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Earth climate system
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The Earth’s climate is a complex nonlinear system that is constituted of
five interactive components primarily driven by the solar energy
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Atmosphere
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Hydrosphere (oceans + lakes + rivers + groundwater)

Estimates of Earth’s heat balance

All reservoirs of liquid water above and components (102 J) for 1955-1998
period (Levitus, et al., 2005).

below the surface (in the crust) R

Absorbed by world ocean

0.9 Absorbed by continents
0.8 Required to melt continental glaciers
0.7 Absorbed by the atmosphere
. 0.3 Required to reduce Antarctic sea-ice extent
0.1 Required to melt mountain glaciers
0.005 Required to melt northern hemisphere sea ice

0.002 Required to melt Arctic perenial sea ice

Thermocline

"‘\A

The gans are mam sotirce of moisture
and key reservcnrs of heat and carbon.
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Cryosphere (sea ice, snow, glaciers, permafrost, ..)

. Continuous Permafrost : Water
. Discontinuous Permafrost

-~ Sea Ice 30 Yr Ave Extent

50% Snow Extent Line

= Max Snow Extent Line . Ice

Temperature (°C)

Sep 2012

. Sea lce
. Glaciers
. Ice Sheet

. Ice Shelves
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Land surface and biosphere

Focus'on land surface hydrolo p—— |
Organlc cover of the Iand WEEE and marine organisms

download large image (5 MB, JPEG, 4108x4 166)
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Governing conservation equations = dynamical models
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Surface boundary conditions
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@ Sapor m An example: hydrostatic primitive equations of the ocean
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Numerical (approximative) models
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Atmospheric momentum equations in spherical coordinates
- impossible to solve analytically under realistic conditions

e Discretization and numerical methods are needed to

solve the governing equations of the climate system,
I.e., to make weather and climate predictions
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Some characteristic time and spatial scales

Component of the Process Characteristic Characteristic
Climate System time scale spatial scale
Atmosphere Collision of droplets during cloud 1076-1073 s 10%m .
formation Spatial and temporal scales
Formation of convection cells 10*-10%s 10>-10*m 10.000% . n n
WU ' " t h
Development of large-scale 10-10° s 10°-10" m I e O Ce a
weather systems 1000y |- f‘ imate
Persistence of pressure 10°%s 10°-10" m .
distributions |
— . . 100y _
Southern Oscillation 10" s 10’ m Basin e
- \Muy
Troposhere—stratosphere exchange 107-10% s global 1onr | X
- 5
Hydrosphere Gas exchange atmosphere—ocean 1073-10°s 107°-10° m ‘ Bt ol \
el ST
Deep water formation 10*-10° s 10*-10° m yr } e, (-Seasondl )
- ‘ > cycle
Meso-scale oceanic gyres 10°-107 s 10°-10° m ‘ \\\\III’ :
1mon i~ masoscala and [ eddesiy
Propagation of Rossby waves 107 s 10’ m - shorler scale | "" ) ‘
] ond one ) ./ barotmogic
El Nifio 107-10% s 10’ m D 1wk prysical-biclogical : \ 7 vaiiatikty
o imeescton
Turnover of deep water 10°-10'"s global E
Cryosphere Formation of permafrost 107-10° s 1-10°m o =
Formation of sea ice 107-10% s 1-10°m ; veamal wirses
The - and
Formation of land ice masses 103-10'"'s 10?-10" m | nartial motions
verscal
Land surface Changes in reflectivity 107-10% s 102 m — global fmin +— furtulent VW
Teng suriace
Isostatic equilibration of the crust 10%-10'" s 10° m — global Favly maves
by covering ice masses
Biosphere Exchange of carbon with the 10*-10% s 1073 m — global 2 D. Chelton
atmosphere - —l - | Jd | S (S R —
Transformation of vegetation zones 10°-10'0s 10-10" m im  10m 100m fkm 10km 100km 1000km 10%m 10%m
Spatial Scale
sarceiona - 1ltEring of fast processes is key for stable integration of climate models
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Climate time scales = climate prediction

Medium-range weather forecast — hourly to daily forecasts up to 2 weeks
ahead

Climate predictions group focuses on weekly to annual
forecasts on sub-seasonal (<3 months), seasonal (3-6
months), inter-annual (multi-year) and multi-decadal
times scales up to 30 years ahead

Daily Weather
Forecasts

Seasonal to ~1 Year Decadal Multi-Decadal to Century
Outlooks Predictions Climate Change Projections

time scale

Initial Value
Problem

Forced Boundary
Condition Problem

Range where memory of the initial state
@ Barcolona and boundary forcing are both critical.
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Climate system predictability

» Key climate memory (initial conditions=IC) on
seasonal to inter-annual timescales is in the sea ice
and land surface (snow cover and soil moisture)

» Key climate memory (IC) on inter-annual to centennial
timescales is in the ocean (SST, mixed layer heat
content, ..)

» External radiative forcing and atmospheric
composition (solar activity, greenhouse gases, aerosols)
- dynamic boundary conditions (BC) are crucial along
with static BC (topography + bathymetry)
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Methodology of using HPC model for climate prediction

Experimental setup : 1 grid-point

5-member
prediction
started 1 Nov
1960

2005
Observations




Methodology of using HPC model for climate prediction

Experimental setup : 1 grid-point

5-member
prediction

started 1 Nov
5-member 1965

prediction
started 1 Nov
1960
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Methodology of using HPC model for climate prediction

Experimental setup : 1 grid-point ... until 2009

5-member
S-member prediction
tp:tedcic;ml)\ln started 1 Nov
starte o)
5-member 1965 Y 1970
prediction

started 1 Nov
1960

1960 2005

Observations
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Methodology of using HPC model for climate prediction

Experimental setup : 1 grid-point 5-member  --- until 2009
prediction
started 1 Nov
2005
5-member  --- €very dyears ... el
S-member prediction
tp:tedcic;ml)\ln started 1 Nov
5-member St 16965 o 1970
prediction
started 1 Nov
1960
// /
N—
/”\ =
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Methodology of using HPC model for climate prediction

Experimental setup : 1 grid-point 5-member ... until 2009
prediction
started 1 Nov °
2005
O

5-member  --- €Very dyears ...
S-member prediction O
tp[tedcic;ml)\ln started 1 Nov
starte oV
5-member 1965 1970
prediction
started 1 Nov
1960 ®

Focus on averages over

® forecast years 2 to 5

1960 2005

Observations
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Methodology of using HPC model for climate prediction

Experimental setup : 1 grid-point 5-member ... until 2009
prediction

started 1 Nov
2005

5-member  --- €Very dyears ...
5-member prediction
tp:tedc;C;Kl)\ln started 1 Nov
starte o)
5-member 1965 Y 1970
prediction
started 1 Nov
1960
Focus on averages over
0 O forecast years 2 to 5
@ Ensemble-mean
1960 2005
Observations
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Methodology of using HPC model for climate prediction
Experimental setup : 1 grid-point

As many values as hindcasts for
both the model and the

observations to compute skill
scores. E.g. : anomaly correlations

s v 8

2005



Typical decadal forecast skill - IPCC ARS

(Top row) Root mean square skill score (RMSSS) of the ensemble mean of the
initialised predictions and (bottom row) ratio of the root mean square error (RMSE) of
the initialised and uninitialised predictions for the near-surface temperature from the
multi-model CMIP5 experiment (1960-2005) for (left) 2-5 and (right) 6-9 forecast years.
Five-year start date interval.

@ Barcelona Added-value from initialisation
Supercomputing
St DoOblas-Reyes et al. (2013) Nature Communications




Impact of initialization : CMIPS decadal predictions

CMIP5 decadal predictions. Global-mean T2m and AMV against GHCN/ERSST3b for
forecast years 2-5.

Global mean surface Atlantic multidecadal
atmospheric temperature variability (AMV)
Predictions Historical
simulations

/

/

Observations

@ Supercomputin  Doblas-Reyes et al. (2013) Nature Communications
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The early 21st century hiatus in surafce global warming

Crucial role of initialization from observations in capturing the plateau

(temporary quasi pause in warming)

S EC-Earth historigal Forecast years 1 to 3 .
simulations starting from EC-Earth climate i? :
. . e g . 4
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Tropical climate dynamics and predictions

(€ El Nino - Southern Oscillation (ENSO) phenomenon is the
dominant mode of internal climate variability in the tropics

— quasi-periodic, 2-7 years (interannual), warming/cooling of waters in
the tropical Eastern Pacific strongly affects global climate

Sea Surface Temperature
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ENSO predictions — initial and boundary value problem

Mid-Apr 2014 Plume of Model ENSO Predictions

Nino3.4 SST Anomaly (°C)
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2015

IRI Multi-Model Probability Forecast for Temperature
for December-January-February 2016, Issued November 2015
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Typical seasonal forecast skKill

Correlation of the ensemble mean for the ENSEMBLES multi-model (45 members) wrt
ERA40-ERAInt (T2m over 1960-2005) and GPCP (precip over 1980-2005) with 1-

month lead
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Current and planned activities

o Work on initialisation: generate a set of initial conditions (for ocean and
sea ice) and compare different initialisation techniques (e.g. full field versus
anomaly initialisation)

. Improving model processes: Inclusion and/or testing of model
components (biogeochemistry, vegetation, aerosols, sea ice) or new
parameterizations, model parameter calibration, increase in resolution

. Calibration and combination: empirical prediction (better use of current
benchmarks), local knowledge.

. Forecast quality assessment: provide skill scores practical to the user,
reliability as a main target, process-based verification, attribution of climate
events with successful predictions, diagnostics of model weaknesses with
failing predictions

. More sensitivity to the users’ needs: going beyond downscaling, better
documentation (e.g. use the IPCC language), demonstration of value and
outreach - building versatile climate services as a part of Earth system
services
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Global Framework on Climate Services

Users, Government, private sector, research, agriculture, water,

d GFCS health, construction, disaster reduction, environment, tourism,

transport, etc

Climate
services
provide

climate t t
information

to assist
decision
making by t
individuals

and Observations
organizations and Monitoring
firstly in the

priority areas
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User Interface Platform

Climate Services Information System

Research, Modeling
and Prediction

- > _

www.gfcs-climate.org

Capacity Development
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Climate prediction services for energy sector

e Climate predictions, e.g. provide estimate of the wind speed and
power over a target period and region

e \Wind speed predictions gauge the potential future energy
production critical for estimating future energy prices, defining
management strategies, planning maintenance, ..

e \Whereas short-term meteorological forecasts are a widespread
service for the wind energy sector, longer term climate predictions
are not yet commonly used
- Earth System Services group provide seasonal wind
speed predictions, based on ECMWF's S4 seasonal
prediction system
—> global predictions are run seven months into the future,
started every month = we can provide service
information for any location in the world




Seasonal climate prediction of wind power

Wind Farm in China
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Wind power prediction for December 1°2013 - February 28" 2014, issued on November 1st 2013. = g 1.5 39.2%
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Climate services for the benefit of renewable energy

Advancing Renewable Energy with Climate Services (ARECS)

Join the initiative at: www.arecs.org
» Monthly, seasonal and decadal wind and solar forecasts
. Provide feedback, register your needs
. Receive a quarterly, seasonal wind forecast newsletter

Website Newsletter

Issue 2: released February 2014 Wind Forecast for last spring 2013

HOME ABOUT ARECS PROJECTS NETWORK EVENTS NEWS JOIN US Seasonal Fo recasts for Wl nd Ene rgy

Monthly to decadal probabilistic climate forecasts for safe and efficient energy management How will wind power vary next season, and how could this affect your:
- Investment Cash Flow - Energy Trading - Insurance Derivatives -

- Operation & Maintenance Schedule - Energy Balance -

Business Opportunities MINIMISE UNCERTAINTY MANAGE RISK OPTIMISE STRATEGIES
. o . It s currently unknown how wind res The aim s to demonstrate how state-of-the-art climate
Climate Variability and Risk from one season to the next, and t forecasting could minimise the uncertainty of al
Probabilistic  climate forecasts By understanding the expec ARECS aims to stimulate the use have on im wind variability, and guide decisions within the wind
Wind Forecasts predict the future variability and.. variation of weather of probabilistic climate forecasts fke these abov energy sector
extremes in weather, to minimise and its impact on the energy to manage the future risk of
Solar Forecasts uncertainty of renewable power - system, improved, proactive and  renewable power supply and
. . supply and energ demand anticipatory adaptation decisions © energy demand, by developing a
Decision Making Process ppy‘ gy $ ¥ p_ v P 5 - 9y Y ping il
Timescales of interest are from can be made to better manage full assessment of wind, solar
Publications one month to decades energy planning and operation. and temperature predictability Probabilistic Spring 2013 Forecast of the Most Likely Wind Speed Cate
risks alongside tools to effectively (above normal, normal or below normal)
Newsletter analyse the forecasts. This t demonstrates wind information that coukd have been made available on
February 1st 2013 for months March - May (inclusive) 2013.
Glossary
How could wind power supply and energy demand vary next season? et
It is currently unknown how wind, solar or'temperature resources will vary from one season to the next. The
ARECS newsletter aims to demonstrate how state-of-the-art climate forecasting could minimise the uncertainty
of future resource variability, and guide decisions within the energy sectar.
Forecast  1om  Wind
Resource Anomalies (ys).
based on post processed
ECMWE 54 forecast
system data
Could probabilistic forecasts been used to predict meteorological events in the past? cotoured aress
If your strategies were affected by a variability in climate conditions, please send us details of such events, so forecast = otservatin
that we can assess how well our probabilistic forecasts could have predicted them. Infarmation should include Toreckat # Shaervetion.
the reference month. season or vear. the aeoaraphical area. and the observed meteoroloaical conditions 1 Areas  where the
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Summary and future directions

Key areas of BSC climate prediction and services

e New data assimilation techniques (for single climate component and
coupled system) for new reanalyses and initial conditions

e Improving climate model with inclusion of additional processes and
increased resolution

e New bias correction, calibration and combination methods
e Forecast quality assessment and development of empirical models

e Expansion of climate services
for growing spectrum of
stakeholders - climate data
is being processed into action-
able climate information

Ranking of October-December El Nifio episodes (ONI) since 1950
T T T
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