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Summary 

The Barcelona Supercomputing Center-Earth Sciences department uses great amounts of 
computational resources in simulations involving the NEMO ocean model, in stand-alone mode 
or as part of a climate model. This technical report explains the work done in analysing and 
optimizing the NEMO computational performance to make a better usage of computational 
resources and collaborate with the Nemo System Team to help improving the model by 
improving the efficiency and the throughput. By optimizing the model bottlenecks, in a low 
resolution grid we achieved simulations twice faster than before, going from 11 to 23 
simulated years per hour of maximum model throughput being able to use more resources, 
with an overall increase on the efficiency, saving up to 40% of resources in a 128-core run. 
To do so, we used the state-of-the-art performance tools developed by the BSC Computer 
Sciences department. 
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1. Introduction 

This technical memorandum, we will present a computational performance analysis and an 
optimization of bottlenecks of the NEMO ocean model, to find why the model fails to scale 
and to improve both model throughput and efficiency.  

The NEMO [1] (Nucleus for European Modelling of the Ocean) model is a state-of-the-art ocean 
global circulation model used for oceanographic research, climate studies, seasonal 
forecasting and also for operational oceanography where the time-to-solution is due the time 
limitation to provide forecasts. It has been used in 5 of the 28 Earth system models involved 
in the CMPI5 project. The total amount of computing resources used in NEMO simulations 
worldwide can easily exceed a billion of computing hours per year. Moreover, the known lack 
of scalability and a quite limited throughput of the model constrain some of the Earth system 
models that use NEMO as an ocean engine, and to improve them NEMO needs to be faster [3]. 
For these reasons, model developments targeting the computational performance are 
mandatory and this work does a step in that direction.  

The model includes many different modules and options that have an impact on the 
computational behaviour of the application. Computationally speaking, one of the most 
determining parameters of the model is the resolution of the grid, as the computational 
workload and the length of the time-step depend on that. The use of higher resolutions 
implies more computational workload and also requires shorter time-step for dynamical 
stability reasons, what can be translated to time-steps that last longer and more time-steps 
needed for a specific time of simulation. On the other hand, more workload increases the 
scalability of the model, as a bigger proportion of time is spent in computation against the 
time spent in communication. In this work, we focused on one of the NEMO reference 
configurations, that consists in the ocean (OPA) and sea-ice (LIM [2] version 3) modules on a 
low resolution grid (details can be seen in section 2.2). The advantage of performing an 
analysis using a low resolution grid is that problems related with small sub-domains that limit 
the scalability of the model are already visible using a small number of CPUs. Therefore, the 
issues that will be relevant at higher resolutions using hundreds of thousands of cores can be 
identified and faced with a lower cost. By the other hand, problems related with higher 
resolutions such the memory usage or the output size are less determinant and therefore may 
not be extrapolated. 

In this technical report, we illustrate the methodology that we use to identify bottlenecks, 
develop optimizations and evaluate their impact on the performance with an operational 
ocean model. To summarize the impact this work, with the used configuration, the optimized 
version of NEMO can simulate more than two times faster than before, going from 11 to 23 
simulated years per hour as a maximum model throughput, and improving the efficiency, 
saving up to 40% of time in a 128-core run. This methodology can be extended to any Earth 
system model running on a high-performance computing (HPC) platform. 

All the simulations were performed in the Marenostrum 3, the HPC hosted by the Barcelona 
Supercomputing Center (BSC).  
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2. Experimental setup 

2.1. Model Description 

NEMO is a state-of-the-art modelling framework for oceanographic research, operational 
oceanography seasonal forecast and climate studies. It includes: 

● five major components: 
o the blue ocean (ocean dynamics, NEMO-OPA); 
o the white ocean (sea-ice, NEMO-LIM); 
o the green ocean (biogeochemistry, NEMO-TOP) ; 
o the adaptive mesh refinement software (AGRIF) ; 
o the assimilation component NEMO_TAM; 

● some reference configurations allowing to set-up and validate the applications ; 
● A set of scripts and tools (including pre- and post-processing) to use the model. 

 
The model has been written in Fortran90 and uses MPI for the parallelization, so it can run in 
parallel in HPC clusters. Since version 3.6, it can use an input/output library called XML Input 
Output Server (XIOS) that allow the use of I/O dedicated servers and minimized the I/O 
problems that existed at earlier versions of the model. 

The evolution and reliability of NEMO are organized and controlled by a European Consortium 
created in 2008. 

2.2. Model Configuration 

For our analysis, we used one of the NEMO reference configurations included in the stable 
release of the model. We have chosen a low-resolution configuration for the analysis. This 
allows us to study the scalability problems of the model related with small sub-domains by 
using a relatively low number of CPUs. Therefore, the problems that would arise in higher 
resolutions with thousands of cores are already visible with a lower cost.  
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Configuration name ORCA2/LIM3 

Grid ORCA 

Resolution 2 degrees (low resolution 

Modules OPA and LIM3 

Time Step 5760 seconds (450 time-steps for one month of simulation) 

Compilation keys 

key_trabbl key_lim3 key_vvl key_dynspg_ts key_diaeiv key_ldfslp 
key_traldf_c2d key_traldf_eiv key_dynldf_c3d key_zdftke 

key_zdfddm key_zdftmx key_iomput key_mpp_mpi key_asminc 
key_diaobs 

Compiler Intel v13 

MPI library Intel MPI v4.1.3 

Compiler Flags -i4 -r8 -O3 -fp-model precise –xHost 

Table 1: Description of the configuration used 

 

2.3. Experiment design 

Our analysis consists in two parts that have been done in the original code and with the 
optimized code: 
 

i) First set of simulations of 1200 time-steps (corresponding to 80 simulated days) 
using from 1 to 8 nodes (16-cores per node), where we only measure the 
overall speed of simulation by getting the timestamp of each time-step. This is 
done by a simple implementation inside the code with no simulation overhead. 
For this set of simulations we did 10 executions for each case.  
 

ii) Second set of simulations of 40 time-steps (corresponding to 2 days and 16 
hours) using 1, 2, 4 and 8 nodes with Extrae instrumentation to collect detailed 
execution information into traces for a post-mortem analysis. In this second set 
we selected only a single iteration for each case, so the variability in the time-
step time is not reflected.   

2.4. Environment 

All the simulations were performed in the Marenostrum 3, the HPC hosted by the Barcelona 
Supercomputing Center (BSC). Marenostrum 3 is a 1.1 PetaFLOPs supercomputer composed by 
3056 nodes with 16 cores (2 x SandyBridge-EP 8-core 2.6 GHz processors) with 32 GB of 
memory per node. 
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The system uses a LSF queue system and we use a set of scripts in order to automatize the 
job submission, the trace collection and several other tasks necessaries to carry out the 
analysis. 

3. Analysis 

Basic information about model executions with different number of processor cores have been 
collected to obtain a first guess of the model performance in a strong scaling test. After this 
first analysis, we collected and analysed model traces using the BSC performance tools to 
investigate the reasons that explain the behaviour observed in the first tests.  

3.1. Simulation speed and efficiency 

In order to have a reference of the model throughput and scalability, we measured the time-
step duration for different executions done with 1 to 8 computer nodes of 16 processor cores 
each. From the time-step time we derived the metrics simulated years per hour (syph) and 
normalized efficiency, where syph is the amount of years that the model can simulate per 
hour of wall-clock time, and the normalized efficiency is the relation between the number of 
years that the model can simulate for a given amount of computation time with a given 
number of cores and the quantity of years that the model can simulate using the same 
computational time in the reference simulation (16-cores). 

 

            

 

Figure 1 - Throughput and efficiency of simulations done with different number of cores. 

We can see that the model reach a maximum throughput of 11.8 syph and there is no 
improvement in speed above 128-cores. 

In figure 1B we can see the normalized efficiency. It means the quantity of years that we can 
simulate with a given number of computational hours in relation to the quantity of years that 
we can simulate with the reference execution using a single node (16-cores). We can observe 
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an efficiency drop and, when the model reaches the maximum throughput (128-cores), the 
efficiency is under 50%. 

3.2. Detailed analysis 

With the outcome of the previous analysis we designed an experiment to analyse in more 
detail the causes of the loss of efficiency and the bad scalability. As the model reaches a peak 
when using 128-cores, we decided to analyse different simulations doubling the number of 
cores from 16-cores (the reference simulation), to 128-cores (the peak). 

3.3. Trace collection 

As it was explained in section 2.3, we used the Extrae [ref] tool to collect information from 
the execution and store it in traces for a post-mortem analysis. 

From each one of the traces we “cut” the smallest repetitive pattern which corresponds to 5 
ocean time-steps and one sea-ice time-step. Using this approach we discarded both 
initialization and finalization of the execution, but we can afford that, given that these parts 
are negligible in simulations of the typical length (from one to several years). 

3.4. Trace analysis 

We used several tools to analyse the information contained in the traces. The most important 
one is Paraver, a tool to visualize the information contained in the traces. With this tool is 
possible to see with high detail what happened during the execution. One can also compute 
metrics based on hardware counters such as parallel efficiency, instruction per cycle (IPC),… 

The Dimemas tool is used to simulate the performance of an application in a different 
machine. Based in a real trace previously collected, it allows simulating distinct scenarios in 
order to see the impact of different parameters in the overall performance. For this study we 
used this tool to analyse the model sensitivity to the network latency and bandwidth. 

To complete our analyses, we used the tools Clustering, Tracking and Folding to evaluate the 
computational phases. 

3.4.1. Function profile 

Looking at a function profile generated by Paraver, we can measure the time spent in each 
routine. Hence, comparing the function profiles of different configurations, we can observe 
how they behave and identify if the scalability problems are caused by specific routines or 
otherwise are a general issue. 

In the reference case (first row in the figure 2), we can see that the routine dynspg takes 
31% of the execution time. Apart from this routine, the profile is very flat and any other 
routine reaches 5% of the time at much. 

When we observe the function profile for the subsequent cases, we can see that the 
proportion of time spent by dynspg keeps increasing so in the 128-cores case it reaches a 53% 
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of the time. The main change is that now the profile of the other functions is not flat 
anymore since now limhdf takes 15% and limrhg 9% of the time. Both functions belong to the 
sea-ice module.  

These two routines are considered the main bottlenecks of the model for its bad scalability as 
their total amount of time increases from 38% of the time in the 16-cores case to 77% of 
time in the 128-cores case. 

 

Figure 2- NEMO’s function timeline comparison for 16, 32, 64 and 128 cores. Different colours represent different functions. The 
most time-consuming functions are dynspg in red and limhdf in blue. 

3.4.2. Sensitivity analysis 

Using the Dimemas simulator we imitate the behaviour of the model in different scenarios, to 

learn the influence of the different network parameters to the model’s performance.   

Doing different simulations by varying the network latency, we observed that the latency has 

a huge impact on the performance. 

The simulations show a linear influence of the latency, so the model’s time-step time follows 

the subsequent relation: 

𝑡𝑡𝑠 = 𝑡𝑙𝑎𝑡0 + 𝐿𝑛 · 𝑙𝑎𝑡 

Where 𝑡𝑡𝑠is the time-step time, 𝑡𝑙𝑎𝑡0is the time-step time in an ideal case with latency 0, 𝐿𝑛is 

what we define as latency coefficient and 𝑙𝑎𝑡 is the latency.  

This equation is valid for all of the cases, but the coefficient 𝐿𝑛 increases with the number of 

processes. 

It is also important to remark that while the value of 𝑇𝑙𝑎𝑡0 decreases when the number of 

processes increase, the proportion of time related with the latency is bigger and consequently 

the parallel efficiency is lower. 
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Figure 3- Latency impact on the different runs with 16, 32, 64 and 128 cores. 

By plotting the syph one can easily observe the impact that the latency has.  The more cores 

we use, the bigger this impact is, and also it determines how much the model can scale up. 

However, the network bandwidth sensitivity analysis showed that the influence of the 

network bandwidth in the model performance is very small and therefore the transmission 

time is negligible. 

In conclusion, the network sensitive analysis showed a very high impact of the latency and a 

very low impact of the bandwidth. This is usually related with a big number of small 

messages. 

3.4.3. Bottleneck analysis 

As it can be seen in the section 2.2.1, the dramatic loss of efficiency is not a general problem 

for the entire model but instead is localized in few specific routines. Therefore, we focused 

our detailed analysis on the routines identified as bottlenecks, given that improving these 

routines will have a higher impact in the performance of the model. 

In order to know if the bottleneck problems are related with communication or with 

computation, we measured the parallel efficiency of the model, since it gives information 

about the proportion of time spent in useful computation and communication. Analysing the 

bottlenecks, we can see that even in the 16-cores case the parallel efficiency is bad, 

especially for the limhdf, and it gets worst when we increase the number of cores. 
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Figure 4: Parallel efficiency of the routines limhdf (blue) and dynspg (red) for executions done with 16, 32, 64 and 128 cores. 
Region 1 corresponds to the routine limhdf and Region 2 corresponds to the routine dynspg. 

The figure above clearly demonstrates that the reason for the bad scalability of the model is 

the big proportion of the time spent in communication. 

If we look in detail what happens inside dynspg (the surface pressure gradient routine), we 

can see that there is a loop consisting in three computation phases separated by three 

communication phases. The duration of that computation phases is really short (under 100 

microseconds in the 16-cores case), and in the communication phases seven border 

interchanges between neighbours are performed, distributed in two consecutive interchanges 

in the first and the second communication phases and three interchanges in the third 

communication phase. In every interchange, each sub-domain interchanges messages with the 

border neighbours. For the average sub-domain, this interchange supposes sending 4 messages 

and receiving 4 messages. In addition to that, the sub-domains placed at the north fold have 

to perform extra communications, and some coastal sub-domains have less communications. 

On average, one interchange with the neighbour in the 16-cores case lasts 60 𝜇𝑠(4 sends + 4 

receives + 4 waits + buffer movements), which means a total of 420 𝜇𝑠 for each loop 

iteration. As a single iteration in the 16-cores case on average lasts 721𝜇𝑠, this means that 

the parallel efficiency in this routine is a 42%.  

With the Clustering and Tracking tools we analysed the computational phases inside dynspg. 

We can observe that the number of instructions of these phases decrease when we increase 

the number of cores but not at the ideal rate, so the total number of instructions increases. 

This is caused by two main reasons. First, there is part of the code that cannot be parallelized 

and so it’s replicated in all the processes. Second, the domain decomposition method being 

used implies an overlapping of the borders between neighbour sub-domains. In addition to 

that, we can also see that the IPC decreases with the core number increase. These two 

phenomena imply a loss of efficiency that reaches a 50% loss in the 128-cores case (Figure 3). 

The second region targeted as bottleneck is limhdf, the sea-ice horizontal diffusion routine. 
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We can see that there are 41 consecutive calls to this routine in every sea-ice time-step, with 

high differences in the duration between the different calls. If we look with more detail, we 

can guess a loop structure, and the differences in time between different calls come from 

different number of loop iterations. Looking at the loop structure, iterations have two 

computation phases with very short duration, separated by two communication phases. The 

first communication phase is a border interchange of values with the neighbours and the 

second communication phase is a global communication that requires synchronization of all 

the sub-domains, not only the neighbourhood. In the 16-cores case, the computation phases 

represent only 22.4% of the iteration time (22/97𝜇𝑠of the iteration) while the computation 

regions take 61.8% (60/97𝜇𝑠) and 15.4% (15/97𝜇𝑠) time respectively. This analysis leaves clear 

that the problem in this routine is the fine granularity of the tasks and the communications.  

Studying also the 128-cores case, it is revealed that the time does not improve at all but gets 

worse, rising to 128 𝜇𝑠 (32% more time). If we look for a reason for this increase, we have 

that the time spent in the neighbour border interchanges remains almost the same (around 60 

𝜇𝑠) while the computation time decreases with an acceptable efficiency (Figure 3). However, 

the time spent in collective communication increases a lot (from 15 to 60𝜇𝑠). 

 

 

Figure 5: Efficiency of the computational regions in different cases compared with the 16-cores case 

 

Finally, from the analysis of the bottlenecks we can conclude that only a very small part of 

the efficiency loss comes from computation issues (mainly code replication due the 

overlapping), and the major part comes from the communication issues, mainly a lack of 

parallel efficiency due to low computational work charge with high frequency of 

communication and synchronization. 
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4. Optimizations 

The diagnostic from the analysis was that the biggest problems constraining the model 

scalability were located mainly in two regions. Some of them were related with shared 

problems between them (short computational regions with high frequency of communication) 

and the others are local issues (collective communications, consecutive interchanges). This 

diagnostic suggests that the best way to increase the model’s performance is improving the 

communication.  

As it was shown before, almost all the time spent in communication is related with the 

network latency. To reduce this time, the most easy and effective way is to reduce the 

number of messages interchanged. 

We sought a way to reduce the number of messages without changing the model algorithms 

and found several exploitable spots. Here we present the three optimizations: message 

packing, reduction of convergence check frequency and reordering of the sea-ice horizontal 

diffusion routine. 

4.1. Message packing 

In the routines dynspg, limrhg and limadv there are several consecutive interchanges with 

no calculation between them. In this case, our solution consist in pack the messages that 

have the same recipient into one single message. 

As almost all the communication time is due to the latency, when we pack messages the time 

per message remains constant, so if we pack n messages into only one, we reduce the time 

spent in this communication by a factor of n.  

For example, the structure of the dynspg inner iteration is compound by three computation 

phases separated by three communication phases with 7 interchanges in total. By using the 

message packing optimization, we can pack the consecutive interchanges and therefore 

reduce the 7 interchanges per iteration to only 3.  

This optimization can be implemented in every single part of the model’s code where 

consecutive interchanges are performed. The final improvement is directly related with the 

number of messages that we can avoid using this.   

4.2. Reduction of the convergence check frequency 

In the limhdf routine there is a convergence check at each one of the inner loop iterations 

that can go from a few to hundred iterations. As the convergence check requires a collective 

communication, synchronization between all the model processes is required, with a high 

negative impact on the performance. 

From the physical point of view, the fact that the limhdf routine performs a few more 
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iterations does not degrade the quality of the simulation. Taking this into account, our 

solution was to reduce the frequency at which the convergence checks are performed in order 

to reduce the huge payoff of the collective communications. The convergence check 

frequency can be configured in the model namelist in order to give to the user the possibility 

to use it or not. 

This very simple optimization is expected to have a big impact when using a high number of 

CPUs 

4.3. Sea-ice horizontal diffusion routine reordering 

As we could see during the analysis, at every sea-ice time-step there are 41 calls to limhdf, 

being each one of these calls independent from each other. In order to be able to use the 

message packing optimization inside this routine our solution consisted in reorder the code. 

In the original case, the limtrp routine calls limhdf passing different fields one after another, 

and at each limhdf call it performs several iterations including computation and 

communication. 

Our optimization consists in making the limtrp routine call limhdf for all the variables at the 

same time. With this approach we compute the inner loop calculations for all the variables 

before starting the communication. Therefore, in the communication phase now it is possible 

to interchange all the 41 variables in one single interchange. The convergence check can be 

also done for all the 41 variables in one single collective communication and in the posterior 

iterations, we only perform the calculations for the variables that still have not reached the 

convergence. 

This optimization allows us to reduce dramatically the number of messages and achieve 

coarser granularity of the computation phases.  

5. Impact of the optimization 

We did similar analyses with the optimized version of the code to evaluate the impact of the 

optimizations. 

5.1. Simulation speed and efficiency 

Measuring the simulation speed and efficiency with the optimizations applied, we can see 

that our improvements have had a massive impact in the performance. 

As the figure 4a) shows, the optimized version is faster even in the 16-cores case. While the 

original version reached a maximum of 11.8 syph using 128-cores, the optimized version can 

keep using more resources and reach 23 syph, which is more than double of the original 

speed. Looking at the efficiency we also have a nice improvement, having in the 128-cores 

case 60% more simulated years.  
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Figure 6: a) Model throughput comparison. b) Normalized efficiency comparison. In green the original model and in blue the 

optimized one. In green the no-optimized version of the model, in blue the optimized version of the model. 

5.2. Trace analysis 

5.2.1. Function profile 

Comparing the optimized version function profile with the original one, we can see that the 

total time improvement comes from the time reduction in the bottleneck routines, as we 

expected. 

 

Figure 7 - Function timeline for the optimized version of 5 ocean time-steps and one sea-ice time-step. The dotted line 

represents the time of the no-optimized version of the model. 

5.2.2. Sensitivity analysis 

The sensitivity analysis for the optimized version shows a reduction of the variability of the 

time-step duration dependent on the latency of the network. Even with the 8 us scenario the 

model keeps scaling. 
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Figure 8- Comparison of the latency impact on the time-step duration of the original and the optimized version. 

5.2.3. Bottleneck analysis 

Looking again at the parallel efficiency of both regions, we can see that there is a big 

improvement, especially at the region 2. 

 

Figure 7: Parallel Efficiency comparison. The region 1 corresponds to the routine limhdf and the region 2 corresponds to the 

routine dynspg 

While both regions experiment an important increment of the parallel efficiency, this is still 

low for  

The efficiency of the computational phases shows the same behaviour than the original case. 
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6. Conclusions 

The amount of computational resources dedicated to simulations involving the NEMO ocean 

model, as well as the need of faster simulations, constitute the main motivation for analyse 

the model and invest in its optimization. Our performance analysis on NEMO with the 

ORCA2/LIM3 configuration showed that the bottlenecks constraining the scalability of the 

model are related with a lack of parallel efficiency. This lack of parallel efficiency is mostly 

due to the bad suitability of some of the model algorithms for small sub-domains, where the 

relation computation/communication is really low. The computation time is reduced as the 

size of the sub-domains decrease while the communication time does not, and since this size 

is determined by the resolution of the grid and the number of cores used for the simulation, 

we have that lower resolutions have worse scalability than higher ones. To increase the 

parallel efficiency without changing the algorithms used to solve the equations neither 

increase the resolution of the grid, our solutions aim to increase the 

computation/communication ratio by reducing the communication overhead. This can be 

achieved by decreasing the number of messages. With the optimizations proposed in this 

document the number of messages was reduced without changing the algorithm, preserving, 

at the same time, the results. The resulting performance shows a great improvement, 

increasing the maximum simulation speed from 11 to 23 simulated years per hour for this 

configuration, and increasing considerably the efficiency, saving up to 40% of resources in a 

128-core run. We expect these optimizations to save hundreds of millions of computing hours 

from now on. The optimizations have not been tested in higher resolutions, but are expected 

to have a positive impact when using an enough number of cores. Taking the present work as 

a base, besides testing the impact of these optimizations in higher resolutions, our further 

studies go in the line of analysing and optimizing the particular computational problems that 

arise when using bigger grids.  
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