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Climate variable / Indicator

Decadal climate predictions

CMIP6 DCPP A+B (Boer et al., 2016):

* Hindcast Period: 1960-present

e Initialised: 1st November

 Ensemble: 10 members

* Forecast range: 10 years

* Forcings: CMIP6 Hist up to 2024 + SSP245
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Decadal climate predictions

BSC decadal forecasts:

* The system skilfully simulates the regional features of past surface temperature variations.

* |nitialisation improves the information quality (wrt what climate projections would provide)
in the tropical Pacific and North Atlantic areas.

* The central subpolar North Atlantic suffers from initialisation shock and related drift.
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Decadal climate predictions: real time

WMO Lead Centre for

Sl e G R i Global Mean Near Surface Air Temperature

Initialisation: Nov 2024. Forecast Range: Year 1. Reference Period: 1991-2020.

The Lead Centre for Annual-to-Decadal Climate Prediction
collects and provides hindcasts, forecasts and verification data
from a number of contributing centres worldwide.
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Decadal climate predictions: real time

Global Mean Surface Air Temperature
o Forecast Initialised in Nov 2024, Reference Period: Pre-Industrial.
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System design in decadal prediction

Systematic assessment of the multi-model decadal prediction forecast quality helps
illustrating, among other things, the importance of a large enough operational multi-model.

ACC diff RPSS

Temperature

Comparison between a research (DCPP,
169 members, 13 forecast systems) and
an operational (C3S_34c, 40 members,
4 forecast systems, CMCC-CM2-SR5, EC-
Earth3-i1, HadGEM3-GC3.1-MM and
MPI-ESM1.2-HR)

Precipitation
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Decadal climate predictions: carbon cycle

Predictions with EC-Earth3-CC simulate the carbon cycle interactively: includes LPJ-GUESS
(vegetation), TM5 (atmospheric chemistry) and PISCES (ocean biogeochemistry).

* The ocean and land carbon sinks determine the atmospheric CO2 concentration.

® Ocean CO2 flux has high predictive skill, while for the land CO2 flux it is limited to 2 years.

* Limited skill of land and ocean carbon dioxide sinks linked to biases in physical climate.

* Contribution to Global Carbon Budget 2024.

Skill of global land CO2 flux anomalies Skill of global ocean CO2 flux anomalies
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Decadal climate predictions: volcanic forcing

Explosive volcanoes are not included in the climate projections and predictions but create

signatures that could last from years to decades.

Results from the Decadal Prediction Volcanic Response Readiness Exercise (VolRes-RE).
A 2xEl Chichdn eruption is set in April 2022 for the EC-Earth3 decadal forecast started in late

2021 and the difference with respect to DCPP-A made.
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Decadal climate predictions: volcanic forcing

Real-time systems require a solution after an explosive

volcanic eruption has taken place:

* Comparison of the volcanic forcings generated with EVA
and EVA_H for Agung, El Chichdn, and Pinatubo.

* EVA and EVA_H forcings can be reasonable choices for
predicting the post-volcanic radiative and thermal
effects.
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Decadal climate predictions: 2023

2023 was an exceptional year in terms of global-mean temperature. Multiannual and decadal
prediction systems failed to predict the extraordinary anomaly.

Global-mean, annual-mean near-surface
temperature anomalies (forecast year 1)

Year 1 global mean temperature
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Number of members

Global-mean, annual-mean near-surface temperature
2023 was the largest near miss in ~43 years of hindcasts,
only 1 member (from 125) exceeded the observations;
2024 was well predicted with anomalies >1.5 K.
2023 GMST predictions: and WMO obs 2024 GMST predictions.l and WMO obs
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Decadal climate predictions: 2023

Record warmth in 2023 resulted from ENSO and Northern Hemisphere shortwave anomalies:

* 100-member ensemble started in Nov 2022: 70% of the 2023 warming was predictable.

* Forecast accuracy depends on forecasting a strong El Nifno in 2023 and anomalously high
absorbed shortwave radiation in the Northern Hemisphere during spring and summer 2023.

2023 annual-mean near-surface temperature anomalies
Global-mean near-surface air temperature
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Decadal climate predictions: sighal-to-noise paradox

Perfect-model decadal predictions (i.e., ensemble initialised every year over 1960-2005 from
a continuous historical simulation) with EC-Earth3 are also affected by the signal-to-noise
paradox measured by the RPC = sqrt(r? ., ,)/r*emm))>1. And this is counterintuitive.
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Decadal climate predictions: sighal-to-noise paradox

Coincidentally, difference in lag-1 autocorrelation between the ensemble members and the
reference (observation in DCPP-A and continuous historical simulation in the perfect-model
predictions) is always negative, which affects the nature of r* ., ;, and r? . .

Metrics for the perfect-
model 10-member
hindcasts for near-

surface air temperature

(forecast period 2-9)

Metrics for the DCPP-A
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temperature (forecast
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Decadal climate predictions: signal-to-noise paradox

Coincidentally, difference in lag-1 autocorrelation between the ensemble members and the
reference (observation in DCPP-A and continuous historical simulation in the perfect-model
predictions) is always negative, which affects the nature of r* ,and 2 .
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Eddy-resolving decadal climate predictions

PREDDYCT will use IFS-NEMO to conduct global scale
predictions at 10-km resolution to investigate the role of
mesoscale eddies and their interactions on the
predictability of the climate of the North Atlantic region
from seasonal to multiannual timescales

CESM-HRDP shows great skill in the Kuroshio
Extension up to 4 yrs ahead, much higher than for
CESM-DPLE (Kim et al., 2023)
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* 62-month hindcasts initialized every November 1st from 1982, 1984, ..., 2016 (18 start dates). For each start date, the
hindcast ensemble size is 10. The experiment therefore comprises 930 simulation years at ocean-mesoscale-eddy
resolving and TC-permitting horizontal resolution.

* A 61-year FOSI simulation spanning 1958-2018 that was used for initializing the ocean and sea ice components in
HRDP. The FOSI simulation is the Sth cycle of an OMIP2 spinup run utilizing JRA55-do surface forcing and performed

with the high resolution configuration of CESM's ocean and sea-ice component models.

These dataset will be made available on the NCAR side in the near future.

(a) Obs SSH EOF1+2 |, (a) ACC vs. FOSI (1987-2017) (b) ACC vs. Obs (1993-2017)
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Decadal predictions by constraining projections

Ensemble-mean correlation (top row) and residual correlation of 10 and 20-year predictions for

near-surface temperature anomalies with nine-year global SST selection and 30 best members
(a) Best30: FY1-10 (b) Best30: FY11-20 (c) Best30: FY1-20
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Climate services: Making data and knowledge useful

Climate services consist in the provision of climate information to support decision-making in
context. The service component involves appropriate engagement and co-production
approach, an effective delivery mechanism, an evaluation system, and the recognition of a
variety of knowledge systems.

Identifying relevant Bias-adjusting Tailoring climate
climate data climate data information

Establishing user
requirements and needs

Assessing forecast

Developing :
climate services product quality

Barcelona

@ Supercomputing Exchange of knowledge led by: Users 4. Climate service provider
Center
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Hot-dry compound extremes

* Hot days as days above the 90th percentile of daily maximum temperature.
* Dry days as days falling in a month with SPI/SPEI <=-1.

* Compound hot-dry extreme events show significant skill in the 2-5 years range. Most skill is

linked to the trend.
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compound extreme indices | /)
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Product for food security

JRC is interested in multiyear predictions of global crop-related indicators.
The standardised precipitation-evaporation index (SPEI6) and heat magnitude day index
(HMDI3) indicators were computed from the decadal prediction multi-model ensemble.

(a) Forecasted SPEI6 / Start date: Nov. 2013 (b) Forecasted HMDI3 / Start date: Nov. 2013

Multi-year probabilistic
calibrated forecast (a, b)
and observed (c, d) most
likely tercile category of iy L . - [ :

SPEI6 (left) and HMDI3 P ", e R A

(rlght) for 2014_2018 over o 8 70 65 10040 55 70 85 100 40 55 70 65 100 o s 70 85 10040 5 70 8 {040 55 70 85 100
the Wheat-ha rvestl ng (c) Observed SPEI6 (2014-2018)

o5 PR

Forecast years: 1-5
(2014-2018)

Forecast years: 1-5
(2014-2018)

50S 30S 10S 10N 30N SON

180W 140W 100W  60W 20w 20E 60E IO@E 140E

areas with pOSItIVE skill w w N, : j 3 F M AM 3 3 K S OON D

- L 51 £ o » o - ey - 1 4 B gy

— W T . Rt S aupd : - S -

ot 2 e B4 ) B WA o W

P { " ) ' $ 23 X : A ! :

> bR A b i b RA :

e . b _Jg o Tk - < = b 3 i vk

" = . i D=, " e

« O E.: ’ N B c o \ =Y

o N | . $ O~ 3 # B .

2=_F &V 2=y [ 5 m\ Climate
Barcelona S ° t5 ¢ 2 | ; ‘ﬂ Change Service
supemmput"’g Y S : v T S : climate.copernicus.eu
Center g~ i T T R S i e S T R R e e
Centro Nacional de Supercomputacion

Below normal (%) Normal (%) Above normal (%) Below normal (%) Normal (%) Above normal (%)
| = | |

= Solaraju-Murali et al. (2022)




Product for cotton producers

Probability of the most likely tercile - Variable: Precipitation - Forecast system: Multi-model - Crop seasons: 2-5
Start date: 2021 - Reference period: 1981-2010 - Calibration: False - Crop type: Both-IRC+RFC

Multi-model precipitation
forecast targeting cotton
production

Below normal (%) Normal (%) Above normal (%)

40 55 70 85 100 40 55 70 85 100 46 55 70 85 100

Cotton - Both-IRC+RFC
First month Last month

Beginning and end
month of relevant
precipitation
information for
cotton production
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Products for regional farming

Eocusarpics @ Climate information co-developed with local organisations (via
field work) and the national weather services has been
e e = provided through printed bulletins summarising the

for the 2024-2028 period over Tanzania. The probability of the most likely category is provided with

2024-2028 Climate Forecasts for Tanzania

Outlook based on multi-annual predictions produced at the end of 2023

respect to the averaged 1991-2020 conditions. The complete catalogue of predictions and their

e e predictions and an online interactive platform.

select the highest-quality source of information among individual forecast systems, multi-model

ensemble, climatology and persistence forecasts.
s fth ook Forecast quality Forecast maps Regional forecasts Scorecards Documentation
ummary of e outiook:
« Warmer-than-normal conditions are expected over the entire country during the 2025-
i Forecast type
2026 period, particularly over the central, southern and western regions (Figure 1).
Ensemble mean anomaly _ ]

« For the March-April-May season, drier-than-normal conditions are expected over the Mostlkely tercile Multi-model - Forecast years 1-5(2024-2028) - SPEI - OND
western regions, and wetter-than-normal conditions are expected over the central and ) Most likely quintile Ensemble mean anomaly
eastern regions during the 2024-2025 and 2024-2028 periods (Figures 2 and 3). . (0,595, 0.446)
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« For the October-November-December season, drier-than-normal conditions are expected Forecast system (0,446, 0.29)
over central, eastern and southern regions, and wetter-than-normal conditions are Multi-model v (=0.298, -0.149)
expected over some northwestern regions during the 2024-2025 and 2024-2028 periods 2 s 0,149, 0)

& Variablefindex El )
(Figures 2 and 3). E (0, 0.149)
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Summary

* Decadal climate prediction has evolved substantially since its emergence 20
years ago.

* Global producing centres are complemented by contributing centres delivering
predictions every year with physical systems, including CO2 fluxes.

* Systematic errors penalise severely decadal predictions.

* Work on updated climate forcings is fundamental and needs to team up with
shorter-term forecasting and reanalyses.

* Predictions can support the understanding of climate anomalies (2023 warming).

* A part of the signal-to-noise paradox in decadal predictions can be explained by
the different nature of prediction and reference time series. This is common to
prediction systems at other time scales.

®* There is an increasing number of examples of the use of decadal predictions in
climate services.
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Near-term seamless climate information

Skill of 20-year projections using previous observations to select a 30-member ensemble.

® Heterogeneous improvements with respect to the full ensemble of historical
simulations
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Temporal merging seasonal and decadal predictions

Seasonal prediction - Decadal prediction - SST
Ensemble mean SST
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Niho3.4 forecast quality for seasonal, multia-annual,
decadal and S2D constrained ensembles (May init.)

ACC for Nino3.4; constrained based on spatial ACC with seasonal pred

. . . . Period: full; Moving months: 1
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Seamless forecasts of Nino3.4 index

Nino3.4 forecast issued in s1997-05 (SP-based_fmonths1-6_Nino3.4) Nino3.4 forecast issued in s2010-05 (SP-based_fmonths1-6_Nino3.4)
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