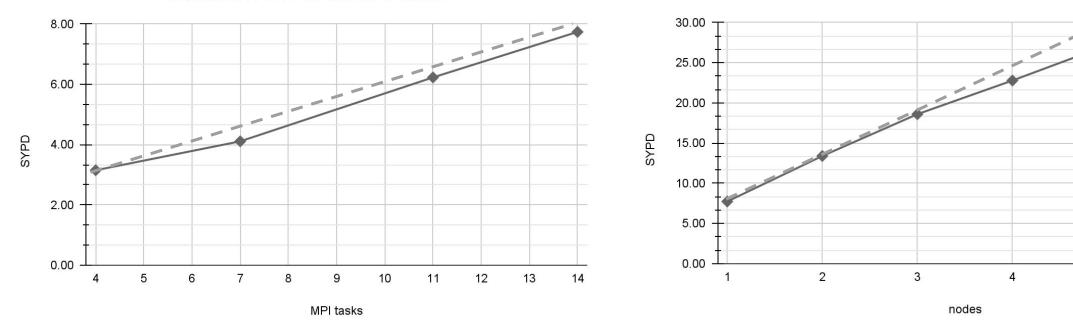
160,850

141,780

Load-balance for Coupled ESMs


Load-balance is one key limiting factors of coupled ESMs performance. Average CMIP6 12.8% (Acosta et. al. 2024)

Load-balance for Coupled ESMs


Auto Load-Balance Workflow

- A tool to automatically minimize the performance loss on the coupling for ESMs by:
 - Minimizing synchronization cost
 - Finding a good resource configuration for the components based on specified Energy-to-Solution / Time-to-Solution criteria
- Easy to adopt by the climate community \rightarrow integrated into climate workflows, directly compatible with OASIS Coupler
- Tested **portability** to HPC platforms (HPC2020, MeluXina, MareNostrum 4, MareNostrum 5)

Profiling and optimization

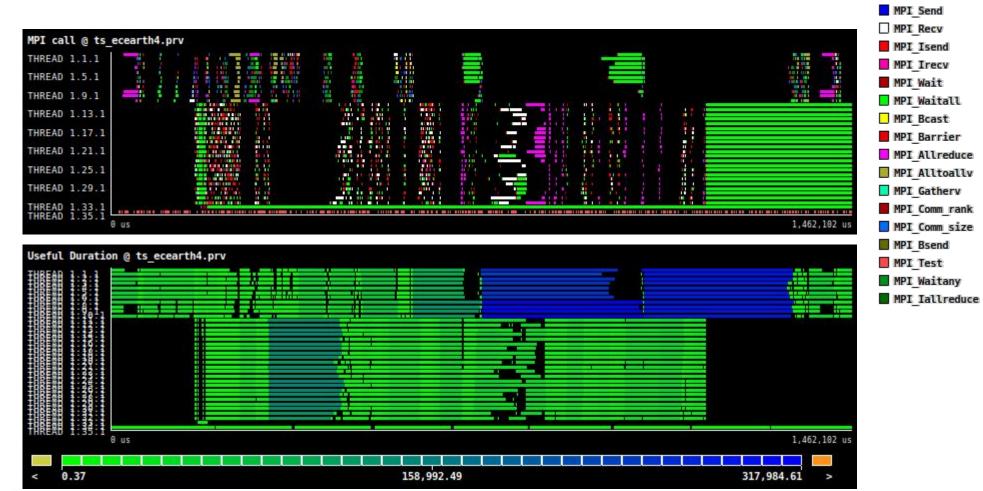
Preliminary scalability of EC-Earth4 - OpenIFS 48 on MareNostrum 5

TL255L91: SYPD vs. nodes

One month simulation of OpenIFS 48 (TL255L91)

14 MPI tasks per node, 8 OpenMP threads per task

One month simulation of OpenIFS 48 (TL255L91) In 1 node, 8 OpenMP threads per task


TL255L91: SYPD vs. MPI tasks

6

5

Profiling and optimization

Preliminary profiling of EC-Earth 4 on MN5 running TL255L91 and eORCA1.

Outside MPI

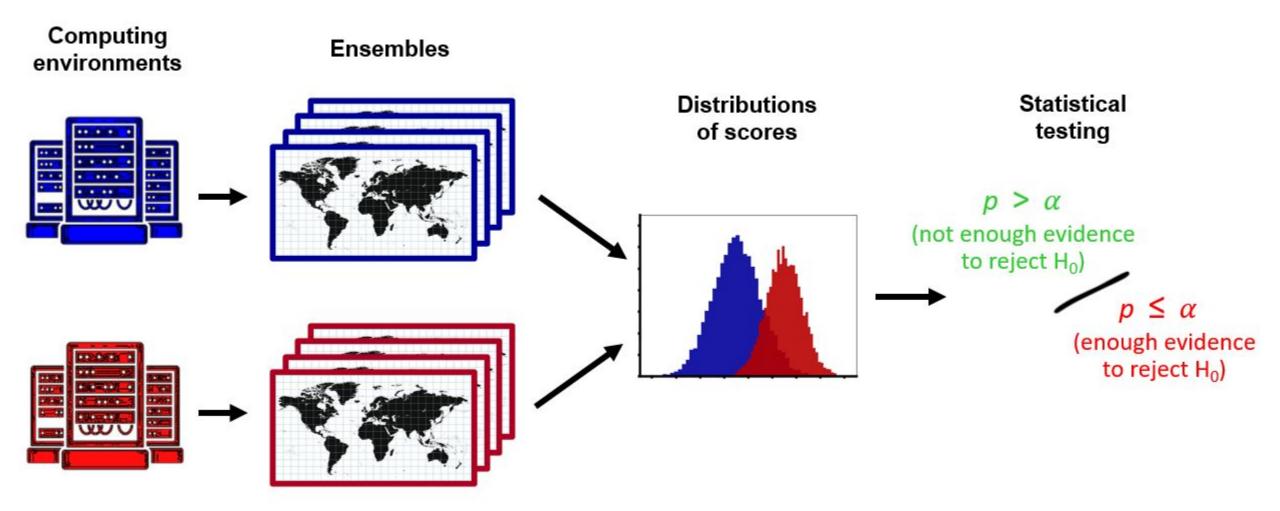
M7 mixed precision

Objective:

To determine which parts of the code can effectively use lower precision without compromising the quality of the results.

Followed steps and challenges:

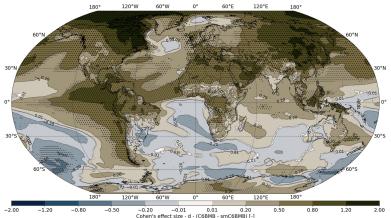
• OpenIFS - M7:

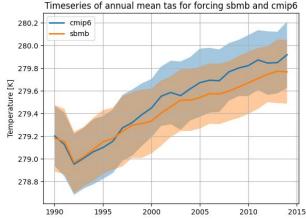

- <u>Compilation</u>: building the code inside a container and on MareNostrum5.
- <u>Running the tests</u>: gathering the necessary data for the tests and successfully running the tests in both environments.

• AutoRPE tool:

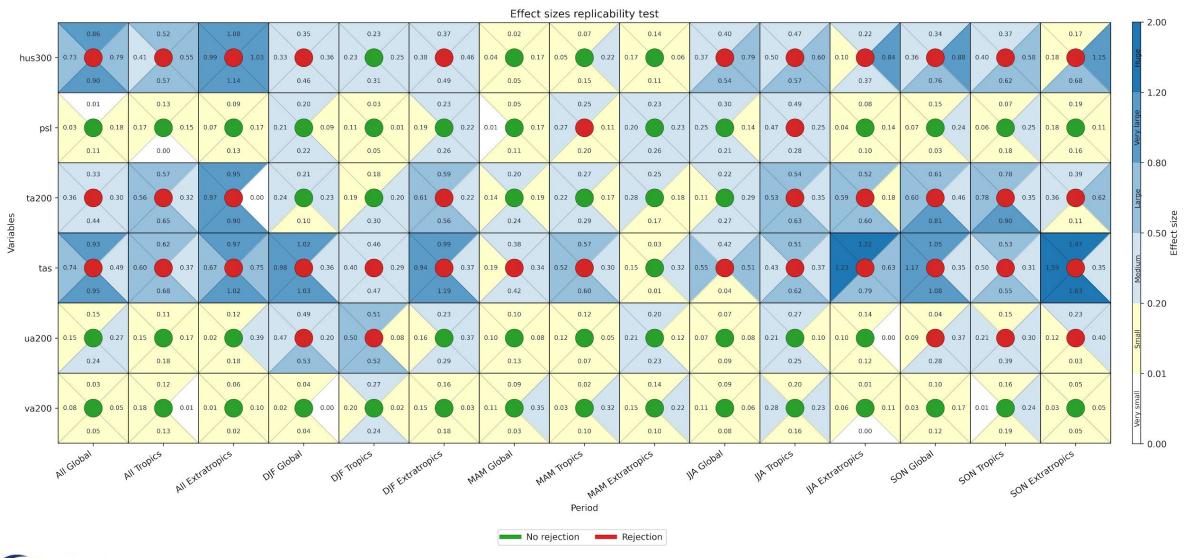
- <u>Preprocessed sources</u>: AutoRPE works on code that can be compiled.
 - ★ Different build-system makes harder to obtain the preprocessed files
- Adapting the tool to new code:
 - * Identify the files to be modified by the tool
 - * Adapt the tool to different Fortran coding styles

Climate Model Replicability


Climate Model Replicability


Improved methodology, based on Massonnet et al., 2022 (https://doi.org/10.5194/gmd-13-1165-2020)

Metrics	Tests	Reports
• RK08 score $e \mathbb{R} K08_m^X = \sqrt{\sum_{i=1}^N \widetilde{\omega}_i \cdot \exp\left[-\left(\frac{x_{mi} - \overline{y}_i}{\sigma_i^y}\right)^2\right]}.$	 T-test (Welsh's t-test) U-test (Mann–Whitney test) 	 Time series plots (ensemble mean and spread for both ensembles) Spatial differences plots Matrix plot (see next slide)
• Bias score $eBIAS_m^X = \sum_{i=1}^N \widetilde{\omega}_i \cdot e^{- bias_{mi}^X /\sigma_i^y}.$	Bootstrap testKolmogorov-Smirnov test	
• RMSE score $eRMSE_{m}^{X} = \sum_{i=1}^{N} \widetilde{\omega}_{i} \cdot e^{-crmse_{mi}^{X}/\sigma_{i}^{y}}$	60°N 60°E 120°E	Image: Non-Solution Timeseries of annual mean tas for forcing sbmb and cmip6 280.2 cmip6 280.0 sbmb


• combined score

$$ext{COMBINED} = rac{eRK08_m^X + eBIAS_m^X + eRMSE_m^X}{3}$$

Climate Model Replicability: Matrix Plot

Projects

Work and proposals for the EC-Earth community around different projects

- ESiWACE Center of Excellence
 - Developing new profiling analysis methodology that can be applied to EC-Earth looking for new optimizations
 - HPC services using tools to facilitate M7 reduced precision
 - CPMIP improvement for easier integration and collection
- Horizon 2025-D1-01 and CMIP7
 - Proposed a WP to collect CPMIP: EC-Earth will be one key model that we want to support
 - Re-do our reproducibility exercise for CMIP7, proving the replicability and stability for our configurations
 - Other tools or activities as profiling could be useful to be applied in this context, please ask us for collaboration!

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you

Generalitat de Catalunya Departament de Recerca i Universitats

Amb el suport del Departament de Recerca i Universitats de la Generalitat de Catalunya.

El grup "Computational Earth Science (CES)", Grup de Recerca de la Generalitat de Catalunya amb número d'expedient 2021 SGR 00785

xavier.yepes@bsc.es