

# **clim4health:** a new R package to harmonize climate datasets for health impact studies

Emily Ball, Alba Llabrés-Brustenga, Daniela Lührsen, Ania Kawiecki, Raúl Capellán, Carles Milà, Rachel Lowe

12 May 2025



#### **User inputs**

#### What kind of data?

- · Health outcome
- Socio-economic and environmental indicators

#### **Spatial scale**

- Shape file

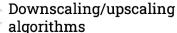
   (administrative
   level boundaries country, regions,
   states,
   municipalities, etc)
- Coordinates (points)

#### **Temporal scale**

- Time step (weekly, monthly, yearly)
- · Start/end date






Harmonized space-time data for polygons or points



**@** 

National/regional



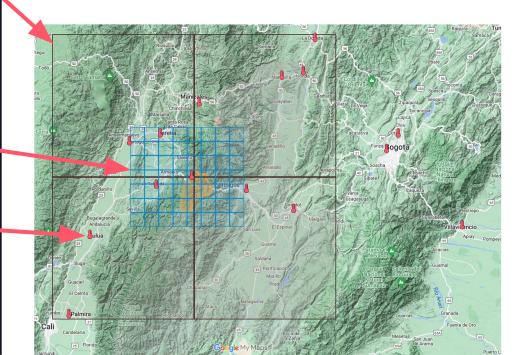






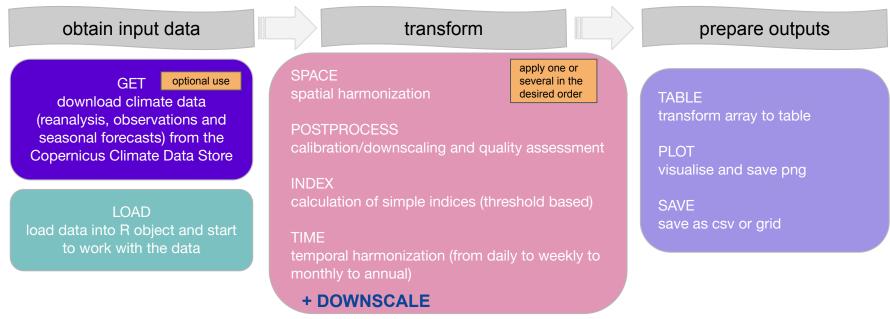
#### Seasonal forecasts available from Copernicus:

- Spatial resolution: 1° x 1°
- Temporal frequency: 6h, 12h, 24h and monthly statistics
- Hindcast period: 1993-2016
- System: ECMWF-s5


#### Reanalysis available from Copernicus:

- ERA5 1979-present 0.25° x 0.25°
- ERA5-Land 1950-present 0.1° x 0.1° •

#### Ground-based observations:

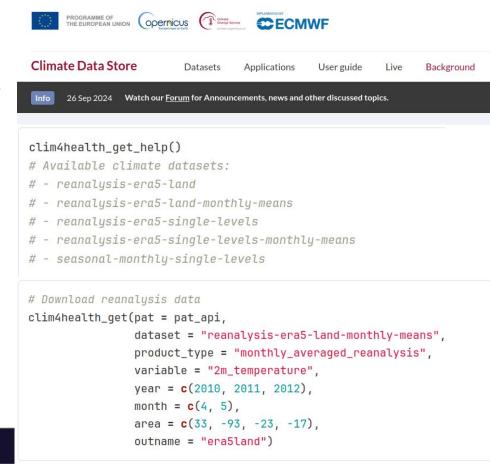

 Global Hourly - Integrated Surface Database (ISD): point data, several variables, 1901-present

# Example sources of climate data





### clim4health structure




For each function, we will also provide detailed vignettes, as well as recommendations for parameter selection



## clim4health\_get

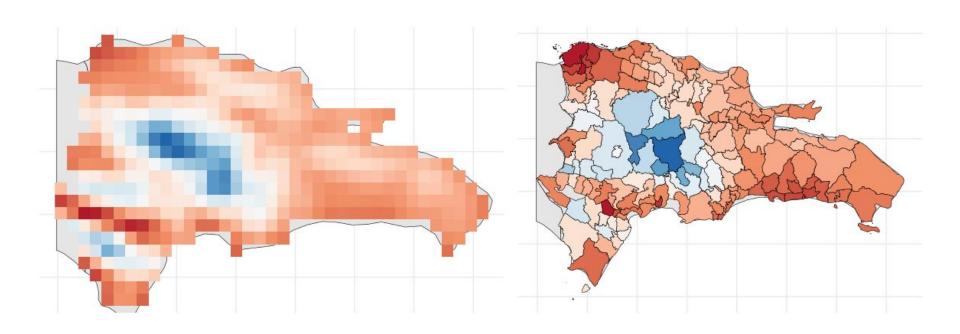
- Download data from the Copernicus Data Store
- Explore the datasets available
  - datasets
  - variables
  - required inputs
  - how to specify the desired region





## clim4health\_load

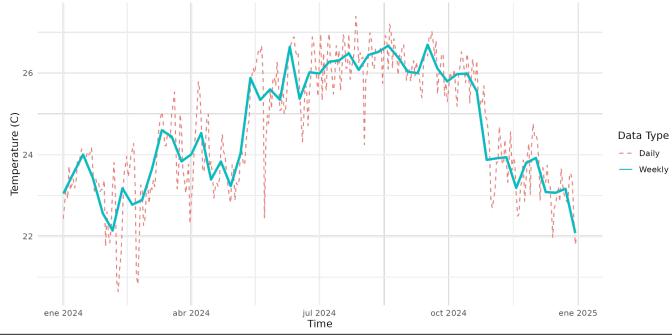
- load NetCDF or csv files
- account for matching dates between reanalysis and hindcasts
- load is the base to establish the dimensions of the array to work with in the rest of the functions


```
class(obs)
#[1] "s2dv_cube"

dim(obs$data)
# dataset var time ensemble latitude longitude
# 1 1 6 1 561 761
```



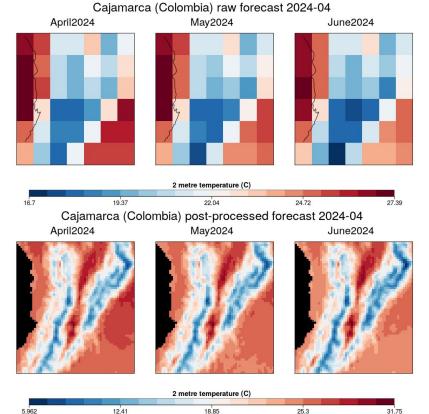
# clim4health\_space


- aggregate gridded climate data to spatial regions





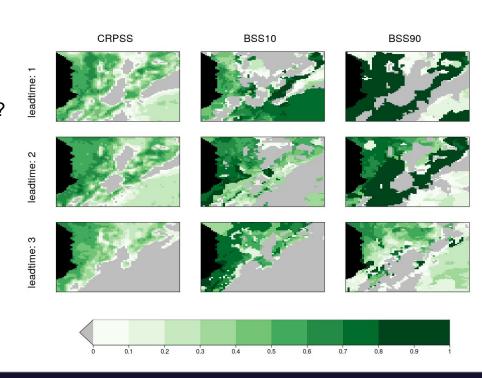
## clim4health\_time


- aggregate raw climate data to desired temporal frequency
- e.g. daily to weekly data





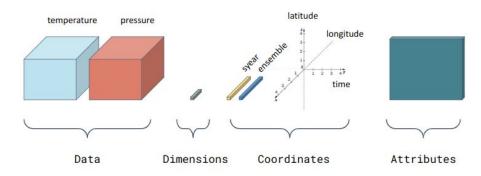
## clim4health\_downscale


- downscale coarse climate data to a finer grid or to point locations
- plus recommendations of methods for variables and hotspots
- new function





## clim4health\_postprocess


- calibration and quality assessment of data
- how does the distribution of a hindcast compare to the climatological observations?
   How skilfully does it predict the:
  - full distribution
  - tails of the distribution
- In progress!





## clim4health\_table

output multidimensional climate data with metadata into a tidy dataframe



| dataset | var | time       | ensemble | latitude | longitude | values |
|---------|-----|------------|----------|----------|-----------|--------|
| dat1    | t2m | 2024-04-01 | 1        | 33       | -93       | 291.61 |
| dat1    | t2m | 2024-05-01 | 1        | 33       | -93       | 298.08 |
| dat1    | t2m | 2024-06-01 | 1        | 33       | -93       | 301.45 |
| dat1    | t2m | 2024-04-01 | 2        | 33       | -93       | 292.39 |
| dat1    | t2m | 2024-05-01 | 2        | 33       | -93       | 296.74 |
| dat1    | t2m | 2024-06-01 | 2        | 33       | -93       | 299.25 |

Status: May 2025



## clim4health development

| <ul><li>✓ finished</li><li>◆ started</li><li>◆ delayed</li></ul> | first version | documentation | unit tests     | vignette        | improvements  | final version |
|------------------------------------------------------------------|---------------|---------------|----------------|-----------------|---------------|---------------|
| delayed                                                          |               |               |                |                 |               |               |
| clim4health_get                                                  | October 2024  | November 2024 | Feb-July 2025  | December 2024   | October 2025  | October 2025  |
| clim4health_load                                                 | October 2024  | November 2024 | Feb-July 2025  | December 2024   | October 2025  | October 2025  |
| clim4health_spatial                                              | November 2024 | November 2024 | Feb-July 2025  | December 2024   | November 2025 | November 2025 |
| clim4health_downscale                                            | June 2025     | July 2025     | August 2025    | July 2025       | December 2025 | March 2026    |
| clim4health_postprocess                                          | May 2025      | June 2025     | Feb-July 2025  | July 2025       | December 2025 | March 2026    |
| clim4health_index                                                | October 2024  | November 2024 | Feb-July 2025  | December 2024 🗸 | January 2026  | March 2026    |
| clim4health_time                                                 | October 2024  | November 2024 | Feb-July 2025  | December 2024   | January 2026  | March 2026    |
| clim4health_table                                                | November 2024 | November 2024 | Feb-July 2025  | December 2024   | January 2026  | March 2026    |
| clim4health_plot                                                 | August 2025   | August 2025   | September 2025 | September 2025  | February 2026 | March 2026    |
| clim4health_save                                                 | August 2025   | August 2025   | September 2025 | September 2025  | February 2026 | March 2026    |



### Thank you - any questions?

Emily Ball, Alba Llabrés-Brustenga, Daniela Lührsen, Ania Kawiecki, Raúl Capellán, Carles Milà, Rachel Lowe

12 May 2025

