

Climate Impacts of Near Term Forcers: Insights from Multi-Model CMIP6 Analysis

1. Near Term Climate Forcers

NTCFs are chemically and physically reactive compounds with atmospheric lifetimes shorter than a decade.

NTCFs' **brief atmospheric lifetime**, heterogeneous composition and distribution derives in global and regional climatic effects that are not yet fully understood.

In this work, we focus on anthropogenic nonmethane NTCFs, namely: aerosols, tropospheric ozone and their precursors.

Global aerosol optical depth evolution in the historical CMIP6 experiment

2. Methodology

We isolate the NTCFs signal on climate in the period 1950-2014 through a multi-model analysis of simulations from the AerChemMIP - CMIP6 initiative (Collins et al., 2017).

Experiment	Description
historical	historical forcings
hist-piNTCF	historical forcings but NTCF emissions fixed to 1850 values

Model requirements:

- interactive tropospheric aerosols and chemistry
- at least 3 members to filter model internal variability

BCC-ESM1 MRI-ESM2-0 UKESM1-0-LL EC-Earth3-AerChem

Alba Santos-Espeso¹, Pablo Ortega¹, Carlos Pérez García-Pando¹², Margarida Samso¹, Saskia Loosveldt¹ and María Gonçalves-Ageitos¹³

¹Barcelona Supercomputing Center, Barcelona, Spain, ²ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain, ³Projects and Construction Engineering Department, Universitat Politècnica de Catalunya, Terrassa, Spain,

From 1950 to 2014, aerosols drive the NTCFs signal: • a general cooling with **stronger AA until 1980** • a southward displacement of the ITCZ of 0.6° an increase of Labrador Sea convection by 38%

CONTACT: alba.santos@bsc.es

We will use a similar multi-model framework future projections within the comparing AerChemMIP initiative that isolate these species.

3. Main Effects on Climate

impacts of future NTCFs emissions on the AMOC.

The research leading to these results has received funding from the EU HE Framework Programme under grant agreement n° GA 101056783 and the AXA Research Fund through the AXA Chair on Sand and Dust Storms at BSC.

More infe

Acknowledgments