

XIII Congreso Internacional AEC Madrid, January 2025

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Comparative Analysis of Statistical Downscaling Methods in a Multimodel Framework for Decadal Climate Predictions over the Western Europe Region

Sara Moreno-Montes*, Carlos Delgado-Torres, Eren Duzenli, Núria Pérez-Zanón, Raül Marcos-Matamoros, Albert Soret

*sara.moreno@bsc.es

Introduction

Barcelona Supercomputing Center Centro Nacional de Supercomputación

What are the decadal predictions?

- Source of climate information from 1 to 10 years
- Sources of predictability: external forcings and natural variability

Why it is necessary to apply downscaling?

- Global models are usually run in low spatial resolution. Thus, climate information may not be useful for regional lacksquaredecision-making
- Goal: What is the best method to provide regional information?

Barcelona

Center

Data and Methodology

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Variables	Anomalies of mean air surface temperature (TAS) and precipitation (PR)
Prediction system	Multi-model ensemble of 13 systems from DCPPA-hindcast
Lead time	Forecast years 1-5
Hindcast period	Start dates 1960 - 2013; Years 1961-2018
Region	Western Europe (34.5 °N to 58.8 °N; and 12 °W to 10 °E)
Reference data	ERA5land (0.1° x 0.1°)
Temporal resolution	Yearly/Daily
Cross-validation	9 years out
Skill metrics	ACC (shown here), RMSSS, RPSS, CRPSS

Results

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Interpolations TAS

a) No downscaling (100%)

d) Bicubic interpolation (99.97%)

e) Nearest neighbor interpolation (99.97%)

Interpolations PR

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Calibrations TAS

a) Bicubic interpolation (99.97%)

 $-0.9 \quad -0.8 \quad -0.7 \quad -0.6 \quad -0.5 \quad -0.4 \quad -0.3 \quad -0.2 \quad -0.1 \quad 0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9$

Linear regressions TAS - predictor: the own variable

BSC

-0.7 -0.6 -0.1 0.3 -0.9 -0.8 -0.5 -0.4 -0.3 -0.2 0 0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9 14

Linear regressions PR - predictor: the own variable

$-0.9 \quad -0.8 \quad -0.7 \quad -0.6 \quad -0.5 \quad -0.4 \quad -0.3 \quad -0.2 \quad -0.1 \quad 0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad -0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad -0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad -0.8 \quad$

BSC

Summary

Temperature

- Original predictions have high skill
- Interpolations: the skill patterns are preserved
- Calibrations: the skill is slightly reduced in some regions
- Linear regressions:
 - Using the own variable, the skill is well preserved
 - Using teleconnection indices, the skill is highly reduced for almost all of them

Precipitation

- Original predictions have moderate skill
- Interpolations: the skill patterns are preserved but there are less percentage of significant points
- Calibrations: the skill is reduced in the majority of the region but increased in some parts (West France and Galice)
- Linear regressions:
 - Using the own variable, the skill patterns are similar to those obtained with calibrations
 - Using teleconnection indices, the skill patterns are variable depending on the index
- Analogs: the skill is increased in some regions but
 - reduced in others for all the predictors used

Next steps

- Investigate causes and justifications of precipitation results
- Apply this methodology to other variables such as minimum temperature indicator for frozen days
- Apply analogs methodology to temperature and combining different predictors
- Apply the methods to different regions if necessary
- Apply the methods to seasons instead of whole years
- Use other methodologies such as machine learning methods or generalized linear regressions

Funded by the European Union

This project has received funding from the European Union's Horizon Europe – the Framework Programme for Research and Innovation (2021-2027) under grant agreement No. 101081460.

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you!

sara.moreno@bsc.es

Supplementary Material

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Correlations between teleconnection models and TAS observations

Correlations between teleconnection observations and TAS observations

Correlations between teleconnection observations and PR observations

Correlations between teleconnection models and PR observations

Trend of precipitation in multimodel and in observations

Trend multimodel precipitation

Trend observations precipitation

0.00000005867 0.0000001269 0.00000248

Analysis of the impact of the cross-validation in one point for precipitation using mse-min calibration

Comparativa cross validations (27,15)

