

AeDES2 - An enhanced climate-and-health service for monitoring and forecasting Aedes borne disease transmission

Javier Corvillo Guerra

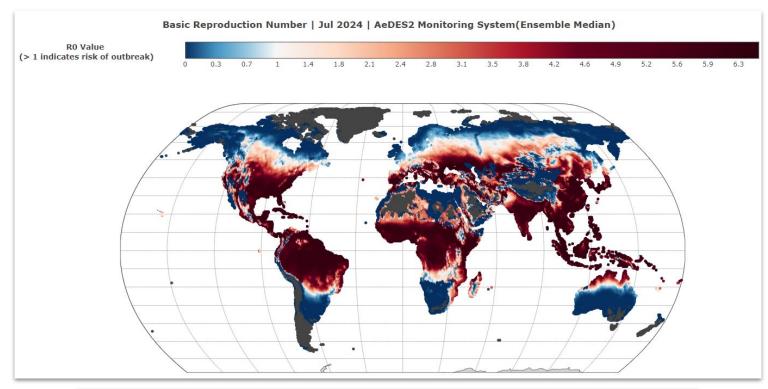
Verónica Torralba Ángel Garikoitz Muñoz

Living Planet Symposium 2025

javier.corvillo@bsc.es

2-minute summary

- After the advent of COVID-19, there's a need to establish links between climate change and vector-borne disease transmission. Climate barriers are slowly eroding, allowing vectors to roam to previously unaffected areas
- Among these vector-borne diseases, Aedes mosquitoes are among the most deadly, as they're the main carriers of DENV, CHIKV and ZIKV. Their proliferation is strongly tied to climate conditions.
- Can we bridge the gap between climate (change) and Aedes-borne outbreaks?



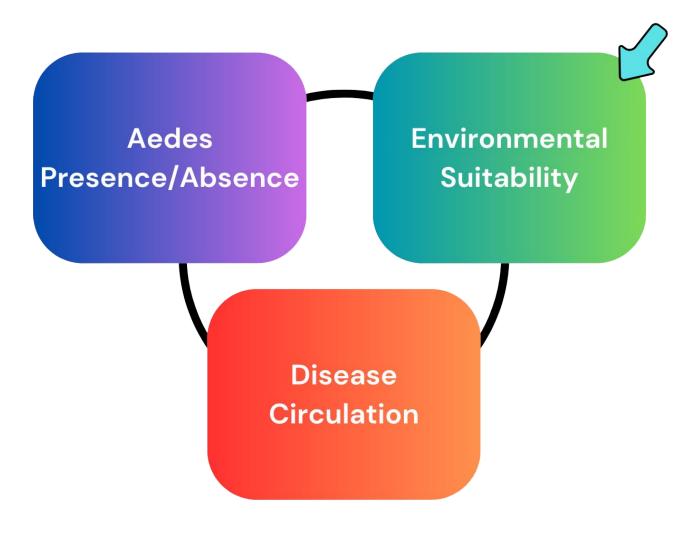

Ae. Aegypti

2-minute summary

- AeDES2 is a climate-and-health operational system that monitors the climate influence on the spread of Aedes diseases
- It uses mechanistic models that allow for climate variables to be transformed into R0 (a metric that quantifies the transmissibility of the disease)
- This tool can significantly aid health officials in resource allocation and develop EWWs to fight outbreaks ahead of time, and understand how climate patterns conditions diseases

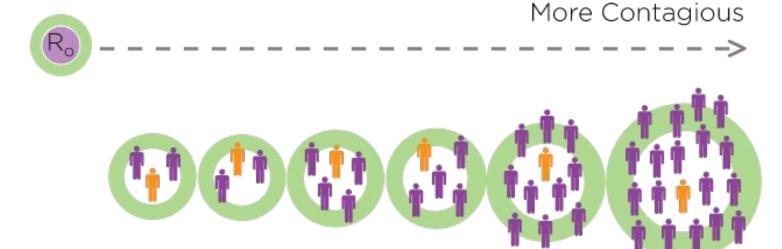
Background: Why Aedes?

- Aedes vectors are now appearing in previously safe areas! (e.g. Paris Olympics... but also some areas in Europe)
- "DENV season" is expanding in the Americas with higher temperatures...
- Aedes mosquitoes are responsible for +400M!
 Their proliferation is strongly tied to temperature and precipitation, though how climate acts as a whole is not entirely understood
- Monitoring the disease and predicting potential outbreaks could significantly help prepare health officials, governments, populations...



Washington, DC, June 20, 2024 (PAHO) - With more than 9.3 million cases of dengue, Latin America and the Caribbean currently reports twice as many cases recorded in all 2023, according to the latest epidemiological update issued this week by the Pan American Health Organization (PAHO). However, the lethality rate is kept below the regional target of 0.05%.

How can we predict a disease?



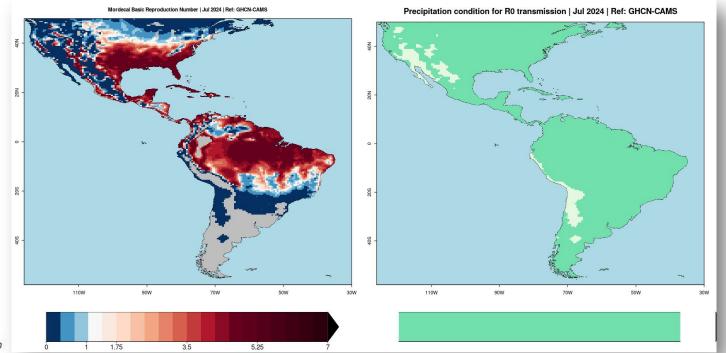
R0 as a metric for Aedes transmissibility

- The basic reproduction number (R0, dimensionless) outlines the **number of expected additional cases that one infected person can generate**, on average, over the course of its infectious period
- R0 depends on many complex socioeconomical and epidemiological factors, though **if only climate information is considered, R0 then highlights how environmentally suitable a region is for Aedes vector-borne diseases**

Objective:

Find ento-epidemiological models that use climate variables!

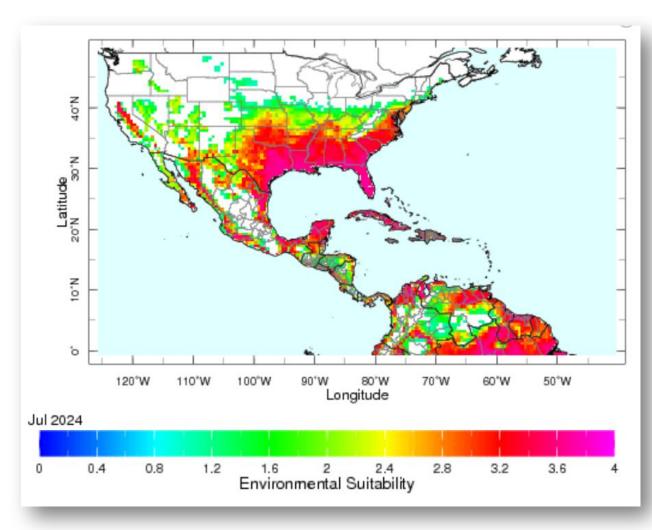
Transforming Climate Variables into R0 outputs


- Caminade et al., 2015
- Mordecai et al, 2014
- Liu-Helmerssohn et al., 2017
 - Wesolowski et al., 2015

(Contain temperature thresholds for disease transmissibility)

If total precipitation in the five months prior surpass 80mm, R0 =/= 0

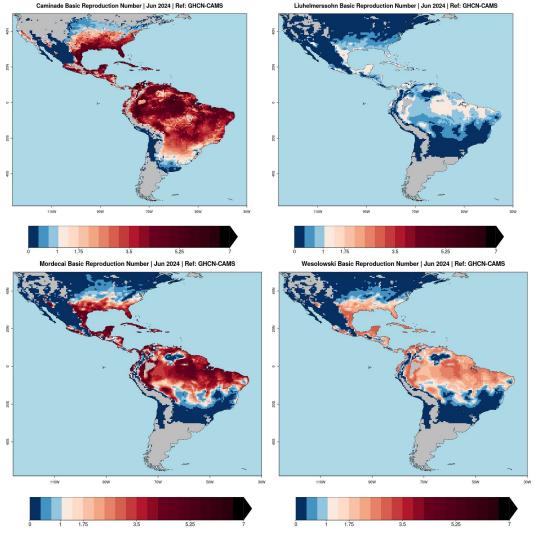
(Mapping Malaria Risk in Africa project framework)



Which R0 model to choose?

We'll just combine all of them in an ensemble...

Caveats and Possible Improvements


(Only R0 > 1 values are mapped)

First Problem:

Using only a singular observational reference may induce posible biases in certain areas/regions (GCMs have some biases in temperature measurements...)

AeDES1: Caveats and Possible Improvements

First Problem:

Using only a singular observational reference may induce posible biases in certain areas/regions (GCMs have some biases in temperature measurements...)


Second Problem:

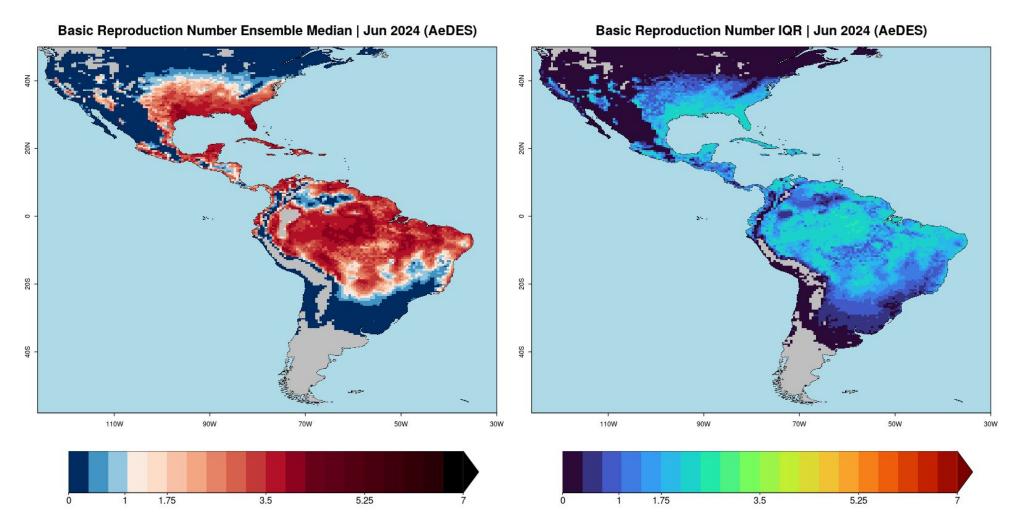
All four R0 models have different ranges in values, and are not calibrated to an empirical, real-life reference...

This could lead to high uncertainty in the ensemble!

AeDES1: Caveats and Possible Improvements

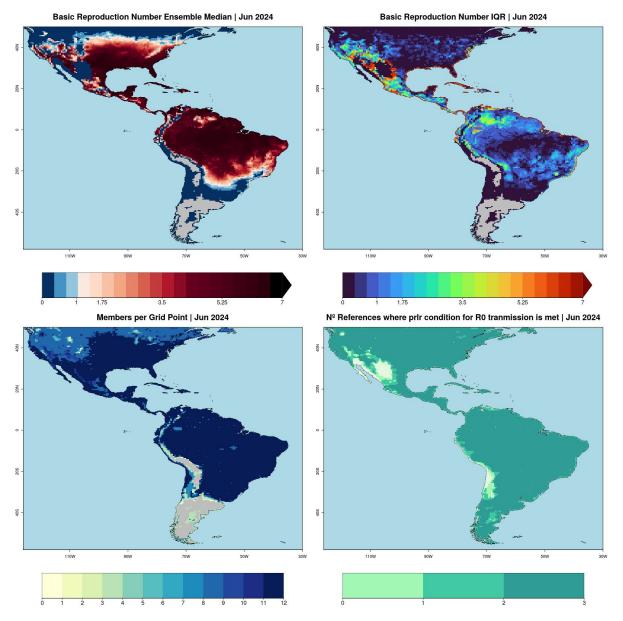
First Solution:

Use 3 climate references, each with 4 R0 models (12 members total in the ensemble between GHCN-CAMS, CPC Global Unified and Era5Land data)

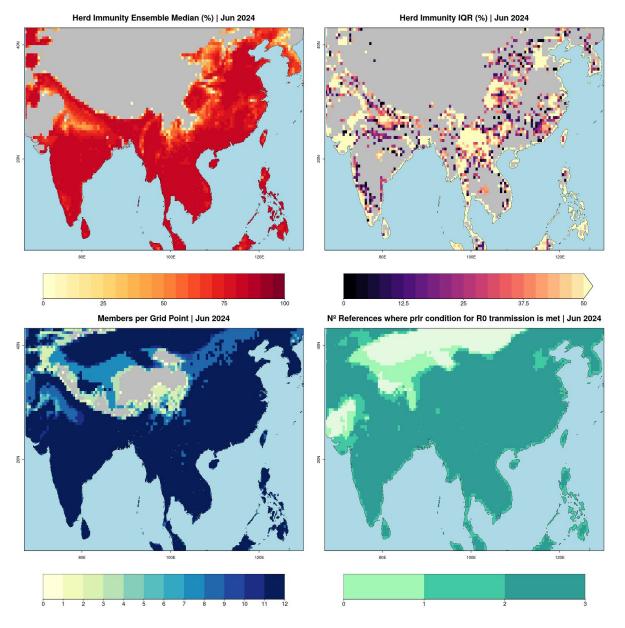

Second Solution:

Calibrate all four R0 models before merging them into an ensemble with quantile mapping

(IRL data source: Weekly case reports of DENV, CHIKV, and ZIKV in the Americas and the Caribbean between 2014-2016)

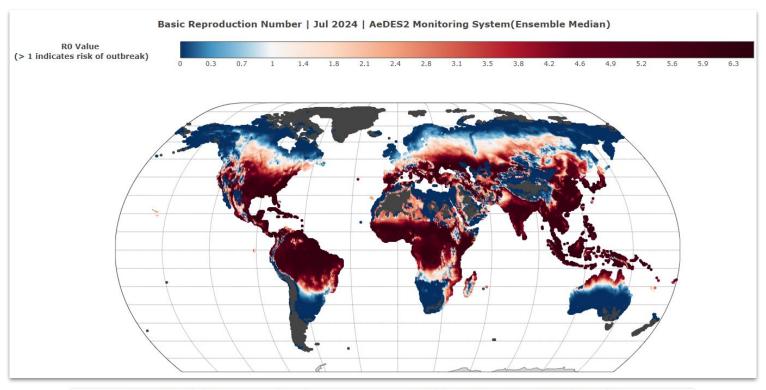


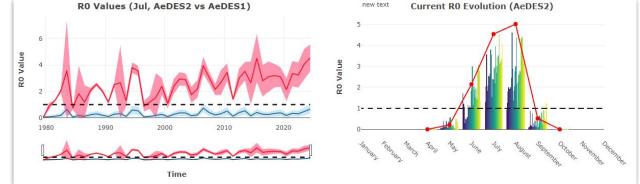
From uncalibrated outputs (Muñoz et al., 2020)....



...to AeDES2's monitoring system

- Median values for R0 are overall higher post-calibration
- Uncertainty values (IQR) overall lower (save for areas with differing temperature or precipitation between climate references)
- Nº of members per grid point also shown as another uncertainty source


...versus AeDES2's monitoring system



- Median values for R0 are overall higher post-calibration
- Uncertainty values (IQR) overall lower (save for areas with differing temperature or precipitation between climate references)
- Nº of members per grid point also shown as another uncertainty source

- Scope broadened to global outputs versus original implementation for Americas in Muñoz et al., 2020
- Herd immunity % (defined as the percentage needed to stop the spread of the disease) has also been computed from R0
- Fully operational (1979-present), updates once all three climate references are available

In-development Shiny App

Next steps for AeDES2

- Understanding the change in R0 patterns through timescale decomposition, to outline disease climatology, which can help in resource allocation
- Outline the relationship between RO and the climate patterns like El Niño Southern Oscillation to determine whether RO outbreaks can be more strongly predicted
- Enhance this system further using climate patterns for R0 instead of temperature, as climate patterns are a better aggregate of multiple climate variables and influences over Aedes-diseases

References

- •Caminade, C., Turner, J., Metelmann, S., Hesson, J. C., Blagrove, M. S. C., Solomon, T., Morse, A. P., & Baylis, M. (2017). Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proceedings of the National Academy of Sciences, 114(1), 119-124. https://doi.org/10.1073/pnas.1614303114
- •DiSera, L., Sjödin, H., Rocklöv, J., Tozan, Y., Súdre, B., Zeller, H., & Muñoz, Á. G. (n.d.). The Mosquito, the Virus, the Climate: An Unforeseen Réunion in 2018. GeoHealth, 4(8), e2020GH000253. https://doi.org/10.1029/2020GH000253
- •Jones, J. H. (2007). Notes on R0 [PDF file]. Retrieved from https://web.stanford.edu/~ihi1/teachingdocs/Jones-on-R0.pdf
- •Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A., & Rocklöv, J. (2014). Vectorial Capacity of Aedes aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential. PLoS ONE, 9(3), e89783. https://doi.org/10.1371/journal.pone.0089783
- •Macdonald, G. (1957). The Epidemiology and Control of Malaria. Oxford University Press, London.
- •Mordecai, E. A., Cohen, J. M., Evans, M. V., Gudapati, P., Johnson, L. R., Lippi, C. A., Miazgowicz, K., Murdock, C. C., Rohr, J. R., Ryan, S. J., Savage, V., Shocket, M. S., Stewart Ibarra, A., Thomas, M. B., & Weikel, D. P. (2017). Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLOS Neglected Tropical Diseases, 11(4), e0005568. https://doi.org/10.1371/journal.pntd.0005568
- •Muñoz, Á. G., Chourio, X., Rivière-Cinnamond, A., Diuk-Wasser, M. A., Kache, P. A., Mordecai, E. A., Harrington, L., & Thomson, M. C. (2020). AeDES: A next-generation monitoring and forecasting system for environmental suitability of Aedes-borne disease transmission. Scientific Reports, 10(1), 12640. https://doi.org/10.1038/s41598-020-69625-4
- •Muñoz, Á. G., Thomson, M. C., Goddard, L., & Aldighieri, S. (2016). Analyzing climate variations at multiple timescales can guide Zika virus response measures. GigaScience, 5(1), 41. https://doi.org/10.1186/s13742-016-0146-1
- •Muñoz, Á. G., Thomson, M. C., Stewart-Ibarra, A. M., Vecchi, G. A., Chourio, X., Nájera, P., Moran, Z., & Yang, X. (2017). Could the Recent Zika Epidemic Have Been Predicted? Frontiers in Microbiology, 8, 1291. https://doi.org/10.3389/fmicb.2017.01291
- •Tozan, Y., Sjödin, H., Muñoz, Á. G., & Rocklöv, J. (2020). Transmission dynamics of dengue and chikungunya in a changing climate: Do we understand the eco-evolutionary response? Expert Review of Anti-Infective Therapy, 1-7. https://doi.org/10.1080/14787210.2020.1794814
- •Wesolowski, A., Qureshi, T., Boni, M. F., Sundsøy, P. R., Johansson, M. A., Rasheed, S. B., Engø-Monsen, K., & Buckee, C. O. (2015). Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proceedings of the National Academy of Sciences, 112(38),
- 11887-11892. https://doi.org/10.1073/pnas.1504964112

Thank you!

MedEWSa

Javier Corvillo Guerra (javier.corvillo@bsc.es)