

clim4health

HARMONIZE toolkit course, November 2025

Emily Ball, Alba Llabrés-Brustenga, Carles Milà, Raúl Capellán, Daniela Lührsen, Ania Kawiecki, Rachel Lowe

Session Outline

9.30	Presentation
10.00	Hands on tutorial - workflow 1: downscaling and skill assessment
11.00	Coffee(?) break
11.30	Hands on tutorial - workflow 2 and 3: spatio-temporal aggregation, calibration and masking
12.10	Feedback
12.30	End of session

Alba Llabrés

Carles Milà

Raúl Capellán

Daniela Lührsen

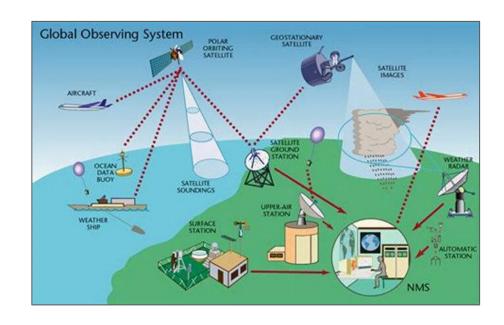
Ania Kawiecki

Rachel Lowe

- 1. Understand sources of climate data
- 2. Learn how to load climate data into R using clim4health
- 3. Learn methods to postprocess climate data and apply them using clim4health
- 4. Learn how to assess forecast quality
- 5. Learn how to plot climate data using clim4health

- 1. Understand sources of climate data
- 2. Learn how to load climate data into R using clim4health
- 3. Learn methods to postprocess climate data and apply them using clim4health
- 4. Learn how to assess forecast quality
- Learn how to plot climate data using clim4health

- 1. Understand sources of climate data
- 2. Learn how to load climate data into R using clim4health
- 3. Learn methods to postprocess climate data and apply them using clim4health
- 4. Learn how to assess forecast quality
- 5. Learn how to plot climate data using clim4health



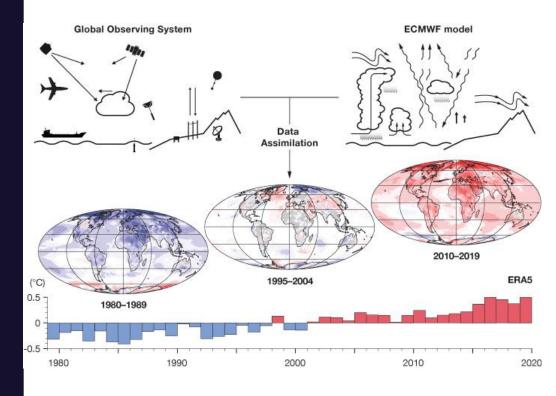
Direct observations come from many sources:

- Satellites
- Radar
- Meteorological stations
- Aircraft and balloons
- Buoys
- ... more!

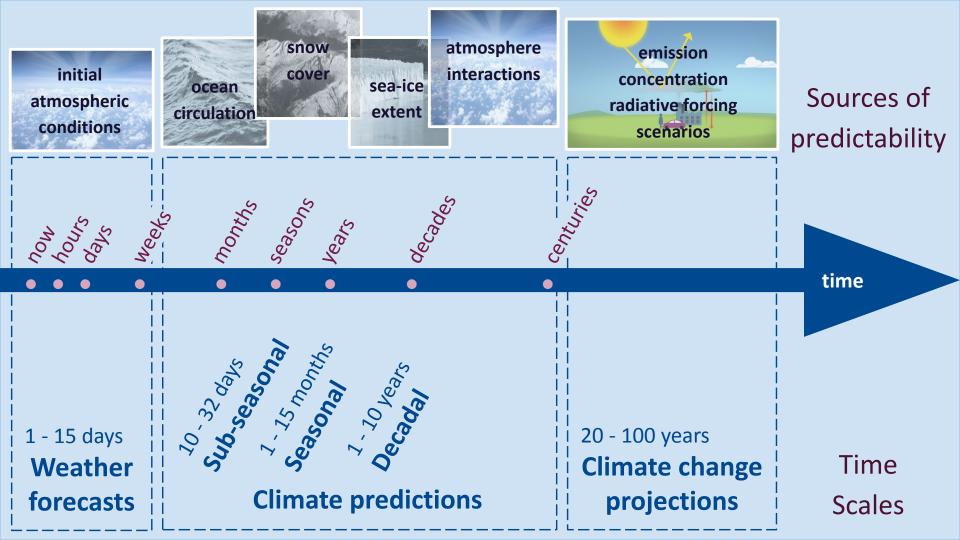
Observations

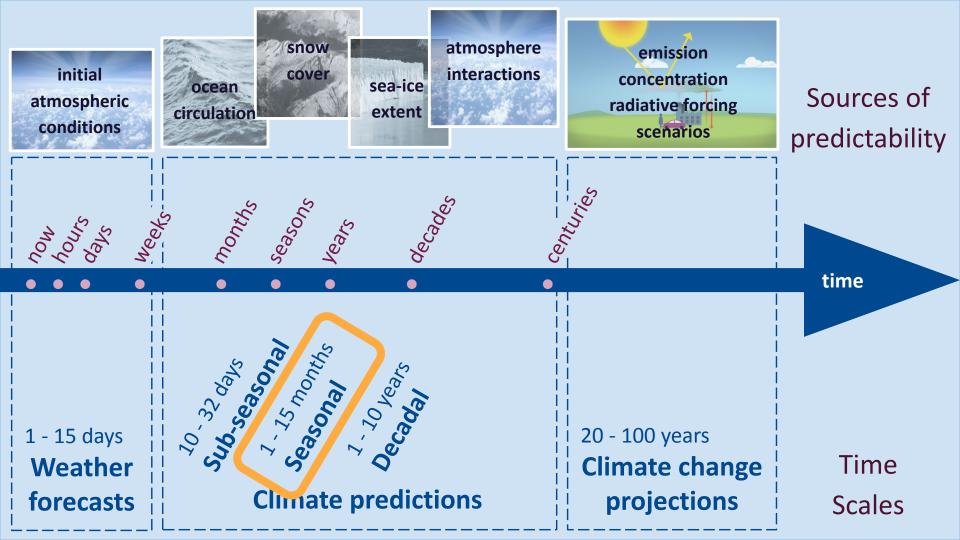
Reanalysis is a type of "observation":

- We run a climate model and "nudge" (adjust) it towards historical observations
- physically consistent
- temporally/spatially gridded
- can provide estimates of variables that were not directly observed


Note: in regions where direct observations are limited, reanalyses are more model-driven.

Reanalysis





Predictions and Projections

These are model-based predictions of *future* climate.

- They are available at different timescales.
- They contain **ensemble members** that help us to capture some of the uncertainty in the predictions.
- Predictability comes from different sources...

Seasonal forecasts available from Copernicus:

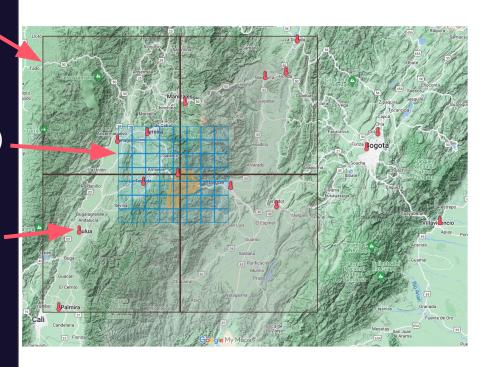
- Spatial resolution: 1° x 1° (~100km)
- Temporal frequency: 6h, 12h, 24h and monthly statistics
- Hindcast period: 1993-2016
- System: ECMWF-s5

Reanalysis available from Copernicus:

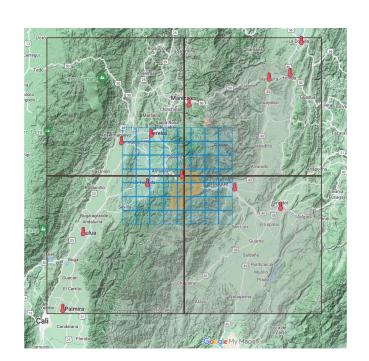
- ERA5 1979-present 0.25° x 0.25°
- ERA5-Land 1950-present 0.1° x 0.1° (~10km)

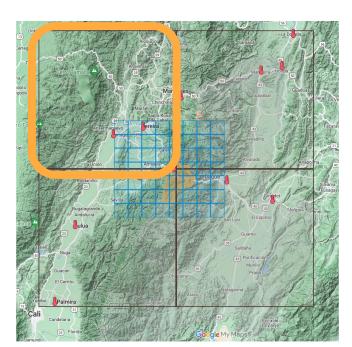
Ground-based observations:

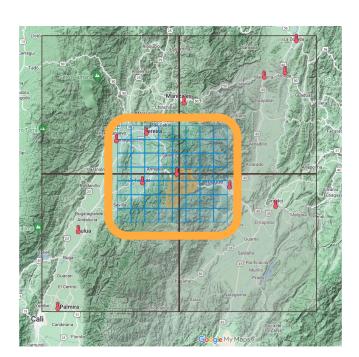
 Global Hourly - Integrated Surface Database (ISD): point data, several variables, 1901-present


Health studies often require data at a fine spatial scale

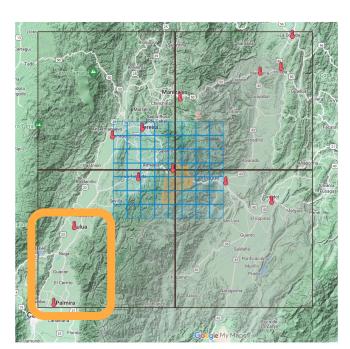
Example sources of climate data


	Seasonal forecast	Reanalysis		Ground-based observations	
		ERA5	ERA5Land		
Centre/ System	ECMWF- SEAS5.1	Copernicus	Copernicus	Global Integrated Surface Database (ISD)	
Spatial esolution	1° x 1° (~100km)	0.25° x 0.25°	0.1° x 0.1° (~10km)	Point data	
Temporal requency	6h, 12h, 24h, monthly statistics	Hourly, daily or monthly statistics	Hourly, daily or monthly statistics	Hourly	
Temporal ange	1981 - present (hindcast period = 1994-2016)	1979 - present	1950 - present	1901 - present	

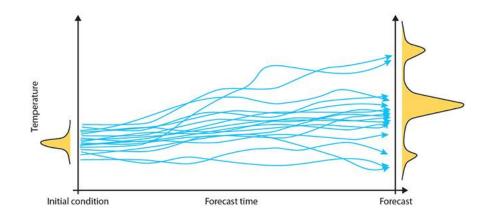

	Seasonal forecast	Reanalysis		Ground-based observations	
		ERA5	ERA5Land		
Centre/ System	ECMWF- SEAS5.1	Copernicus	Copernicus	Global Integrated Surface Database (ISD)	
Spatial resolution	1° x 1° (~100km)	0.25° x 0.25°	0.1° x 0.1° (~10km)	Point data	
	6h, 12h, 24h, monthly statistics	Hourly, daily or monthly statistics	Hourly, daily or monthly statistics	Hourly	
Femporal Frequency Femporal Fange	24h, monthly	daily or monthly	daily or monthly	Hourly 1901 - present	


	Seasonal forecast	Reanalysis		Ground-based observations
		ERA5	ERA5Land	
Centre/ System	ECMWF- SEAS5.1	Copernicus	Copernicus	Global Integrated Surface Database (ISD)
Spatial resolution	1° x 1° (~100km)	0.25° x 0.25°	0.1° x 0.1° (~10km)	Point data
Temporal frequency	6h, 12h, 24h, monthly statistics	Hourly, daily or monthly statistics	Hourly, daily or monthly statistics	Hourly
Temporal range	1981 - present (hindcast period = 1994-2016)	1979 - present	1950 - present	1901 - present

Example sources of climate data


	Seasonal forecast	Reanalysis		Ground-based observations	
		ERA5	ERA5Land		
Centre/ System	ECMWF- SEAS5.1	Copernicus	Copernicus	Global Integrated Surface Database (ISD)	
Spatial esolution	1° x 1° (~100km)	0.25° x 0.25°	0.1° × 0.1° (~10km)	Point data	
emporal requency	6h, 12h, 24h, monthly statistics	Hourly, daily or monthly statistics	Hourly, daily or monthly statistics	Hourly	
emporal ange	1981 - present (hindcast period = 1994-2016)	1979 - present	1950 - present	1901 - present	

Example sources of climate data

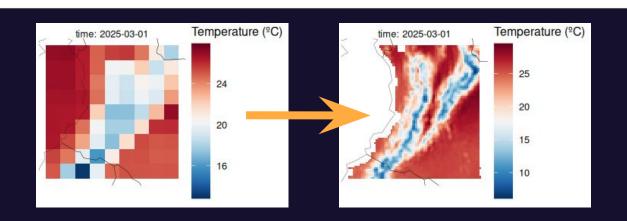

Hindcasts (past forecasts) are forecasts initialised in the past.

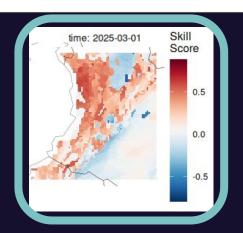
- Used to compare how well the forecast model predicts actual observed values.
- Allow us to quantify model skill we do this by comparing the hindcast to the observations.

Ensemble members capture the envelope of uncertainty.

Climate models are run with multiple slightly different initial conditions.

Hindcasts and ensembles





Downscaling and verification

We can leverage observations and hindcasts to **downscale** a forecast to **finer spatial resolution**

We can identify statistical relationships between observations and hindcasts to assess the quality of a forecast model

clim4health package structure

obtain input data

c4h get optional use

download climate data (reanalysis, observations and seasonal forecasts) from the Copernicus Climate Data Store

c4h load

load data into R object and start t work with the data

transform

apply one or

several in the

desired order

c4h_space

spatial aggregation

c4h time

temporal aggregation (from daily to weekly to monthly to annual)

c4h_downscale

calibration/downscaling

c4h_postprocess

verification and quality assessment

c4h_index

calculation of simple indices (threshold based)

prepare outputs

c4h convert

transform s2dv to common formats

c4h_plot

visualise and save png

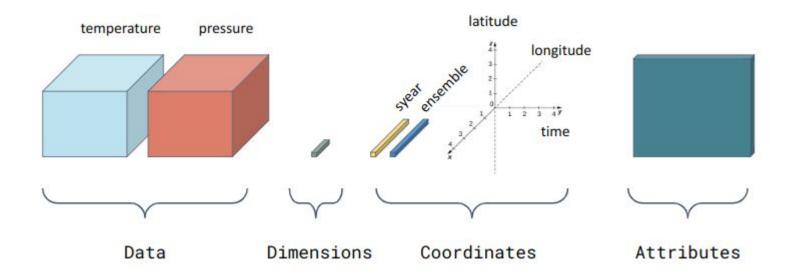
c4h save

save as csv or grid

UTILS

additional helper functions

- 1. Understand sources of climate data
- 2. Learn how to load climate data into R using clim4health
- 3. Learn methods to postprocess climate data and apply them using clim4health
- 4. Learn how to assess forecast quality
- Learn how to plot climate data using clim4health


Loading data

c4h_load: load climate data from netCDF or csv file format into an s2dv_cube object

- Key point: specify the dates and times using arguments "year", "month", "day", and "time"
- Specify forecast leadtimes with "leadtime_month"
- We can use further parameters such as "bbox" to specify the region we want to load
- Output: an s2dv_cube

The s2dv_cube object

- Climate data is highly dimensional often includes latitude, longitude, time, as well as
 potentially others such as ensemble, height
- It's a list containing the climate variables, their dimensions, the coordinates, and any additional information

Exploring the data

- dataset experiments, usually = 1
- var loaded variables
- **sdate** (forecast) initialisation time
- **time** (forecast) lead time
- ensemble model ensemble member
- spatial dimension(s)
 - latitude + longitude (gridded data)
 - location (point data)
 - area (polygon data)

clim4health always works with climate data in these dimensions

Exploring the data

Useful commands

str(fcst) — prints extended information about the elements of the s2dv_cube

dim(fcst\$data) or fcst\$dims — prints the dimensions of the data

```
print("print fcst class")
class(fcst)
print("print dimensions of the stored data")
dim(fcst$data)
print("print the names of the list elements in fcst")
names(fcst)
print("print a summary of the data stored in fcst")
summary(fcstSdata)
print("print extended information about the list elements in fcst")
str(fcst)
                                                                                   [1] "print fcst class"
 [1] "s2dv cube"
[1] "print dimensions of the stored data"
                        sdate
   dataset
                var
                                  time ensemble latitude longitude
                1
                                      3
 [1] "print the names of the list elements in fcst"
 [1] "data" "dims" "coords" "attrs"
```

How to specify time in c4h_load()

• year = 1994:2016

• month = 1

• day = 1

• leadtime_month = 1:3

chooses all the possible start (initialisation) dates. These will be the first elements in the time dimension

chooses how many months should be loaded in the time dimension

sdate = forecast s tart date		time	
	1994-01-01	1994-02-01	1994-03-01
	1995-01-01	1995-02-01	1995-03-01
sdate	1996-01-01	1996-02-01	1996-03-01
	2016-01-01	2016-02-01	2016-03-01

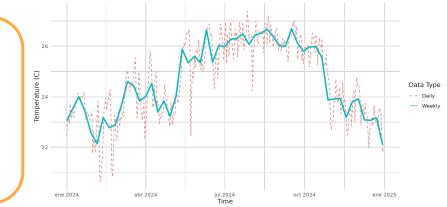
- year = 1994:2016month = 1:2
 - day = 1
- leadtime_month = 1:3

chooses all the possible start (initialisation) dates. These will be the first elements in the time dimension

chooses how many months should be loaded in the time dimension

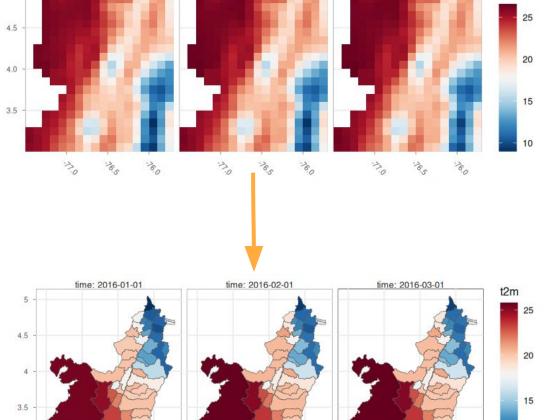
		time —	
	1994-01-01	1994-02-01	1994-03-01
	1994-02-01	1994-03-01	1994-04-01
	1995-01-01	1995-02-01	1995-03-01
sdate	1995-02-01	1995-03-01	1995-04-01
	2016-01-01	2016-02-01	2016-03-01
V	2016-02-01	2016-03-01	2016-04-01

- 1. Understand sources of climate data
- 2. Learn how to load climate data into R using clim4health
- 3. Learn methods to postprocess climate data and apply them using clim4health
- 4. Learn how to assess forecast quality
- Learn how to plot climate data using clim4health



Temporal aggregation

c4h_time:


aggregate climate data to coarser temporal resolutions (e.g. hourly to daily, daily to weekly or monthly)

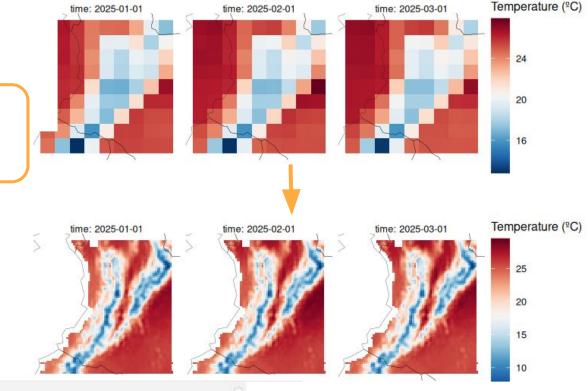

```
{r}
obs daily mean <- clim4health::c4h time(data = obs,
                                       time_aggregation = "daily",
                                       fun = "mean",
                                       dim aggregation = "time")
dim(obs daily mean$data)
print(obs_daily_mean$attrs$Dates[1:10])
                                                                                   time ensemble latitude longitude
  dataset
                        sdate
                var
  [1] "2011-01-01 UTC" "2011-01-02 UTC" "2011-01-03 UTC" "2011-01-04 UTC" "2011-01-05 UTC"
 "2011-01-06 UTC"
  [7] "2011-01-07 UTC" "2011-01-08 UTC" "2011-01-09 UTC" "2011-01-10 UTC"
```

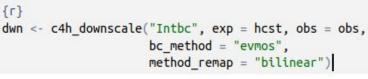
Spatial aggregation

c4h_space: aggregate gridded climate data to spatial polygons

time: 2016-02-01

time: 2016-03-01


t2m


time: 2016-01-01

Downscaling

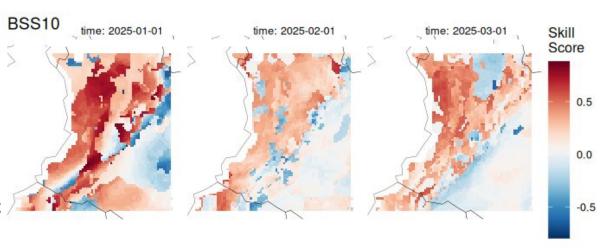
c4h_downscale: downscale climate data to finer spatial resolutions (often using observations to adjust the data)

- there are 4 main methods included in **c4h downscale**
- it is designed to provide helpful notes and messages when it is used

Note: If using 'Intbc' and 'points' is not specified, downscaling is to a grid.
'target grid' has not been specified. Downscaling will be done to the grid of 'obs'.

The key parameter is downscale_function, where you must specify the type of downscaling and calibration to be performed — detailed information is available in the function vignette

- 1. Understand sources of climate data
- Learn how to load climate data into R using clim4health
- 3. Learn methods to postprocess climate data and apply them using clim4health
- 4. Learn how to assess forecast quality
- Learn how to plot climate data using clim4health



Verification

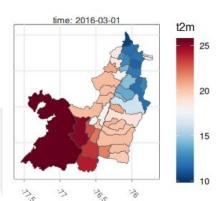
c4h_postprocess: calculate a variety of metrics to assess the quality of a forecast

Key idea: compare the hindcast and observations - how much do we trust our forecast?

The key parameter is metrics, where you can specify a list of all the metrics to be calculated in the skill assessment — detailed information is available in the function vignette

- 1. Understand sources of climate data
- Learn how to load climate data into R using clim4health
- 3. Learn methods to postprocess climate data and apply them using clim4health
- 4. Learn how to assess forecast quality
- Learn how to plot climate data using clim4health

Plotting


c4h_plot: plot your climate data and skill assessments!

```
{r}
c4h_plot(fcst, time = 1:3, ensemble = 1:3)
```

c4h_plot(data) — simply plot all the data (this could be many dimensions!)

Add additional parameters to:

- slice dimensions
- take an ensemble mean
- choose your colour palette
- add the boundaries of the region you are interested in
- and more...

Additional functions

c4h_get

download climate data (reanalysis, observations and seasonal forecasts) from the Copernicus Climate Data Store

c4h_index

calculation of simple indices (threshold based)

c4h_convert_units

convert variable units

c4h_convert

transform s2dv to common formats

c4h_save

save as csv or grid

Additional functions

c4h_get

download climate data (reanalysis, observations and seasonal forecasts) from the Copernicus Climate Data Store

c4h_index

calculation of simple indices (threshold based)

c4h_convert_units

convert variable units

c4h_convert

transform s2dv to common formats

c4h_save

save as csv or grid

We'll use these in the tutorial!

Additional functions

c4h_get

download climate data (reanalysis, observations and seasonal forecasts) from the Copernicus Climate Data Store

c4h_index

calculation of simple indices (threshold based)

c4h_convert_units

convert variable units

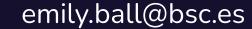
We'll use these in the tutorial!

c4h_convert

transform s2dv to common formats

c4h_save

save as csv or grid


Coming soon!

Let's get started

- 1. We can now open the Docker remember:
 - a. Run the container either through the terminal/powershell or from Docker Desktop - don't forget to add the optional settings
 - b. Go to http://localhost:8080
- 2. Please follow HARMONIZE_training.Rmd
- Let us know if something doesn't work or doesn't make sense!
 - a. Any unclear error messages?
 - b. Any bugs?
 - c. Anything you would like to see added?

Thanks!

Let's get started

- 1. We can now open the Docker remember:
 - a. Run the container either through the terminal/powershell or from Docker Desktop - don't forget to add the optional settings
 - b. Go to http://localhost:8080
- 2. Please follow **HARMONIZE_training.Rmd**
- 3. Let us know if something doesn't work or doesn't make sense!
 - a. Any unclear error messages?
 - b. Any bugs?
 - c. Anything you would like to see added?

Useful commands

str(fcst) — prints extended information about the elements of the s2dv_cube - useful to see where all the information is stored within the s2dv_cube

dim(fcst\$data) or fcst\$dims — print the dimensions of the data

summary(fcst\$data) — print a summary of the data

emily.ball@bsc.es

Workflow 2

We have found a bug!

If you run into an error "MergeDims" please run: library(CSTools)

Please DON'T use quantile mapping when requested...

Instead, try a simple bias correction - instead of bc_method = "evmos" you will need bc_method = "bias"

Workflow 3

We have found errors in the solutions!

When loading the data, use **obs_hourly_path**, not **obs_path**

When aggregating to weekly, use the **obs_hourly** s2dv_cube, not **obs**

When asked to make a threshold, try thresholding the data at 25°, not 30°.

How can clim4health improve?

Today you have used the very first version of clim4health.

To keep improving and making the tool more useful to a bigger audience, we would love to get feedback from users.

Please fill in this form in much detail as possible.

https://tinyurl.com/HARMONIZE-feedback

